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ABSTRACT. For a simple graph G, let NC(G) = min{|N(u) UN (v)] :
u,v € V(G), uwv ¢ E(G)}. In this paper we prove that if NC(G) +
6(G) > |V(G)|, then either G is Hamiltonian-connected, or G belongs
to a well-characterized class of graphs. The former result by Dirac,
Ore and Faudree et al. are extended.

1. INTRODUCTION

Graphs considered in this paper are finite and simple. Undefined nota-
tions and terminologies can be found in [1]. In particular, we use V(G),
E(G), k(G), 6(G), and a(G) to denote the vertex set, the edge set, the
connectivity, the minimum degree and the independence number of G, re-
spectively. If G is a graph and u,v € V(G), then a path in G from u
to v is called a (u,v)-path of G. If v € V(G) and H is a subgraph of
G, then Np(v) denotes the set of vertices in H that are adjacent to v in
G. Thus, dg(v), the degree of v relative to H, is [Ny (v)|. We also write
d(v) for dg(v) and N(v) for Ng(v). If C and H are subgraphs of G, then
N¢(H) = Uyev ) Ne(u), and G — C denotes the subgraph of G' induced
by V(G) — V(C). For vertices u,v € V(G), the distance between u and v,
denoted by d(u,v), is the length of a shortest (u,v)-path in G, or oo if no
such path exists. Let P, = x123 - x,, denote a path of order m. Define
NF (u) ={xiy1 € V(Pn) : ©; € Np,, (u)} and Np (u) = {z;-1 € V(Py,) :
r; € Np,, (u)}. That means if x1 € Np,, (u), then [N (u)| = [Np,, (u)] =1
and if x,,, € Np_, (u), then |N;m (w)| = |Np,, (u)| — 1.

For a graph G, define NC(G) = min{|N(u) UN(v)] : u,v € V(G),uv &
E(G)} and NCD(G) = min{|N(u) U N@)| + d(w) : u,v,w € V(G),uv ¢
E(G),wv or wu & E(G)}.

Let G and H be two graphs. We use G U H to denote the disjoint
union of G and H and G\/ H to denote the graph obtained from G U H
by joining every vertex of G to every vertex of H. We use K,, and K to
denote the complete graph on n vertices and the empty graph on n vertices,
respectively. Let GG, denote the family of all simple graphs of order n. For
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notational convenience, we also use GG, to denote a simple graph of order
n. As an example, Go € {K3, K§}. Define Ga : G, to be the family
of 2-connected graphs each of which is obtained from G2 U G,, by joining
every vertex of G to some vertices of GG, so that the resulting graph G
satisfies NCD(G) > |V(G)| = n + 2. For notational convenience, we also
use G : G, to denote a member in the family.

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonian-
connected if for every pair of vertices u,v € V(G), G has a spanning
(u,v)-path. There have been intensive studies on sufficient degree and/or
neighborhood union conditions for Hamiltonian graphs and Hamiltonian-
connected graphs. The following is a summary of these results that are
related to our study.

Theorem 1.1. Let G be a simple graph on n vertices.

(i) (Dirac, [2]) If §(G) > n/2, then G is Hamiltonian.

(ii) (Ore, [3]) If d(u) 4+ d(v) > n for each pair of nonadjacent vertices
u,v € V(G), then G is Hamiltonian.

(i) (Faudree et al., [5]) If G is 3-connected, and if NC(G) > (2n+1)/3,
then G is Hamiltonian-connected.

(iv) (Faudree et al., [6]) If G is 2-connected, and if NC(G)+(G) > n,
then G is Hamiltonian.

(v) (Wei, [7]) If G is a 2-connected, and if min{d(u) + d(v) 4+ d(w) —
IN(u) N N(v) N Nw)| : u,v,w € V(G),uw,vw,wu ¢ E(G)} >
n+1, then G is Hamiltonian-connected with some well characterized
exceptional graphs.

Motivated by the results above, this paper aims to investigate the Hamil-
tonian and Hamiltonian-connected properties of graphs with relatively large
NCD(G). The main theorem is the following.

Theorem 1.2. If G is a 2-connected graph with n vertices and if NC(G)+
§(G) > n, then one of the following must hold:
(i) G is Hamiltonian-connected,
(ii) Ge {G2 : (KS @] Kh), Gn/g VK;/Q,GQ : (Ks UK, U Kt),
G3 V(K (n—3)/3 U K(n—3)/3U Kn_3)/3)}-

Let G =Gy : (KsUKRUK}), and let « be a vertex in K and y a vertex
in Kp. Then d(z) +d(y) < |V(G)|. Also, G3 \/ (KU Kj, U K;) satisfies the
condition that d(x) + d(y) > n for any two nonadjacent vertices z, y if and
only if s = h =t = 1. Thus, Corollary 1.3 below follows from Theorem 1.2
immediately and it extends Theorem 1.1(ii).

