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Abstract. For a simple graph G, let NC(G) = min{|N(u)∪N(v)| :
u, v ∈ V (G), uv /∈ E(G)}. In this paper we prove that if NC(G) +

δ(G) ≥ |V (G)|, then either G is Hamiltonian-connected, or G belongs
to a well-characterized class of graphs. The former result by Dirac,
Ore and Faudree et al. are extended.

1. Introduction

Graphs considered in this paper are finite and simple. Undefined nota-
tions and terminologies can be found in [1]. In particular, we use V (G),
E(G), κ(G), δ(G), and α(G) to denote the vertex set, the edge set, the
connectivity, the minimum degree and the independence number of G, re-
spectively. If G is a graph and u, v ∈ V (G), then a path in G from u
to v is called a (u, v)-path of G. If v ∈ V (G) and H is a subgraph of
G, then NH(v) denotes the set of vertices in H that are adjacent to v in
G. Thus, dH(v), the degree of v relative to H , is |NH(v)|. We also write
d(v) for dG(v) and N(v) for NG(v). If C and H are subgraphs of G, then
NC(H) = ∪u∈V (H)NC(u), and G − C denotes the subgraph of G induced
by V (G)− V (C). For vertices u, v ∈ V (G), the distance between u and v,
denoted by d(u, v), is the length of a shortest (u, v)-path in G, or ∞ if no
such path exists. Let Pm = x1x2 · · ·xm denote a path of order m. Define
N+

Pm

(u) = {xi+1 ∈ V (Pm) : xi ∈ NPm
(u)} and N−

Pm

(u) = {xi−1 ∈ V (Pm) :

xi ∈ NPm
(u)}. That means if x1 ∈ NPm

(u), then |N−

Pm

(u)| = |NPm
(u)| − 1

and if xm ∈ NPm
(u), then |N+

Pm

(u)| = |NPm
(u)| − 1.

For a graph G, define NC(G) = min{|N(u) ∪N(v)| : u, v ∈ V (G), uv 6∈
E(G)} and NCD(G) = min{|N(u) ∪ N(v)| + d(w) : u, v, w ∈ V (G), uv 6∈
E(G), wv or wu 6∈ E(G)}.

Let G and H be two graphs. We use G ∪ H to denote the disjoint
union of G and H and G

∨
H to denote the graph obtained from G ∪ H

by joining every vertex of G to every vertex of H . We use Kn and Kc
n to

denote the complete graph on n vertices and the empty graph on n vertices,
respectively. Let Gn denote the family of all simple graphs of order n. For
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notational convenience, we also use Gn to denote a simple graph of order
n. As an example, G2 ∈ {K2,K

c
2}. Define G2 : Gn to be the family

of 2-connected graphs each of which is obtained from G2 ∪ Gn by joining
every vertex of G2 to some vertices of Gn so that the resulting graph G
satisfies NCD(G) ≥ |V (G)| = n + 2. For notational convenience, we also
use G2 : Gn to denote a member in the family.

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonian-
connected if for every pair of vertices u, v ∈ V (G), G has a spanning
(u, v)-path. There have been intensive studies on sufficient degree and/or
neighborhood union conditions for Hamiltonian graphs and Hamiltonian-
connected graphs. The following is a summary of these results that are
related to our study.

Theorem 1.1. Let G be a simple graph on n vertices.

(i) (Dirac, [2]) If δ(G) ≥ n/2, then G is Hamiltonian.
(ii) (Ore, [3]) If d(u) + d(v) ≥ n for each pair of nonadjacent vertices

u, v ∈ V (G), then G is Hamiltonian.
(iii) (Faudree et al., [5]) If G is 3-connected, and if NC(G) ≥ (2n+1)/3,

then G is Hamiltonian-connected.
(iv) (Faudree et al., [6]) If G is 2-connected, and if NC(G)+ δ(G) ≥ n,

then G is Hamiltonian.
(v) (Wei, [7]) If G is a 2-connected, and if min{d(u) + d(v) + d(w) −

|N(u) ∩ N(v) ∩ N(w)| : u, v, w ∈ V (G), uv, vw,wu 6∈ E(G)} ≥
n+1, then G is Hamiltonian-connected with some well characterized
exceptional graphs.

Motivated by the results above, this paper aims to investigate the Hamil-
tonian and Hamiltonian-connected properties of graphs with relatively large
NCD(G). The main theorem is the following.

Theorem 1.2. If G is a 2-connected graph with n vertices and if NC(G)+
δ(G) ≥ n, then one of the following must hold:

(i) G is Hamiltonian-connected,
(ii) G ∈ {G2 : (Ks ∪Kh), Gn/2

∨
Kc

n/2, G2 : (Ks ∪Kh ∪Kt),

G3

∨
(K(n−3)/3 ∪K(n−3)/3 ∪K(n−3)/3)}.

Let G = G2 : (Ks∪Kh∪Kt), and let x be a vertex in Ks and y a vertex
in Kh. Then d(x) + d(y) < |V (G)|. Also, G3

∨
(Ks ∪Kh ∪Kt) satisfies the

condition that d(x) + d(y) ≥ n for any two nonadjacent vertices x, y if and
only if s = h = t = 1. Thus, Corollary 1.3 below follows from Theorem 1.2
immediately and it extends Theorem 1.1(ii).

