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Abstract. ω-open sets are used to introduce two new classes of sets
in bitopological spaces, namely, u-ω-open sets and q-ω-open sets.
Several properties of these classes are given. The new classes of sets
are used to introduce several types of continuity. Several results
related to two known Lindelöfness bitopological concepts are intro-
duced.

1. Introduction and preliminaries

Let (X, τ) be a topological space and let A be a subset of X . A point
x ∈ X is called a condensation point of A [8] if for each U ∈ τ with
x ∈ U , the set U ∩ A is uncountable. In 1982, Hdeib defined ω-closed sets
and ω-open sets as follows. A is called ω-closed [12] if it contains all its
condensation points. The complement of an ω-closed set is called ω-open.
Many topological concepts and results related to ω-closed sets and ω-open
sets have appeared in [1-5,8,11,16] and others. In 1963, Kelly [13] intro-
duced the notion of bitopological spaces as an ordered triple (X, τ, σ) of a
set X and two topologies τ and σ, (i.e., two bitopological spaces (X, τ, σ)
and (X, τ ′, σ′) are identical if and only if τ = τ ′ and σ = σ′. After Kelly’s
initiation of the bitopological notion, many authors generalized many topo-
logical concepts to include bitopological spaces. Recently, the authors in
[6] used ω-closed sets to introduce semi star generalized ω-closed sets as a
class of sets in bitopological spaces. In the present work, ω-open sets will
be used to obtain two new classes of sets in bitopological spaces, namely
u-ω-open sets and q-ω-open sets. Several properties of these classes will be
given. Several results related to two known Lindelöfness bitopological con-
cepts will be introduced. The new classes of sets will be used to introduce
several types of continuity and separation axioms in bitopological spaces.

Throughout this paper, we use R (resp. Q,Qc) to denote the set of real
numbers (resp. the set of rational numbers, the set of irrational numbers).
For a subset A of a topological space (X, τ), we write Clτ (A) for the closure
of A. Also, we write τ|A to denote the relative topology on A when A is
nonempty. For a nonempty set X , τind will denote the indiscrete topology
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on X . We use τu (resp. τlr , τrr) to denote the usual (resp. left ray, right
ray) topology on R.

In this paper, the family of all ω-open sets of a topological space (X, τ)
will be denoted by τω .

At the end of this section, we recall basic definitions and propositions,
which are used throughout this paper.

Proposition 1.1. [5] Let (X, τ) be a topological space and A ⊆ X. Then

(a) A is ω-open of (X, τ) if and only if for each x ∈ A there exists
U ∈ τ and a countable set C ⊆ X such that x ∈ U − C ⊆ A.

(b) τω is a topology on X with τ ⊆ τω.
(c) If A is nonempty, then (τ |

A
)ω = τω |A.

Definition 1.2. [11] A function f : (X, τ) → (Y, σ) is said to be ω-contin-
uous at a point x ∈ X, if for every open set V containing f(x) there is an
ω-open set U containing x such that f(U) ⊆ V . If f is ω-continuous at
each point of X then f is said to be ω-continuous on X.

Proposition 1.3. [11] For a function f : (X, τ) → (Y, σ) the following are
equivalent.

(a) f is ω-continuous.
(b) For each U ∈ σ, f−1(U) ∈ τω.
(c) f : (X, τω) → (Y, σ) is continuous.

Proposition 1.4. [11] Every continuous function is ω-continuous, but not
conversely.

Recall that if τ and σ are two topologies on a set X , then the smallest
topology onX which contains τ∪σ is called the least upper bound topology
on X .

Definition 1.5. [7] A set A ⊆ (X, τ, σ) is said to be semi-open (briefly,
s-open) if it is open in the least upper bound topology on X.

If τ and σ are two topologies on a set X , then the least upper bound
topology on X will be denoted by 〈τ, σ〉.

The following useful result follows directly from the definition.