Corollary 1.3. If G is a graph of order n satisfying d(z) + d(y) > n for
every pair of nonadjacent vertices x,y € V(G), then G is Hamiltonian-
connected or G € {Ga : (Ks UKy),GrpaV Ky 5}
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Since none of Gy : (K U Kp), Gn/g\/KfL/Q, G : (Ks UK U Ky),
and G5 /(K U K}, U K;) satisfies the condition that d(z) +d(y) > n+1
for every pair of nonadjacent vertices z,y, Theorem 1.2 also implies the
following result of Ore [4].

Corollary 1.4 (Ore, [4]). If G is a 2-connected graph of order n satisfying
d(x)+d(y) > n+1 for every pair of nonadjacent vertices x,y € V(G), then
G is Hamiltonian-connected.

As Go : (KsUKy), Gy o \/Kfl/2, and G3 (KUK}, UK}) are all Hamil-
tonian, Theorem 1.2 implies Theorem 1.5.

Theorem 1.5. If G is a 2-connected graph with n vertices such that
NCD(G) > n, then G is Hamiltonian.

Clearly, we have NCD(G) > NC(G)+6(G). Thus, if NC(G)+4(G) > n,
we have NCD(G) > n. And clearly if max{s, h,t} # min{s, h,t}, then
NC(G)+6(G) of G3 \V(Ks UK}, U K;) must be less than or equal to n — 1.
Thus, Theorem 1.5 implies the following result of Hamilton-connected graph
under Faudree et al. condition.

Corollary 1.6. If G is a 2-connected graph with n vertices such that
NC(G) + 6(G) > n, then G is Hamiltonian-connected or G € {Gs2 :
(Ks U Ky), Gn/2 \/Kﬁm, Gy : (Ks UK UK,),Gs \/(K(n_g)/3 U K(n_3)/3 U
Kn—3)/3)}-

2. PROOF OoF COROLLARY 1.6.

For a path P, = z1z2--Zm, we use [x;,2;] to denote the section
Z;Ti+1 - - - x; of the path P, if i < j, and to denote the section z;x;_1 - - - x;
of the path P, if i > j. For notational convenience, we also use [z;, %]
to denote the vertex set of this path. If P, is an (z,y)-path and P; is a
(y, 2z)-path in a graph G such that V(P )NV (Py) = {y}, then P, P, denotes
the (x, z)-path of G induced by E(Py) U E(P2).

Let G be a 2-connected graph on n vertices such that

NCD(G) > n. (1)

We shall assume that G is not Hamiltonian-connected to show that Theo-
rem 1.2(ii) must hold. Thus, there exist z,y € V(G) such that G does not
have a spanning (z,y)-path. Let

P, = 2129+ T be a longest (z,y)-path in G, (2)

where 1 = x and x,, = y. Since P,, is not a Hamilton-path, G — P,, has
at least one component.

Lemma 2.1. Suppose that H is a component of G — P,,. Then each of the
following holds.
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(i) For all ¢ with 1 < i < m, if v; € Np,(H) \ {z1,2m}, then
Tit+1 € Npm(H) and x;_1 € Npm(H),' Zf xr1 € Npm(H), then
xo & Np,, (H), and if x,, € Np,, (H), then x,—1 € Np,, (H).

(11) If Ti, Tj € Npm(H) with 1 <11 < j<m, then Ti+1T5+1 g E(G),
if ©;,x; € Np, (H) with 1 < i < j < m, then z;_1z,-1 ¢ E(G).
Consequently, both Nt (H) and Ny (H) are independent sets.

(iii) Let z;,x; € Np,,(H) with 1 <4 < j < m. If zxj41 € E(G) for
some verter Ty € [Tjy2,Tm], then zy_1z,11 & E(G) and x—1 ¢
Np,, (H); if zixj41 € E(G) for some vertex x; € [xiy1,x;], then
Tt41Ti+1 g E(G)

(iii) Let x;,x; € Np,, (H) with 1 <i < j <m. If xyx;—1 € E(G) for
some vertex x; € [r1,%i—2], then 1121 ¢ E(G) and 441 &
Np,, (H); if xixi—1 € E(G) for some vertex x; € [xiy1,x;], then
Tt—1T5—1 g E(G)

(iv) If z;,z; € Np,,(H) with 1 < i < j < m, then no vertex of G —
(V(Pp,) U V(H)) is adjacent to both x;41 and xjy1; if x5, €
Np,, (H) with1 < i < j < m, then no vertex of G—(V(P,,)UV (H))
s adjacent to both x;—1 and x;_1.