Corollary 1.3. If G is a graph of order n satisfying d(x) + d(y) ≥ n for
every pair of nonadjacent vertices x, y ∈ V (G), then G is Hamiltonian-
connected or G ∈ {G2 : (Ks ∪Kh), Gn/2

∨
Kc

n/2}.
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Since none of G2 : (Ks ∪ Kh), Gn/2

∨
Kc

n/2, G2 : (Ks ∪ Kh ∪ Kt),

and G3

∨
(Ks ∪Kh ∪Kt) satisfies the condition that d(x) + d(y) ≥ n + 1

for every pair of nonadjacent vertices x, y, Theorem 1.2 also implies the
following result of Ore [4].

Corollary 1.4 (Ore, [4]). If G is a 2-connected graph of order n satisfying
d(x)+d(y) ≥ n+1 for every pair of nonadjacent vertices x, y ∈ V (G), then
G is Hamiltonian-connected.

As G2 : (Ks∪Kh), Gn/2

∨
Kc

n/2, and G3

∨
(Ks∪Kh∪Kt) are all Hamil-

tonian, Theorem 1.2 implies Theorem 1.5.

Theorem 1.5. If G is a 2-connected graph with n vertices such that
NCD(G) ≥ n, then G is Hamiltonian.

Clearly, we haveNCD(G) ≥ NC(G)+δ(G). Thus, ifNC(G)+δ(G) ≥ n,
we have NCD(G) ≥ n. And clearly if max{s, h, t} 6= min{s, h, t}, then
NC(G)+ δ(G) of G3

∨
(KS ∪Kh ∪Kt) must be less than or equal to n− 1.

Thus, Theorem 1.5 implies the following result of Hamilton-connected graph
under Faudree et al. condition.

Corollary 1.6. If G is a 2-connected graph with n vertices such that
NC(G) + δ(G) ≥ n, then G is Hamiltonian-connected or G ∈ {G2 :
(Ks ∪Kh), Gn/2

∨
Kc

n/2, G2 : (Ks ∪Kh ∪Kt), G3

∨
(K(n−3)/3 ∪K(n−3)/3 ∪

K(n−3)/3)}.

2. Proof of Corollary 1.6.

For a path Pm = x1x2 · · ·xm, we use [xi, xj ] to denote the section
xixi+1 · · ·xj of the path Pm if i < j, and to denote the section xixi−1 · · ·xj

of the path Pm if i > j. For notational convenience, we also use [xi, xj ]
to denote the vertex set of this path. If P1 is an (x, y)-path and P2 is a
(y, z)-path in a graph G such that V (P1)∩V (P2) = {y}, then P1P2 denotes
the (x, z)-path of G induced by E(P1) ∪E(P2).

Let G be a 2-connected graph on n vertices such that

NCD(G) ≥ n. (1)

We shall assume that G is not Hamiltonian-connected to show that Theo-
rem 1.2(ii) must hold. Thus, there exist x, y ∈ V (G) such that G does not
have a spanning (x, y)-path. Let

Pm = x1x2 · · ·xm be a longest (x, y)-path in G, (2)

where x1 = x and xm = y. Since Pm is not a Hamilton-path, G − Pm has
at least one component.

Lemma 2.1. Suppose that H is a component of G−Pm. Then each of the
following holds.
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(i) For all i with 1 < i < m, if xi ∈ NPm
(H) \ {x1, xm}, then

xi+1 6∈ NPm
(H) and xi−1 6∈ NPm

(H); if x1 ∈ NPm
(H), then

x2 6∈ NPm
(H), and if xm ∈ NPm

(H), then xm−1 6∈ NPm
(H).

(ii) If xi, xj ∈ NPm
(H) with 1 ≤ i < j < m, then xi+1xj+1 6∈ E(G);

if xi, xj ∈ NPm
(H) with 1 < i < j ≤ m, then xi−1xj−1 6∈ E(G).

Consequently, both N+
Pm

(H) and N−

Pm

(H) are independent sets.

(iii) Let xi, xj ∈ NPm
(H) with 1 ≤ i < j < m. If xtxj+1 ∈ E(G) for

some vertex xt ∈ [xj+2, xm], then xt−1xi+1 6∈ E(G) and xt−1 6∈
NPm

(H); if xtxj+1 ∈ E(G) for some vertex xt ∈ [xi+1, xj ], then
xt+1xi+1 6∈ E(G).

(iii)’ Let xi, xj ∈ NPm
(H) with 1 < i < j ≤ m. If xtxi−1 ∈ E(G) for

some vertex xt ∈ [x1, xi−2], then xt+1xj−1 6∈ E(G) and xt+1 6∈
NPm

(H); if xtxi−1 ∈ E(G) for some vertex xt ∈ [xi+1, xj ], then
xt−1xj−1 6∈ E(G).

(iv) If xi, xj ∈ NPm
(H) with 1 ≤ i < j < m, then no vertex of G −

(V (Pm) ∪ V (H)) is adjacent to both xi+1 and xj+1; if xi, xj ∈
NPm

(H) with 1 < i < j ≤ m, then no vertex of G−(V (Pm)∪V (H))
is adjacent to both xi−1 and xj−1.

(v) Suppose that u ∈ V (H) and {x1, xm} ⊆ NPm
(u). If xi, xj ∈

NPm
(H) with 1 ≤ i < j < m, then for any v ∈ V (G) \ (N+

Pm

(H) ∪
{u}), vxi+1 ∈ E(G) or vxj+1 ∈ E(G); if xi, xj ∈ NPm

(H) with

1 < i < j ≤ m, then for any v ∈ V (G) \ (N−

Pm

(H) ∪ {u}),
vxi−1 ∈ E(G) or vxj−1 ∈ E(G).