Proposition 1.6. Let τ and σ be two topologies on a set X. Then A ⊆
(X, τ, σ) is s-open if and only if for each x ∈ A there exists U ∈ τ , and
V ∈ σ such that x ∈ U ∩ V ⊆ A.

Definition 1.7. [7] A set A ⊆ (X, τ, σ) is said to be quasi-open (briefly,
q-open) if for every x ∈ A there exists Ux ∈ τ such that x ∈ Ux ⊆ A or
Vx ∈ σ such that x ∈ Vx ⊆ A. Equivalently, a set A ⊆ (X, τ, σ) is q-open
if and only if A = B ∪ C, where B ∈ τ and C ∈ σ. A set A ⊆ (X, τ, σ) is
said to be q-closed if X −A is q-open.
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The family of all q-open sets in (X, τ, σ) is denoted by q(τ, σ).

Definition 1.8. [14] A set A ⊆ (X, τ, σ) is said to be u-open if A ∈ τ ∪ σ.

The family of all u-open sets in (X, τ, σ) is denoted by u(τ, σ). The
authors in [14] called u-open set in Definition 3.1 (i) as p1-open set.

Proposition 1.9. [7] For a topological space (X, τ, σ), we have the follow-
ing:

(a) u(τ, σ) ⊆ q(τ, σ) ⊆ 〈τ, σ〉, τ ∪ σ 6= q(τ, σ) in general, and q(τ, σ) 6=
〈τ, σ〉 in general.

(b) q(τ, σ) is closed under arbitrary union but q(τ, σ) is not a topology
on X, in general.

(c) Arbitrary intersection of q-closed sets is q-closed.

Definition 1.10. A cover U of the bitopological space (X, τ, σ) is called:

(a) [17] τσ-open if U ⊆ u(τ, σ).
(b) [9] p-open if it is τσ-open, and U contains at least one nonempty

member of τ and at least one nonempty member of σ.

Definition 1.11. [10] A bitopological space (X, τ, σ) is called:

(a) s-Lindelöf if every τσ-open cover of (X, τ, σ) has a countable sub-
cover.

(b) p-Lindelöf if every p-open cover of (X, τ, σ) has a countable sub-
cover.

Definition 1.12. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function.

(a) [15] f is said to be p-continuous if the functions f : (X, τ1) →
(Y, σ1) and f : (X, τ2) → (Y, σ2) are continuous.

(b) [18] f is said to be u-continuous if for each A ∈ u(σ1, σ2), f
−1(A) ∈

u(τ1, τ2).
(c) [7] f is said to be q-continuous if for each A ∈ q(σ1, σ2), f

−1(A) ∈
q(τ1, τ2).

The authors in [18] called u-continuous functions in Definition 5.1, p-
continuous functions. Also the author in [7] called q-continuous functions
in Definition 2.6 quasi-continuous.

The following result is well-known.

Proposition 1.13. Every p-continuous function from a bitopological space
(X, τ1, τ2) to a bitopological space (Y, σ1, σ2) is u-continuous, but not con-
versely.

Proposition 1.14. [11] If f : (X, τ) → (Y, σ) is ω-continuous and g : (Y, σ) →
(Z, ρ) is continuous, then g ◦ f : (X, τ) → (Z, ρ) is ω-continuous.
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Definition 1.15. [7] The q-closure of A in (X, τ, σ) is denoted by q-
Cl(τ,σ) (A) and defined as follows:

q-Cl(τ,σ) (A) = Clτ (A) ∩ Clσ (A) .

The author in [7] called a q-closure of A a quasi-closure of A and denoted
it by A.

Proposition 1.16. [7] If A ⊆ (X, τ, σ), then q-Cl(τ,σ) (A) is the smallest
q-closed set containing A.