(v) Suppose that w € V(H) and {z1,zm} C Np,(u). If z;,z; €
Np,, (H) with 1 <i < j < m, then for any v € V(G)\ (Nj, (H)U
{u}), veiy1 € E(G) or vxjr1 € E(GQ); if x;,x; € Np,, (H) with
L <i < j < m, then for any v € V(G) \ (Np (H) U {u}),
vzi—1 € E(GQ) orvzj—1 € E(G).

Proof. (i), (ii) and (iv) follow immediately from the assumption that P,
is a longest (x1,zm,)-path in G. It remains to show that (iii) and (v)
must hold. Since z;,7; € Np, (H), there exist x{, 2 € V(H) such that
rixy, va € E(G). Let P' denote an (x}, ))-path in H.

(iii) Suppose that the first part of (iii) fails. Then there exists a vertex
xp € {Zj+2,%j43,...,Tm} such that z,z;11 € E(G) and x,_1xi+1 € E(G).
Then [z1, ;)P [z, Tig1] [Te—1, Zj11][Te, Tm] is a longer (x1, zm,)-path, con-
trary to (2). Hence, zyz;41 ¢ E(G). Next, we assume that =, is adjacent
to some vertex x;_; € V(H). Let P” denote an (z}_,, «;)-path in H. Then
[#1, 2] P" [21—1, Tj+1][x¢, Tm] is a longer (21, 2, )-path, contrary to (2). The
proof for (iii)’ is similar, and so it is omitted.

(v) For vertices z;,z; € Np, (H) with 1 < ¢ < j < m, by Lemma
2.1(i), we have ;41 & N(u), zj+1 € N(u) and by Lemma 2.1(ii), we have
Tiv1Zi+1 ¢ E(G). Since N;Lm (H) is an independent set, then N(v;11) U
N(vj41) € V(G) = Nf (H) U {u}. Furthermore, d(u) < |Np, (H)| =
INf (H) U {u}|, and so we have |N(vi11) U N(vj1)| + d(u) < |[V(G)| —
IN{ (H)U{u}|+d(u) < n. Since 2412511 ¢ BE(G),uzip1 € E(G),uxji1 ¢
E(G), by (1), |N(vit1) U N(vj41)| + d(u) > n and so we have N (vj1) U
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N(vj41) = V(G) = Nf (H) U {u}, which implies for all v € V(G) \
(N;rm(H) U {u}), vz;41 € E(G) or vzj1 € E(G). Similarly, if x;,z; €
Np, (H) with 1 < < j < m, then for any v € V(G) \ (Np,_(H) U {u}),
vz;—1 € E(G) or vrj—1 € E(G). This proves (v). O

Lemma 2.2. Fach of the following holds.
(i) If there is a component H of G— P, such that Np, (H) = {x1,2m},

then Gl{xa,x3,...,Zm—1}] is a complete subgraph.

(ii) If Np, (G—Pp,) = {x1,zm}, then G— Py, has at most 2 components.

(i) If Np,, (G — Pp) = {z1,Zm}, then every component of G — Py, is a
complete subgraph.

(iv) If Np,,(G — Pp,) = {z1,Tm}, then G € {Gs : (Ks; U Ky),Go :
(Ks UKy UKy}

Proof. (i) Suppose, to the contrary, that G[{z2,zs3,...,Zm—1}] is not a
complete subgraph. Then there exist z;,z; € {2, 23,...%m—1} such that
xzix; € E(G). Since Np, (G — Pp,) = {x1,Zm}, then (N(z;) U N(z;)) N
(V(H) U g, 27) = 0 and s0 [N (2) UN ()] < V(G)\V(H)| = {2, 25},
Let v € V(H). Then ux; ¢ E(G) and ux; ¢ E(G). Furthermore, we
have d(u) < |V(H) \ {u}| + |[{z1,2m}|, and so |N(z;) U N(z;)| + d(u) <
(VIG\V(H)| = [{zi, 25} + [VH)\ {u}| + {21, 2m}] < n—1, contrary to
(1).

(ii) Suppose that G — P, has at least three components Hy, Ho, and Hs.
Let u € V(H;y) and v € V(Hz). Then uv ¢ E(G). Since Np, (G — Py,) =
{1, Zm }, then we have uze ¢ E(G),vxs ¢ E(G). Againby Np_(G—P,,) =
{z1,2m}, we have N(u)UN(v) C (V(H1)—{u})U(V(Hz) = {v}) U{z1, 2m}
and N(z2) C V(P,,) —{z2} and so [N(u)UN (v)|+d(z2) < |V (Hi)\{u}|+
V({0 + s 2} |+ [V (P)\ L2} = [V )|+ V) |+ [V(Pr)| -
1 <n—1, contrary to (1).