Proof. (i), (ii) and (iv) follow immediately from the assumption that Pm

is a longest (x1, xm)-path in G. It remains to show that (iii) and (v)
must hold. Since xi, xj ∈ NPm

(H), there exist x′

i, x
′

j ∈ V (H) such that

xix
′

i, xjx
′

j ∈ E(G). Let P ′ denote an (x′

i, x
′

j)-path in H .
(iii) Suppose that the first part of (iii) fails. Then there exists a vertex

xt ∈ {xj+2, xj+3, . . . , xm} such that xtxj+1 ∈ E(G) and xt−1xi+1 ∈ E(G).
Then [x1, xi]P

′ [xj , xi+1] [xt−1, xj+1][xt, xm] is a longer (x1, xm)-path, con-
trary to (2). Hence, xtxj+1 6∈ E(G). Next, we assume that xt−1 is adjacent
to some vertex x′

t−1 ∈ V (H). Let P ′′ denote an (x′

t−1, x
′

j)-path in H . Then

[x1, xj ]P
′′[xt−1, xj+1][xt, xm] is a longer (x1, xm)-path, contrary to (2). The

proof for (iii)’ is similar, and so it is omitted.
(v) For vertices xi, xj ∈ NPm

(H) with 1 ≤ i < j < m, by Lemma
2.1(i), we have xi+1 6∈ N(u), xj+1 6∈ N(u) and by Lemma 2.1(ii), we have

xi+1xj+1 6∈ E(G). Since N+
Pm

(H) is an independent set, then N(vi+1) ∪

N(vj+1) ⊆ V (G) − N+
Pm

(H) ∪ {u}. Furthermore, d(u) ≤ |NPm
(H)| =

|N+
Pm

(H) ∪ {u}|, and so we have |N(vi+1) ∪ N(vj+1)| + d(u) ≤ |V (G)| −

|N+
Pm

(H)∪{u}|+d(u) ≤ n. Since xi+1xj+1 6∈ E(G), uxi+1 6∈ E(G), uxj+1 6∈
E(G), by (1), |N(vi+1) ∪ N(vj+1)| + d(u) ≥ n and so we have N(vi+1) ∪
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N(vj+1) = V (G) − N+
Pm

(H) ∪ {u}, which implies for all v ∈ V (G) \

(N+
Pm

(H) ∪ {u}), vxi+1 ∈ E(G) or vxj+1 ∈ E(G). Similarly, if xi, xj ∈

NPm
(H) with 1 < i < j ≤ m, then for any v ∈ V (G) \ (N−

Pm

(H) ∪ {u}),
vxi−1 ∈ E(G) or vxj−1 ∈ E(G). This proves (v). �

Lemma 2.2. Each of the following holds.

(i) If there is a component H of G−Pm such that NPm
(H) = {x1, xm},

then G[{x2, x3, . . . , xm−1}] is a complete subgraph.
(ii) If NPm

(G−Pm) = {x1, xm}, then G−Pm has at most 2 components.
(iii) If NPm

(G−Pm) = {x1, xm}, then every component of G−Pm is a
complete subgraph.

(iv) If NPm
(G − Pm) = {x1, xm}, then G ∈ {G2 : (Ks ∪ Kh), G2 :

(Ks ∪Kh ∪Kt)}.

Proof. (i) Suppose, to the contrary, that G[{x2, x3, . . . , xm−1}] is not a
complete subgraph. Then there exist xi, xj ∈ {x2, x3, . . . xm−1} such that
xixj 6∈ E(G). Since NPm

(G − Pm) = {x1, xm}, then (N(xi) ∪ N(xj)) ∩
(V (H)∪{xi, xj}) = ∅ and so |N(xi)∪N(xj)| ≤ |V (G) \V (H)|− |{xi, xj}|.
Let u ∈ V (H). Then uxi 6∈ E(G) and uxj 6∈ E(G). Furthermore, we
have d(u) ≤ |V (H) \ {u}| + |{x1, xm}|, and so |N(xi) ∪ N(xj)| + d(u) ≤
|V (G) \ V (H)| − |{xi, xj}|+ |V (H) \ {u}|+ |{x1, xm}| ≤ n− 1, contrary to
(1).

(ii) Suppose that G−Pm has at least three components H1, H2, and H3.
Let u ∈ V (H1) and v ∈ V (H2). Then uv 6∈ E(G). Since NPm

(G − Pm) =
{x1, xm}, then we have ux2 6∈ E(G), vx2 6∈ E(G). Again byNPm

(G−Pm) =
{x1, xm}, we have N(u)∪N(v) ⊆ (V (H1)−{u})∪(V (H2)−{v})∪{x1, xm}
and N(x2) ⊆ V (Pm)−{x2} and so |N(u)∪N(v)|+d(x2) ≤ |V (H1)\{u}|+
|V (H2)\{v}|+ |{x1, xm}|+ |V (Pm)\{x2}| = |V (H1)|+ |V (H2)|+ |V (Pm)|−
1 ≤ n− 1, contrary to (1).