Definition 1.17. Let (X, τ, σ) be a bitopological space. A subset M of
X is called an s-Lindelöf subset of (X, τ, σ) if for each A ⊆ u(τ, σ) with
M ⊆ ⋃A, there exists a countable set A′ ⊆ A such that M ⊆ ⋃A′.
Equivalently: A subset M of X is an s-Lindelöf subset of (X, τ, σ) if and
only if M is empty or ((M, τ|M , (σ)|M ) is s-Lindelöf.

2. u-ω-open Sets and q-ω-open Sets

Definition 2.1. Let (X, τ, σ) be a bitopological space and let A ⊆ X. Then

(a) A is said to be u-ω-open in (X, τ, σ) if A ∈ τω ∪ σω. Equivalently:
A ⊆ (X, τ, σ) is u-ω-open if and only if A ∈ u(τω, σω).

(b) A is said to be u-ω-closed in (X, τ, σ) if X − A is u-ω-open in
(X, τ, σ).

(c) A is said to be s-ω-open in (X, τ, σ) if it is open in the least upper
bound topology on X, of τω and σω.

For a bitopological space (X, τ, σ), the family of all u-ω-open sets in
(X, τ, σ) is denoted by uω(τ, σ), and the family of all ω-open sets in the
topological space (X, 〈τ, σ〉) is denoted by 〈τ, σ〉ω.
Theorem 2.2. Let (X, τ, σ) be a bitopological space. Then

(a) 〈τ, σ〉ω = 〈τω , σω〉.
(b) u(τ, σ) ⊆ uω(τ, σ).
(c) uω(τ, σ) ⊆ 〈τ, σ〉ω.

Proof. (a) Let A ∈ 〈τ, σ〉ω and let x ∈ A. Then by Proposition 1.1 (a),
there exists H ∈ 〈τ, σ〉 and C ⊆ X countable set such that x ∈ H−C ⊆ A.
Since x ∈ H ∈ 〈τ, σ〉 then by Proposition 1.6, there exists U ∈ τ , and
V ∈ σ such that x ∈ U ∩ V ⊆ H . Note that U − C ∈ τω, V − C ∈ σω ,
and x ∈ (U − C) ∩ (V − C) ⊆ (U ∩ V )− C ⊆ H − C ⊆ A. Thus, again by
Proposition 1.6, A ∈ 〈τω, σω〉. Conversely, let A ∈ 〈τω, σω〉 and let x ∈ A.
Then there exist W1 ∈ τω and W2 ∈ σω such that x ∈ W1 ∩W2 ⊆ A. Since
x ∈ W1 ∩W2 then there exist U ∈ τ , V ∈ σ and C1, C2 ⊆ X countable sets
such that x ∈ U−C1 ⊆ W1 and x ∈ V −C2 ⊆ W2. Note that U ∩V ∈ 〈τ, σ〉
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and C1 ∩C2 countable set. Also, x ∈ (U ∩ V )− (C1 ∩C2) ⊆ W1 ∩W2 ⊆ A.
Thus, A ∈ 〈τ, σ〉ω .

(b) By Proposition 1.1 (b), we have τ ∪ σ ⊆ τω ∪ σω, and consequently,
A ∈ τω ∪ σω = uω(τ, σ).

(c) Note that uω(τ, σ) = τω ∪σω = u(τω, σω) and by Proposition 1.9 (a),
u(τω, σω) ⊆ 〈τω , σω〉. Therefore, uω(τ, σ) ⊆ 〈τ, σ〉ω . �

The following two examples will show, respectively, that the inclusion in
each of the parts (b) and (c) of Theorem 2.2 cannot be replaced by equality,
in general.

Example 2.3. Let X = R, τ = τind. Then Qc ∈ uω(τ, τ)− u(τ, τ).

Example 2.4. Let X = R, τ = τlr, and σ = τrr. Then (1, 2) ∈ 〈τ, σ〉 ⊆
〈τ, σ〉ω, while (1, 2) /∈ τω ∪ σω = uω(τ, σ).