(iii) Let H be a component of G — P, such that u,v € V(H) but uv ¢
E(H). Since Np, (G — Py,) = {21,2m }, then uzs € E(G) and vze ¢ E(G)
and N(u) UN () C (V(H) — {u,v}) U {x1,zm}. Thus, [N(u) UN ()| +
d(xz2) < |V(H)\ {u,v}| + {z1,2m }| + [V (Pm) \ {z2}| < n —1, contrary to
(1).

(iv) The statement follows from (ii) and (iii). O
Lemma 2.3. Let H be a component of G — P,, such that Np, (H) =
{z1,%i,xm} and uw € V(H). Then each of the following holds:

(i) If there are zp, x4 € V(Pn)\ Np,, (H) such that zpzqy ¢ E(G), then
for any vertex v € V(G — H) \ {xp, 24}, either xzyv € E(G) or
zqv € E(G).

(ii) G{x2,x3,...,2;—1}] and G[{xi41,Xit2, ... Tm—1}] are complete sub-
graphs.
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(iii) If G — Py, = H = {u}, then G € {G3\/(K1U K;, UK,)}.

Proof. (i) Let xp, 24 € V(Py) \ Np,, (H) such that z,z, ¢ E(G). Then
ury, ¢ E(GQ) and uzy, ¢ E(G). Suppose, to the contrary, that there is
vy € V(G — H) \ {zp, x4} such that z,z; ¢ E(G) and x4z, ¢ E(G). Then
we have [N (z,) UN (2q)| +d(u) < [V(G)| — V(H)| — [{g, 2, 23} + d(u) =
V(@) — |V(H)| <n—1, contrary to (1).

(ii) To prove that G[{x2,z3,...,x;—1}] is a complete subgraph, we need
to prove the following claims.

Claim 1. wyvg € E(G) for any i — 1 > k > 4; v;_1v € E(G) for any
3>1>i—3.

We prove that vovy, € E(G) for any i —1 > k > 4 by induction on (i —1) — k.
First, we prove zoz;,—1 € E(G), that is, the case when (i —1) —k = 0. Sup-
pose, to the contrary, xex;—1 & E(G). Since x;y1 € V(Pp) \ {22, zi-1},
then by (i), either z; 120 € E(G) or zj412,—1 € E(G). By Lemma
2.1(i), xj4122 € E(G) and so x;112;—1 € E(G). Similarly, we must have
Tm-122 € E(G). Since every vertex in {x;y2,%i13,...,Zm—1} must be
adjacent to either zo or x;_;, then there exist two vertices zp,xp41 €
{Zit1,Tit2, ..., Tm—1} such that zp, zp41 are adjacent to za, ;-1 (or 2;_1,
x2), respectively. It follows that G has a longer (x1, x,,)-path

Trulxs, T[T, Xic1][Te, Tm] (or xyulz;, xp_1][Tio1, 2][Tt, Tm]), contrary
to (2). This shows that zex;—1 € E(G). Now suppose that zez, € E(G)
for any k > s > 4. We need to prove that zazs;—1 € E(G). Suppose,
to the contrary that xexs—1 € E(G). Since z;11 € V(Py) \ {z2,25-1},
by (i), either z;4122 € E(G) or x;y12,-1 € E(G). By Lemma 2.1(ii),
2oxit1 € E(G) and so x;y125-1 € E(G). Thus, G has a longer (21, %, )-
path xyulx;, xs|[Te, Ts—1][Tit1, Tm], contrary to (2). Hence, zoxs—1 € E(G)
and so vauy, € E(G) for any i — 1 > k > 4 by induction. Similarly, we can
inductively prove that v;_1v; € E(G) for any 3 <1 <4 — 3.

Claim 2. z,z, € E(G) forany 2 <p<g<i-—1.

By Claim 1, vevy, € E(G) for any i —1 > k > 4 and v;—1v; € E(Q)
forany 3 >1>1¢— 3.

Now suppose that for any 2 < p < p’ and i — 1 > ¢ > ¢, where p <
P < ¢ < gq, we have zpz), € E(G) for any 2 < k <i—1 and zq2; € E(G)
for any 2 <1 <i—1. We want to prove that z,zy € E(G). Suppose, to
the contrary, that zpzy € E(G). Since x;41 € V(Pp) \ {xp, x4 }, by (1),
either 2,412y € E(G) or ;4124 € E(G). If 412y € E(G), then G has a
longer (21, Ty, )-path zrulz;, Ty 41][T2, Tp ] [Tit1, Tm] and if 2,112 € E(Q),
then G has a longer (z1, p)-path zi1ulz;, Tg41][T2, Tg)[Tit1, Tm], contrary
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to (2) in either case. Hence, zpzy € E(G) and so x,x, € E(G) for any
2 <p < g <i—1 by induction.