(iii) Let H be a component of G − Pm such that u, v ∈ V (H) but uv 6∈
E(H). Since NPm

(G− Pm) = {x1, xm}, then ux2 6∈ E(G) and vx2 6∈ E(G)
and N(u) ∪ N(v) ⊆ (V (H) − {u, v}) ∪ {x1, xm}. Thus, |N(u) ∪ N(v)| +
d(x2) ≤ |V (H) \ {u, v}|+ |{x1, xm}|+ |V (Pm) \ {x2}| ≤ n− 1, contrary to
(1).

(iv) The statement follows from (ii) and (iii). �

Lemma 2.3. Let H be a component of G − Pm such that NPm
(H) =

{x1, xi, xm} and u ∈ V (H). Then each of the following holds:

(i) If there are xp, xq ∈ V (Pm)\NPm
(H) such that xpxq 6∈ E(G), then

for any vertex v ∈ V (G − H) \ {xp, xq}, either xpv ∈ E(G) or
xqv ∈ E(G).

(ii) G[{x2, x3, . . . , xi−1}] and G[{xi+1, xi+2, . . . xm−1}] are complete sub-
graphs.
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(iii) If G− Pm = H = {u}, then G ∈ {G3

∨
(K1 ∪Kh ∪Kt)}.

Proof. (i) Let xp, xq ∈ V (Pm) \ NPm
(H) such that xpxq 6∈ E(G). Then

uxp 6∈ E(G) and uxq 6∈ E(G). Suppose, to the contrary, that there is
vk ∈ V (G−H) \ {xp, xq} such that xpxk 6∈ E(G) and xqxk 6∈ E(G). Then
we have |N(xp)∪N(xq)|+d(u) ≤ |V (G)|− |V (H)|− |{xp, xq, xk}|+d(u) =
|V (G)| − |V (H)| ≤ n− 1, contrary to (1).

(ii) To prove that G[{x2, x3, . . . , xi−1}] is a complete subgraph, we need
to prove the following claims.

Claim 1. v2vk ∈ E(G) for any i − 1 ≥ k ≥ 4; vi−1vl ∈ E(G) for any
3 ≥ l ≥ i− 3.

We prove that v2vk ∈ E(G) for any i−1 ≥ k ≥ 4 by induction on (i−1)−k.
First, we prove x2xi−1 ∈ E(G), that is, the case when (i− 1)− k = 0. Sup-
pose, to the contrary, x2xi−1 6∈ E(G). Since xi+1 ∈ V (Pm) \ {x2, xi−1},
then by (i), either xi+1x2 ∈ E(G) or xi+1xi−1 ∈ E(G). By Lemma
2.1(ii), xi+1x2 6∈ E(G) and so xi+1xi−1 ∈ E(G). Similarly, we must have
xm−1x2 ∈ E(G). Since every vertex in {xi+2, xi+3, . . . , xm−1} must be
adjacent to either x2 or xi−1, then there exist two vertices xh, xh+1 ∈
{xi+1, xi+2, . . . , xm−1} such that xh, xh+1 are adjacent to x2, xi−1 (or xi−1,
x2), respectively. It follows that G has a longer (x1, xm)-path
x1u[xi, xt−1][x2, xi−1][xt, xm] (or x1u[xi, xt−1][xi−1, x2][xt, xm]), contrary
to (2). This shows that x2xi−1 ∈ E(G). Now suppose that x2xk ∈ E(G)
for any k ≥ s > 4. We need to prove that x2xs−1 ∈ E(G). Suppose,
to the contrary that x2xs−1 6∈ E(G). Since xi+1 ∈ V (Pm) \ {x2, xs−1},
by (i), either xi+1x2 ∈ E(G) or xi+1xs−1 ∈ E(G). By Lemma 2.1(ii),
x2xi+1 6∈ E(G) and so xi+1xs−1 ∈ E(G). Thus, G has a longer (x1, xm)-
path x1u[xi, xs][x2, xs−1][xi+1, xm], contrary to (2). Hence, x2xs−1 ∈ E(G)
and so v2vk ∈ E(G) for any i− 1 ≥ k ≥ 4 by induction. Similarly, we can
inductively prove that vi−1vl ∈ E(G) for any 3 ≤ l ≤ i− 3.

Claim 2. xpxq ∈ E(G) for any 2 ≤ p < q ≤ i− 1.

By Claim 1, v2vk ∈ E(G) for any i − 1 ≥ k ≥ 4 and vi−1vl ∈ E(G)
for any 3 ≥ l ≥ i− 3.

Now suppose that for any 2 ≤ p < p′ and i − 1 ≥ q > q′, where p <
p′ < q′ < q, we have xpxk ∈ E(G) for any 2 ≤ k ≤ i − 1 and xqxl ∈ E(G)
for any 2 ≤ l ≤ i − 1. We want to prove that xp′xq′ ∈ E(G). Suppose, to
the contrary, that xp′xq′ 6∈ E(G). Since xi+1 ∈ V (Pm) \ {xp′ , xq′}, by (i),
either xi+1xp′ ∈ E(G) or xi+1xq′ ∈ E(G). If xi+1xp′ ∈ E(G), then G has a
longer (x1, xm)-path x1u[xi, xp′+1][x2, xp′ ][xi+1, xm] and if xi+1xq′ ∈ E(G),
then G has a longer (x1, xm)-path x1u[xi, xq′+1][x2, xq′ ][xi+1, xm], contrary
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to (2) in either case. Hence, xp′xq′ ∈ E(G) and so xpxq ∈ E(G) for any
2 ≤ p < q ≤ i− 1 by induction.