By Claim 2, G[{z2,x3,...,2z;—1}] is a complete subgraph.

Similarly, G[{x;+1, Tit2, ... Tm—1}] is also a complete subgraph.

(iii) To prove (iii), we consider the following cases.

Case 1. There exists a vertex z; € {xa,23,...,2;-1} adjacent to some
vertex xp € {Ti41, it oy Tm—1}-
Let L = min{|{z2,x3,...,Ti—1}|, {Zit1, Tit2, ..., Tm—1}|}. First sup-

pose that L = 1. Without loss of generality, let [{z2,23,...,2;—1} = 1,
that is ¢ = 3. If &y # xy,—1, then G has a Hamilton (z1, z,,)-path
T1ux3x2[Th, T4][Tht1, Tm], contrary to (2). Thus, xp = Typ—1. Since 21,23 €
Np, (u), then by Lemma 2.1(ii), we have x224 € E(G) and 80 &p,—1 # 4.
Since x2x4 ¢ E(G), then by (i), either zaxy, € E(G) or zax,, € E(G). If
ToZy € E(G), then G has a Hamilton (z1,z,,)-path ziulzs, Tm—1]Tetm
and if x4z, € E(G), then G has a Hamilton (x1, z,,)-path
TIUT3X2 [T —1, T4] Ty, contrary to (2) in either case.

Hence, we must have L > 2. If z; & {@9,2;-1} or zp & {Tit1, Tm-1},
then by the facts that G[{z2,23,...,2;-1}] and G[{xit1, Tit2,. -, Tm—1}]
are complete subgraphs, G has a Hamilton (z1, z,,)-path
[, Tpp1][Xe—1, Ta)Te[xh, Tig1][The1, Tm], contrary to (2). Now let x; €
{zo,z;—1} and xp, € {wiy1,Tm-1}. Since xo,x;41 € N;m(u) and x;_1,
Tm-1 € Np (u), then by Lemma 2.1(ii), z2x;+1 € E(G) and x;_ 121 &
E(G). Then either z;_1x;+1 € E(G) or xaxy,—1 € E(G). First assume that
Ti—1Tiyr1 € E(G) If XTi—2Tit2 g E(G), then by (1), either x;x;_o € E(G),
whence x1ux;x;_o[x;i—3, T2]Ti—1Ti+1[Tit2, Tm] is @ Hamilton (x1, z,,)-path
or z;xit2 € E(G), whence [z1, 2;—1]Ti41[Tit3, Tm—1]Tipox;uz,y, is a Hamil-
ton (x1, Tm )-path, contrary to (2) in either case. If z;_sx;+2 € E(G), then
Tg = xj—o and Tj49 = Tpyy—1 and so ¢ = 4,m = 7. Then G has a Hamilton
(z1, Tm)-path z1x0z6x503T4UT7, COntrary to (2).

Now assume that zox,,—1 € E(G). If z3x,;,—o € E(G), then 3 =i —1
and m —2 = i+ 1, that is s = 4 and m = 7. Then G has a Hamil-
ton (21, x;,)-path xjuzsxsrszazery, contrary to (2). If x32,—2 € E(G),
by (i), either x3x,, € E(G), whence G has a Hamilton (x1,z,,)-path
T1U[T4y Ty —1T2 [T g, Ti—1]T3T 0 OF Typy—2Xm € E(G), whence G has a Hamil-
ton (z1,xm,)-path xiulx;, To|Tm—1[Tm—3, Tit1]Tm—2Zm, contrary to (2) in
either case.

Case 2. There is no vertex in {zq,z3,...,z;—1} adjacent to a vertex in
{‘Ii+1a L4255 .Im,l}.

Since Np, (u) = {x1,z;,Zm}, then uzp € E(G) and by Lemma 2.1(i),
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xou € E(G). By the assumption of Case 2, xoxp € F(G) and N(z2) U

N(u) C {x1,23,24,...,2;, Ty} and for any xp € {Tir1,Tita,. .. Tm_1},
N(zp){z1,2i, Tit1, -y Th-1, Tht1, Tm—1,Tm }. Then by (1), we have
n < |N(z2) UN(u)| + d(zp)
<z, xs, .oz 2w+ Ho1, T i, -0 The 15 Thp 1, Tn—1Tm }
<n.

Thus, 25, must be adjacent to every vertex in Np, (u). Since xy, is arbitrary,
every vertex in {x;y1,Zit2,...,Tm} must be adjacent to every vertex in
Np, (u) = {z1,2;, Tm }. Similarly, every vertex in {za,x3,...,z;—1} must
be adjacent to every vertex in Np,_ (u) = {x1,z;, 2 }. This implies G €
{Gg \/(K1UKhUKt)}. O

Lemma 2.4. Suppose that V(G — Py,) = {u}, d(u) >4, and {z1,2,m} C
Ng(u). Then G € {Gpnj2 | K7, o}

Proof. Without loss of generality, let Ng(u) = {z1,zi, xj, ..., Ty, Tm }, where
1<i<j<r<m. Thenj=rif d(u) =4.

Case 1. zoxm—1 € E(G).
Since xm—2 € V(Pn) \ Np (u) and 1 <i < j < m, then by Lemma 2.1(v),
either ©;,_1%m—2 € E(G) or zj_12m—2 € E(G). Without loss of general-

ity, suppose ;—1Tm—2 € E(G). Then zyulx;, Tm—_o][Ti—1,22|Tm—1Tm is a
Hamilton (x1, x,, )-path, a contradiction.

Case 2. zo2xm,m—1 € E(G).

Then we consider two subcases: z,11 # Ty—1 and Tyq41 = Typ—1.

Subcase 2.1. z,11 # Tpm—1.

Since xpm—1 € V(Py) \ Nf (u) and 1 < i < m, then by Lemma 2.1(v),
either z9x,,—1 € E(G) or ;112m—1 € E(G). By the assumption of case
2, Toxym—1 ¢ E(G) and so we must have x;112,—1 € E(G). Since z,41 €
V(Pn)\Np (u)and 1 <i < j <m, by Lemma 2.1(v), z,112;—1 € E(G) or
ZTry1zj-1 € E(G) (if d(u) = 4, then j = r). Then we consider the following
two subcases.

Subcase 2.1.1. z,417;-1 € E(G).

Since z; € V(Py) \ Np (u) and 1 < j < m, then by Lemma 2.1(v),
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either z;2,_1 € E(G), whence G has a Hamilton (21, ., )-path

[1, i) [T =1, Tit1|Bm—1[Tim2, TjJuzy, Or T;xm_1 € E(G), whence G has a
Hamilton (21, @, )-path [z1, ;-1][@r11, Tm—1] [Zi, Tr]uzm, contrary to (2)
in either case.

Subcase 2.1.2. z,412;_1 € E(G).

Since 42 € V(Pp) \ Nj, (u) and 1 < i < m, by Lemma 2.1(v), either
Zry2Z2 € E(G), whence by the fact that z, 12,1 € E(G), G has a Hamil-
ton (21, T )-path ziulz;, zri1][xj—1, 2] [Tri2, Tm], OF Trjoxi1 € E(G),
whence G has a Hamilton (x1, z,)-path

[1, z;)ulz, Trsa][xj—1, Tig1][Tr12, Tm], contrary to (2) in either case.

Subcase 2.2. Ty41 = Typ—1-

Note that both z,4y1 = ©—1 € N;gm(u) and Z,41 = Typ-1 € Np (u).
Let x;,2; € Np, (u) be such that Np, (u) N {1, Tito,...,zj—1}) = 0,
then we claim that z;41 = z;_1.

Otherwise, since ;11 € V(Pyn) \ Np (u) and 1 < i < m, then by
Lemma 2.1(v), x;—12;4+1 € E(G) or Zyp—1241 € E(G). Since 41 = Tpp—1,
then z;112m—1 € E(G) and so x;12,—1 € E(G). Since x;42 € V(Pp) \
N{ (u) and 1 < i < r < m, then by Lemma 2.1(v), zi1272 € E(G),
whence G has a Hamilton (21,2, )-path 210221121, T2|[Tit2, Tm], Or
Zit2Tm—1 € E(G)(Tit2x,41 € F(G)), whence G has a Hamilton (x1, 2, )-
path [z1, ;-1 ]|®ip1 202, Tip2]Trp12m, contrary to (2) in either case. There-
fore, Np, (u) = {x1,23,%5,27,...,Zn_1}. Since P, is a longest (x1,z,)-
path, then {u,zs,24,%6,...,2,—2} is an independent set. Since for any
Tp, Tq € {T2,24,%6,...,Tn—2}, we have n < |N(zp) U N(zq)| + d(u) <
{x1,x3, 5,27, .., Tn_1}] + d(u) = n, then every vertex in {2, x4, s,

.+, Tn—2} must be adjacent to every vertex in {z1,x3,Z5,%7,...,Tn-1}-

Thus, we can get G € {G,2 V K, o} O

Lemma 2.5. Suppose that for any v € V(G — Py,), both {z1,xm} C
Np, (u) and Np,, (G — Py) # {x1,2m}. If there exists a component H
of G — Py, such that |V(H)| > 2, then G € {G3 \/(K; UK, UK,)}.