By Claim 2, G[{x2, x3, . . . , xi−1}] is a complete subgraph.
Similarly, G[{xi+1, xi+2, . . . xm−1}] is also a complete subgraph.
(iii) To prove (iii), we consider the following cases.

Case 1. There exists a vertex xt ∈ {x2, x3, . . . , xi−1} adjacent to some
vertex xh ∈ {xi+1, xi+2, . . . , xm−1}.

Let L = min{|{x2, x3, . . . , xi−1}|, |{xi+1, xi+2, . . . , xm−1}|}. First sup-
pose that L = 1. Without loss of generality, let |{x2, x3, . . . , xi−1}| = 1,
that is i = 3. If xh 6= xm−1, then G has a Hamilton (x1, xm)-path
x1ux3x2[xh, x4][xh+1, xm], contrary to (2). Thus, xh = xm−1. Since x1, x3 ∈
NPm

(u), then by Lemma 2.1(ii), we have x2x4 6∈ E(G) and so xm−1 6= x4.
Since x2x4 6∈ E(G), then by (i), either x2xm ∈ E(G) or x4xm ∈ E(G). If
x2xm ∈ E(G), then G has a Hamilton (x1, xm)-path x1u[x3, xm−1]x2xm

and if x4xm ∈ E(G), then G has a Hamilton (x1, xm)-path
x1ux3x2[xm−1, x4]xm, contrary to (2) in either case.

Hence, we must have L ≥ 2. If xt 6∈ {x2, xi−1} or xh 6∈ {xi+1, xm−1},
then by the facts that G[{x2, x3, . . . , xi−1}] and G[{xi+1, xi+2, . . . , xm−1}]
are complete subgraphs, G has a Hamilton (x1, xm)-path
x1u[xi, xt+1][xt−1, x2]xt[xh, xi+1][xh+1, xm], contrary to (2). Now let xt ∈
{x2, xi−1} and xh ∈ {xi+1, xm−1}. Since x2, xi+1 ∈ N+

Pm

(u) and xi−1,

xm−1 ∈ N−

Pm

(u), then by Lemma 2.1(ii), x2xi+1 6∈ E(G) and xi−1xm−1 6∈
E(G). Then either xi−1xi+1 ∈ E(G) or x2xm−1 ∈ E(G). First assume that
xi−1xi+1 ∈ E(G). If xi−2xi+2 6∈ E(G), then by (i), either xixi−2 ∈ E(G),
whence x1uxixi−2[xi−3, x2]xi−1xi+1[xi+2, xm] is a Hamilton (x1, xm)-path
or xixi+2 ∈ E(G), whence [x1, xi−1]xi+1[xi+3, xm−1]xi+2xiuxm is a Hamil-
ton (x1, xm)-path, contrary to (2) in either case. If xi−2xi+2 ∈ E(G), then
x2 = xi−2 and xi+2 = xm−1 and so i = 4,m = 7. Then G has a Hamilton
(x1, xm)-path x1x2x6x5x3x4ux7, contrary to (2).

Now assume that x2xm−1 ∈ E(G). If x3xm−2 ∈ E(G), then 3 = i − 1
and m − 2 = i + 1, that is i = 4 and m = 7. Then G has a Hamil-
ton (x1, xm)-path x1ux4x5x3x2x6x7, contrary to (2). If x3xm−2 6∈ E(G),
by (i), either x3xm ∈ E(G), whence G has a Hamilton (x1, xm)-path
x1u[xi, xm−1x2[x4, xi−1]x3xm or xm−2xm ∈ E(G), whence G has a Hamil-
ton (x1, xm)-path x1u[xi, x2]xm−1[xm−3, xi+1]xm−2xm, contrary to (2) in
either case.

Case 2. There is no vertex in {x2, x3, . . . , xi−1} adjacent to a vertex in
{xi+1, xi+2, . . . , xm−1}.

Since NPm
(u) = {x1, xi, xm}, then uxh 6∈ E(G) and by Lemma 2.1(i),
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x2u 6∈ E(G). By the assumption of Case 2, x2xh 6∈ E(G) and N(x2) ∪
N(u) ⊆ {x1, x3, x4, . . . , xi, xm} and for any xh ∈ {xi+1, xi+2, . . . xm−1},
N(xh){x1, xi, xi+1, . . . , xh−1, xh+1, xm−1, xm}. Then by (1), we have

n ≤ |N(x2) ∪N(u)|+ d(xh)

≤ |{x1, x3, . . . , xi, xm}|+ |{x1, xi, xi+1, . . . , xh−1, xh+1, xm−1xm}|

≤ n.

Thus, xh must be adjacent to every vertex in NPm
(u). Since xh is arbitrary,

every vertex in {xi+1, xi+2, . . . , xm} must be adjacent to every vertex in
NPm

(u) = {x1, xi, xm}. Similarly, every vertex in {x2, x3, . . . , xi−1} must
be adjacent to every vertex in NPm

(u) = {x1, xi, xm}. This implies G ∈
{G3

∨
(K1 ∪Kh ∪Kt)}. �

Lemma 2.4. Suppose that V (G − Pm) = {u}, d(u) ≥ 4, and {x1, xm} ⊆
NG(u). Then G ∈ {Gn/2

∨
Kc

n/2}.