Proof. Without loss of generality, let Np, (H) = {z1,%i, %, .., Tr,Tm }-
Claim 1. |Np, (H)| = 3.
Otherwise, since G is a 2-connected graph, then |Np, (H)| = 2or |Np, (H)| >

4. If |[Np, (H)| = 2, then Np, (H) = {x1,zm}. By Lemma 2.2(i),
G[{z2,x3,...,xm-1}] is a complete subgraph. Since Np (G — P,) #
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{x1,2m} and G is 2-connected, then G — P,,, has a component S such that
x; € Np,, (S)\ {z1, 2} and z; € Np, (S). Without loss of generality, sup-
pose that 1 <4 < j < m. Since ;,z; € Np,, (H), there exist z}, 2} € V(H)
such that z;z}, 2,27 € E(G). Let P’ denote an (z},z})-path in H. Hence,
G has a longer (21, )-path [z1,z,—1][Tit1, zj—1]2; P’ [z, 2], contrary to
(2). Now suppose |Np, (H)| > 4 and u € V(H). Let v € V(H) \ {u}. By
Lemma 2.1(v), vz € E(G) or va;41 € E(G). Since x1 € Np, (v), then by
Lemma 2.1(i), 2 ¢ Np,, (v) and so z,11v € E(G). Since |Np,, (H)| > 4,
then there is x; € Np, (H) \ {x1,%;, T }. By the same argument, we have
zj+1v € E(G) and so [z1, z;]u[z;, Tit1]v[Tj41, Tm] Is alonger (x1, T, )-path,
contrary to (2).

Let Np, (H) = {x1,2;, xm}. By Lemma 2.3(ii), we have the following
Claim 2.

Claim 2. G[{z2,x3,...,Tm-1}] and G[{zit+1,Tit2,...,Tm—1}] are all com-
plete subgraphs.

Since G is 2-connected and |V(H)| > 2, then there are z},z; € V(H)
such that 2} # 2 and z12), z;2; € E(G) or there are z//, 2], € V(H) such
that af # «!!, and x;2, vpal, € E(G). Without loss of generality, suppose
there are z, 2, € V(H) such that x} # « and z12], 22, € E(G). Let P’

denote an (z},x})-path in H.

~—

Claim 3. G — P, is a connected subgraph.

Otherwise, let S be another component of G — P,,. By Lemma 2.3(i),
every vertex in S must be adjacent to one of x2 and x;41. Since every ver-
tex in S is adjacent to z1, by Lemma 2.1(i), no vertex in S can be adjacent
to x2 and so every vertex in S must be adjacent to z;41. If xox,12 € E(G),
then we can get a longer (1, z,)-path x1 P'[z;, x2][xi12, m], contrary to
(2). Then we have zoz;12 ¢ E(G). By Lemma 2.3(i) and Lemma 2.1(i)
again, every vertex in S must be adjacent to z;;2, contradicting Lemma
2.1(1).

Claim 4. H is a complete subgraph.
Otherwise, let u,v € V(H) such that uwv ¢ E(G). Then we have |N(z2) U
N(@ip1)|+d(uw) < [V(Pr)|+|V(H)| = {22, @it1, u, v} + [Np, (H)] < n—1,

contrary to (1).

Claim 5. For any v € V(H), u must be adjacent to every vertex of Np,_(H).
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Otherwise, there exists u € V(H) such that uz; ¢ E(G). Then |N(z2)U
N(@ip1)| +d(u) < [V(Pn) \ {z2, ziga } + [VH)\ {u}[+ [ Np,, (H) \{z:}] <
n — 1, contrary to (1). Similarly, for every vertex w in {x2,x3,...,x;—1} or
{Zit1,Tito, ..., Tm-1}, u must be adjacent to every vertex in Np_(H) =
{z1,2;, Tm}. Then by Claim 1, Claim 2, Claim 3, Claim 4 and Claim 5, we
have G € {G3 V(K UK, UK,)}. O

Proof of Theorem. Let G be a 2-connected graph such that (1) holds. Sup-
pose that G is not Hamiltonian-connected and so we may assume that there
exist x,y € V(G) such that G has no Hamilton (x,y)-path and such that
(2) holds. We want to show that G € {G2 : (Ks U Ky), G2V K )5, G2
(Ks UK UKL),Gs \/(Ks UKpUK;)}. We consider the following cases.

Case 1. There exists a vertex u in G — Py, such that uz, or uz,, € E(G).

Without loss of generality, suppose ux,, ¢ E(G). Let G* be the component
of G — P, containing u. Since G is 2-connected, then |[Np (G*)| > 2.

Subcase 1.1. |Np, (G*)| > 3.

In this case, there exist two distinct vertices z; 41,41 € NT P, (G*) such
that 241241 € E(G). Then we have the following claim.