Proof. Without loss of generality, letNG(u) = {x1, xi, xj , . . . , xr, xm}, where
1 < i < j ≤ r < m. Then j = r if d(u) = 4.

Case 1. x2xm−1 ∈ E(G).

Since xm−2 ∈ V (Pm) \N−

Pm

(u) and 1 < i < j < m, then by Lemma 2.1(v),
either xi−1xm−2 ∈ E(G) or xj−1xm−2 ∈ E(G). Without loss of general-
ity, suppose xi−1xm−2 ∈ E(G). Then x1u[xi, xm−2][xi−1, x2]xm−1xm is a
Hamilton (x1, xm)-path, a contradiction.

Case 2. x2xm−1 6∈ E(G).

Then we consider two subcases: xr+1 6= xm−1 and xr+1 = xm−1.

Subcase 2.1. xr+1 6= xm−1.

Since xm−1 ∈ V (Pm) \ N+
Pm

(u) and 1 < i < m, then by Lemma 2.1(v),

either x2xm−1 ∈ E(G) or xi+1xm−1 ∈ E(G). By the assumption of case
2, x2xm−1 6∈ E(G) and so we must have xi+1xm−1 ∈ E(G). Since xr+1 ∈
V (Pm)\N−

Pm

(u) and 1 < i < j < m, by Lemma 2.1(v), xr+1xi−1 ∈ E(G) or
xr+1xj−1 ∈ E(G) (if d(u) = 4, then j = r). Then we consider the following
two subcases.

Subcase 2.1.1. xr+1xi−1 ∈ E(G).

Since xi ∈ V (Pm) \ N−

Pm

(u) and 1 < j < m, then by Lemma 2.1(v),
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either xixj−1 ∈ E(G), whence G has a Hamilton (x1, xm)-path
[x1, xi][xj−1, xi+1]xm−1[xi−2, xj ]uxm or xixm−1 ∈ E(G), whence G has a
Hamilton (x1, xm)-path [x1, xi−1][xr+1, xm−1] [xi, xr]uxm, contrary to (2)
in either case.

Subcase 2.1.2. xr+1xj−1 ∈ E(G).

Since xr+2 ∈ V (Pm) \ N+
Pm

(u) and 1 < i < m, by Lemma 2.1(v), either
xr+2x2 ∈ E(G), whence by the fact that xr+1xj−1 ∈ E(G), G has a Hamil-
ton (x1, xm)-path x1u[xj , xr+1][xj−1, x2] [xr+2, xm], or xr+2xi+1 ∈ E(G),
whence G has a Hamilton (x1, xm)-path
[x1, xi]u[xj , xr+1][xj−1, xi+1][xr+2, xm], contrary to (2) in either case.

Subcase 2.2. xr+1 = xm−1.

Note that both xr+1 = xm−1 ∈ N+
Pm

(u) and xr+1 = xm−1 ∈ N−

Pm

(u).

Let xi, xj ∈ NPm
(u) be such that NPm

(u) ∩ {xi+1, xi+2, . . . , xj−1}) = ∅,
then we claim that xi+1 = xj−1.

Otherwise, since xi+1 ∈ V (Pm) \ N−

Pm

(u) and 1 < i < m, then by
Lemma 2.1(v), xi−1xi+1 ∈ E(G) or xm−1xi+1 ∈ E(G). Since xr+1 = xm−1,
then xi+1xm−1 6∈ E(G) and so xi+1xi−1 ∈ E(G). Since xi+2 ∈ V (Pm) \
N+

Pm

(u) and 1 < i < r < m, then by Lemma 2.1(v), xi+2x2 ∈ E(G),

whence G has a Hamilton (x1, xm)-path x1uxixi+1[xi−1, x2][xi+2, xm], or
xi+2xm−1 ∈ E(G)(xi+2xr+1 ∈ E(G)), whence G has a Hamilton (x1, xm)-
path [x1, xi−1]xi+1xiu[xr, xi+2]xr+1xm, contrary to (2) in either case. There-
fore, NPm

(u) = {x1, x3, x5, x7, . . . , xn−1}. Since Pm is a longest (x1, xm)-
path, then {u, x2, x4, x6, . . . , xn−2} is an independent set. Since for any
xp, xq ∈ {x2, x4, x6, . . . , xn−2}, we have n ≤ |N(xp) ∪ N(xq)| + d(u) ≤
|{x1, x3, x5, x7, . . . , xn−1}| + d(u) = n, then every vertex in {x2, x4, x6,
. . ., xn−2} must be adjacent to every vertex in {x1, x3, x5, x7, . . . , xn−1}.
Thus, we can get G ∈ {Gn/2

∨
Kc

n/2}. �

Lemma 2.5. Suppose that for any u ∈ V (G − Pm), both {x1, xm} ⊆
NPm

(u) and NPm
(G − Pm) 6= {x1, xm}. If there exists a component H

of G− Pm such that |V (H)| ≥ 2, then G ∈ {G3

∨
(Ks ∪Kh ∪Kt)}.

Proof. Without loss of generality, let NPm
(H) = {x1, xi, xj , . . . , xr, xm}.

Claim 1. |NPm
(H)| = 3.