Claim. For any vertex v € Ng_p, (u) UNJ (u), vzip1 ¢ E(G) and
VTj41 g E(G)

By Lemma 2.1(ii), for any vertex v € Nt P, (u), va;41 € E(G) and vxj11 &
E(G). Now suppose there is v € Ng_p,, (u) such that va;41 € E(G) or
vzjp1 € E(G). Without loss of generality, suppose that vzit1 € E(G).
Since x; € Np, (G*), there exists a; € V(G*) such that z;z; € E(G).
Let P’ denote an (x},v)-path in G*. Then we get a longer (z1, ., )-path
[z1, 23] P1[®it1, Tm], contrary to (2).

Since zit11,2j41 € NTP,(G*), by Lemma 2.1(i), uz;41 ¢ E(G) and
uzji1 ¢ E(G). By the above Claim, we have |N(z;41) U N(zj41)| <
[V(G)| = [Na_p, () U N, (u)] — [{u}]. Since |NF, ()] = |Np, (u)], then
|IN¢—p,, (u)UNj;m (u)] = |Ng-p, (u)UNp, (u)] =|N(u)| and so |N(2;41)U
N(zj41)] < |V(G)] — IN(w)| — {u}| = n — |N(u)| — 1, which implies
IN(zi41) UN(z41)| + d(u) <n—1, contrary to (1).

Subcase 1.2. |Np, (G*)| = 2.
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If Np (G*) # {z1,2m}, then by the argument similar to that in above
Subcase 1.1, we can obtain a contradiction. Then we have Np (G*) =
{x1,Zm}. By Lemma 2.2(i), G[{x2, 23, ...,Zm—1}] is a complete subgraph.

If there exists a vertex x; € V(Py) \ {z1,zm} satisfying the condi-
tion z; is adjacent to some vertex of G — P,,, then there exists a com-
ponent H of G — P,, — G* such that z; is adjacent to some vertex of
H. Since G is 2-connected, then there exist x;y1,zj41 € N;;m (H) or
ri—1,2j-1 € Np (H). Since G[{z2,73,...,Zm-1}] is a complete sub-
graph, then z;412,41 and x;,_12;_1 € E(G), contrary to Lemma 2.1(ii).
Then we have Np (G — P,,) = {x1,zp}. By Lemma 2.2(iv), we have
G e {G2 : (KS U Kh), G : (Ks UKpU Kt)}

Case 2. For any vertex v in G — P, u is adjacent to x1 and x,,.

If Np, (G — Py) = {21,2}, by Lemma 2.2(iv), we have G € {G; :
(Ks UKy),Ge : (Ks UKp UK} In the following, we suppose that
Np, (G — Py) # {21,z }. Then there exists a component G* of G — P,
such that Np,_(G*) N (V(Py) \ {z1,2m}) # 0.

Subcase 2.1. |V(G — Pp)| = [{u}| = 1.

Since u is adjacent to z1 and x,, and Np_ (u)N(V (Py)\{z1,2m}) # 0, then
d(u) > 3. If d(u) = 3, then by Lemma 2.3(iii), G € {G3 /(K1 UK, UK})}.
If d(u) > 4, then by Lemma 2.4, G € {G,,)2 V K, ,}.

Subcase 2.2. |V(G — Py,)| > 2.

If there exists a component H of G — P,, such that |V (H)| > 2, then
by Lemma 2.5, G € {G3 \/(K; UK}, UK,)}. Now we suppose that for every
component H of G — Pp,, |V(H)| = 1.

Claim. For any vertex u € V(G — Pp,), Np,, (u) < 3.

Otherwise, let Np, (u) > 4 and Np,, (u) = {z1, 2,2, ..., Tm} with 1 <i <
j < m. Since |V(G—P,,)| > 2, there exists a vertex v € V(G—F,,)\{u}. By
Lemma 2.1(v), vz € E(G) or va;41 € E(G). Since x1 € Np, (v), then by
Lemma 2.1(i), vae ¢ E(G) and so vz, 41 € E(G). Similarly, vz € E(G),
contrary to Lemma 2.1(iv).

Since Np, (G*) N (V(Py) \ {z1,2m}) # 0, then there exists v € V(G —
P,,) such that |[Np,_(v)| = 3. Without loss of generality, let Np_(v) =
{z1,%i,zm}. Let w € V(G — Py,) \ {v}. By Lemma 2.1(v), either wzy €
E(G) or wz;41 € E(G). Since x1 € Np, (w), then wzy ¢ E(G) and

Q
CDl\/
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s0 writ1 € E(G). Similarly, wx;—; € E(G). Then x;_1,Zit1,21,Tm €
Np, (w), namely, |[Np, (w)| > 4, contrary to the claim that for any vertex
u e V(G- Py), Np, (u) < 3. O
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