Otherwise, sinceG is a 2-connected graph, then |NPm
(H)| = 2 or |NPm

(H)| ≥
4. If |NPm

(H)| = 2, then NPm
(H) = {x1, xm}. By Lemma 2.2(i),

G[{x2, x3, . . . , xm−1}] is a complete subgraph. Since NPm
(G − Pm) 6=
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{x1, xm} and G is 2-connected, then G−Pm has a component S such that
xi ∈ NPm

(S) \ {x1, xm} and xj ∈ NPm
(S). Without loss of generality, sup-

pose that 1 < i < j ≤ m. Since xi, xj ∈ NPm
(H), there exist x′

i, x
′

j ∈ V (H)
such that xix

′

i, xjx
′

j ∈ E(G). Let P ′ denote an (x′

i, x
′

j)-path in H . Hence,

G has a longer (x1, xm)-path [x1, xi−1][xi+1, xj−1]xiP
′[xj , xm], contrary to

(2). Now suppose |NPm
(H)| ≥ 4 and u ∈ V (H). Let v ∈ V (H) \ {u}. By

Lemma 2.1(v), vx2 ∈ E(G) or vxi+1 ∈ E(G). Since x1 ∈ NPm
(v), then by

Lemma 2.1(i), x2 6∈ NPm
(v) and so xi+1v ∈ E(G). Since |NPm

(H)| ≥ 4,
then there is xj ∈ NPm

(H) \ {x1, xi, xm}. By the same argument, we have
xj+1v ∈ E(G) and so [x1, xi]u[xj , xi+1]v[xj+1, xm] is a longer (x1, xm)-path,
contrary to (2).

Let NPm
(H) = {x1, xi, xm}. By Lemma 2.3(ii), we have the following

Claim 2.

Claim 2. G[{x2, x3, . . . , xm−1}] and G[{xi+1, xi+2, . . . , xm−1}] are all com-
plete subgraphs.

Since G is 2-connected and |V (H)| ≥ 2, then there are x′

1, x
′

i ∈ V (H)
such that x′

1 6= x′

i and x1x
′

1, xix
′

i ∈ E(G) or there are x′′

i , x
′′

m ∈ V (H) such
that x′′

i 6= x′′

m and xix
′′

i , xmx′′

m ∈ E(G). Without loss of generality, suppose
there are x′

1, x
′

i ∈ V (H) such that x′

1 6= x′

i and x1x
′

1, xix
′

i ∈ E(G). Let P ′

denote an (x′

1, x
′

i)-path in H .

Claim 3. G− Pm is a connected subgraph.

Otherwise, let S be another component of G − Pm. By Lemma 2.3(i),
every vertex in S must be adjacent to one of x2 and xi+1. Since every ver-
tex in S is adjacent to x1, by Lemma 2.1(i), no vertex in S can be adjacent
to x2 and so every vertex in S must be adjacent to xi+1. If x2xi+2 ∈ E(G),
then we can get a longer (x1, xm)-path x1P

′[xi, x2][xi+2, xm], contrary to
(2). Then we have x2xi+2 6∈ E(G). By Lemma 2.3(i) and Lemma 2.1(i)
again, every vertex in S must be adjacent to xi+2, contradicting Lemma
2.1(i).

Claim 4. H is a complete subgraph.

Otherwise, let u, v ∈ V (H) such that uv 6∈ E(G). Then we have |N(x2) ∪
N(xi+1)|+d(u) ≤ |V (Pm)|+ |V (H)|−|{x2, xi+1, u, v}|+ |NPm

(H)| ≤ n−1,
contrary to (1).

Claim 5. For any u ∈ V (H), umust be adjacent to every vertex ofNPm
(H).
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Otherwise, there exists u ∈ V (H) such that uxi 6∈ E(G). Then |N(x2) ∪
N(xi+1)|+ d(u) ≤ |V (Pm) \ {x2, xi+1}|+ |V (H) \ {u}|+ |NPm

(H) \ {xi}| ≤
n− 1, contrary to (1). Similarly, for every vertex u in {x2, x3, . . . , xi−1} or
{xi+1, xi+2, . . . , xm−1}, u must be adjacent to every vertex in NPm

(H) =
{x1, xi, xm}. Then by Claim 1, Claim 2, Claim 3, Claim 4 and Claim 5, we
have G ∈ {G3

∨
(Ks ∪Kh ∪Kt)}. �

Proof of Theorem. Let G be a 2-connected graph such that (1) holds. Sup-
pose that G is not Hamiltonian-connected and so we may assume that there
exist x, y ∈ V (G) such that G has no Hamilton (x, y)-path and such that
(2) holds. We want to show that G ∈ {G2 : (Ks ∪Kh), Gn/2

∨
Kc

n/2, G2 :

(Ks ∪Kh ∪Kt), G3

∨
(Ks ∪Kh ∪Kt)}. We consider the following cases.

Case 1. There exists a vertex u in G−Pm such that ux1 or uxm 6∈ E(G).

Without loss of generality, suppose uxm 6∈ E(G). Let G∗ be the component
of G− Pm containing u. Since G is 2-connected, then |NPm

(G∗)| ≥ 2.

Subcase 1.1. |NPm
(G∗)| ≥ 3.

In this case, there exist two distinct vertices xi+1, xj+1 ∈ N+Pm(G∗) such
that xi+1xj+1 6∈ E(G). Then we have the following claim.

Claim. For any vertex v ∈ NG−Pm
(u) ∪ N+

Pm

(u), vxi+1 6∈ E(G) and
vxj+1 6∈ E(G).

By Lemma 2.1(ii), for any vertex v ∈ N+Pm(u), vxi+1 6∈ E(G) and vxj+1 6∈
E(G). Now suppose there is v ∈ NG−Pm

(u) such that vxi+1 ∈ E(G) or
vxj+1 ∈ E(G). Without loss of generality, suppose that vxi+1 ∈ E(G).
Since xi ∈ NPm

(G∗), there exists x′

i ∈ V (G∗) such that xix
′

i ∈ E(G).
Let P ′ denote an (x′

i, v)-path in G∗. Then we get a longer (x1, xm)-path
[x1, xi]P1[xi+1, xm], contrary to (2).

Since xi+1, xj+1 ∈ N+Pm(G∗), by Lemma 2.1(i), uxi+1 6∈ E(G) and
uxj+1 6∈ E(G). By the above Claim, we have |N(xi+1) ∪ N(xj+1)| ≤
|V (G)| − |NG−Pm

(u) ∪N+
Pm

(u)| − |{u}|. Since |N+
Pm

(u)| = |NPm
(u)|, then

|NG−Pm
(u)∪N+

Pm

(u)| = |NG−Pm
(u)∪NPm

(u)| = |N(u)| and so |N(xi+1)∪
N(xj+1)| ≤ |V (G)| − |N(u)| − |{u}| = n − |N(u)| − 1, which implies
|N(xi+1) ∪N(xj+1)|+ d(u) ≤ n− 1, contrary to (1).

Subcase 1.2. |NPm
(G∗)| = 2.
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If NPm
(G∗) 6= {x1, xm}, then by the argument similar to that in above

Subcase 1.1, we can obtain a contradiction. Then we have NPm
(G∗) =

{x1, xm}. By Lemma 2.2(i), G[{x2, x3, . . . , xm−1}] is a complete subgraph.
If there exists a vertex xi ∈ V (Pm) \ {x1, xm} satisfying the condi-

tion xi is adjacent to some vertex of G − Pm, then there exists a com-
ponent H of G − Pm − G∗ such that xi is adjacent to some vertex of
H . Since G is 2-connected, then there exist xi+1, xj+1 ∈ N+

Pm

(H) or

xi−1, xj−1 ∈ N−

Pm

(H). Since G[{x2, x3, . . . , xm−1}] is a complete sub-
graph, then xi+1xj+1 and xi−1xj−1 ∈ E(G), contrary to Lemma 2.1(ii).
Then we have NPm

(G − Pm) = {x1, xm}. By Lemma 2.2(iv), we have
G ∈ {G2 : (Ks ∪Kh), G2 : (Ks ∪Kh ∪Kt)}.

Case 2. For any vertex u in G− Pm, u is adjacent to x1 and xm.

If NPm
(G − Pm) = {x1, xm}, by Lemma 2.2(iv), we have G ∈ {G2 :

(Ks ∪ Kh), G2 : (Ks ∪ Kh ∪ Kt)}. In the following, we suppose that
NPm

(G − Pm) 6= {x1, xm}. Then there exists a component G∗ of G − Pm

such that NPm
(G∗) ∩ (V (Pm) \ {x1, xm}) 6= ∅.

Subcase 2.1. |V (G− Pm)| = |{u}| = 1.

Since u is adjacent to x1 and xm and NPm
(u)∩(V (Pm)\{x1, xm}) 6= ∅, then

d(u) ≥ 3. If d(u) = 3, then by Lemma 2.3(iii), G ∈ {G3

∨
(K1 ∪Kh ∪Kt)}.

If d(u) ≥ 4, then by Lemma 2.4, G ∈ {Gn/2

∨
Kc

n/2}.

Subcase 2.2. |V (G− Pm)| ≥ 2.

If there exists a component H of G − Pm such that |V (H)| ≥ 2, then
by Lemma 2.5, G ∈ {G3

∨
(Ks∪Kh∪Kt)}. Now we suppose that for every

component H of G− Pm, |V (H)| = 1.

Claim. For any vertex u ∈ V (G− Pm), NPm
(u) ≤ 3.

Otherwise, let NPm
(u) ≥ 4 and NPm

(u) = {x1, xi, xj , . . . , xm} with 1 < i <
j < m. Since |V (G−Pm)| ≥ 2, there exists a vertex v ∈ V (G−Pm)\{u}. By
Lemma 2.1(v), vx2 ∈ E(G) or vxi+1 ∈ E(G). Since x1 ∈ NPm

(v), then by
Lemma 2.1(i), vx2 6∈ E(G) and so vxi+1 ∈ E(G). Similarly, vxj+1 ∈ E(G),
contrary to Lemma 2.1(iv).

Since NPm
(G∗) ∩ (V (Pm) \ {x1, xm}) 6= ∅, then there exists v ∈ V (G −

Pm) such that |NPm
(v)| = 3. Without loss of generality, let NPm

(v) =
{x1, xi, xm}. Let w ∈ V (G − Pm) \ {v}. By Lemma 2.1(v), either wx2 ∈
E(G) or wxi+1 ∈ E(G). Since x1 ∈ NPm

(w), then wx2 6∈ E(G) and
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so wxi+1 ∈ E(G). Similarly, wxi−1 ∈ E(G). Then xi−1, xi+1, x1, xm ∈
NPm

(w), namely, |NPm
(w)| ≥ 4, contrary to the claim that for any vertex

u ∈ V (G− Pm), NPm
(u) ≤ 3. �
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