Definition 2.5. A set A ⊆ (X, τ, σ) is said to be q-ω-open if for every
x ∈ A there exists Ux ∈ τω such that x ∈ Ux ⊆ A or Vx ∈ σω such
that x ∈ Vx ⊆ A. Equivalently, A ⊆ (X, τ, σ) is q-ω-open if and only if
A ∈ q(τω , σω). A set A ⊆ (X, τ, σ) is said to be q-ω-closed, if X − A is
q-ω-open.

The family of all q-ω-open sets in (X, τ, σ) is denoted by qω(τ, σ).

Theorem 2.6. Let (X, τ, σ) be a bitopological space and A ⊆ X. Then the
following are equivalent:

(a) A is q-ω-open.
(b) For each x ∈ A there exists B ∈ u(τ, σ) and is a countable set

C ⊆ X such that x ∈ U − C ⊆ A.

Proof. (a) → (b) Suppose that A is q-ω-open and let x ∈ A. Since A is
q-ω-open, A = B∪C, where B ∈ τω and C ∈ σω . Without loss of generality
we may assume that x ∈ B. Take Ux ∈ τ ⊆ u(τ, σ) and a countable set
Cx ⊆ X such that x ∈ Ux − Cx ⊆ B ⊆ A. This ends the proof.

(b) → (a) By assumption, for each x ∈ A, there exists Ux ∈ u(τ, σ) and a
countable set Cx such that x ∈ Ux−Cx ⊆ A. PutB =

⋃ {Ux − Cx : Ux ∈ τ}
and C =

⋃ {Ux − Cx : Ux ∈ σ}. Then B ∈ τω, C ∈ σω , and A = B ∪ C.
Hence, A is q-ω-open. �

Theorem 2.7. Let (X, τ, σ) be a bitopological space. Then

(a) uω(τ, σ) ⊆ qω(τ, σ).
(b) q(τ, σ) ⊆ qω(τ, σ).
(c) qω(τ, σ) ⊆ 〈τ, σ〉ω.
(d) {∅, X} ⊆ qω(τ, σ).
(e) The family qω(τ, σ) is closed under arbitrary union.
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(f) The family of all q-ω-closed sets in (X, τ, σ) is closed under arbi-
trary intersection.

Proof. (a) As uω(τ, σ) = u(τω, σω) and by Proposition 1.9 (a), u(τω, σω) ⊆
q(τω, σω) = qω(τ, σ), we have uω(τ, σ) ⊆ qω(τ, σ).

(b) Let A ∈ q(τ, σ). Then A = B ∪ C, where B ∈ τ and C ∈ σ. By
Proposition 1.1 (b), B ∈ τω and C ∈ σω and so A ∈ q(τω , σω) = qω(τ, σ).

(c) By Proposition 1.9 (a), we have qω(τ, σ) = q(τω , σω) ⊆ 〈τω, σω〉.
Thus, by Theorem 2.2 (a), it follows that qω(τ, σ) ⊆ 〈τ, σ〉ω .

(d) As {∅, X} ⊆ uω(τ, σ), then by part (a) we have {∅, X} ⊆ qω(τ, σ).
(e) Since qω(τ, σ) = q(τω , σω) and by Proposition 1.9 (b), q(τω , σω) is

closed under arbitrary union, we get the result.
(f) Let {Aα : α ∈ ∆} be a collection of q-ω-closed sets of (X, τ, σ). Then
⋂

α∈∆

Aα = (
⋃

α∈∆

Ac
α)

c. Since Ac
α is q-ω-open for every α ∈ ∆, then by part

(f),
⋃

α∈∆

Ac
α ∈ qω(τ, σ). Therefore,

⋂

α∈∆

Aα is q-ω-closed. �

The following example shows that the inclusion in Theorem 2.7 (a) can-
not be replaced by equality, in general.

Example 2.8. Consider the bitopological space (R, τlr , τrr). Then (−∞, 0)∪
(1,∞) ∈ qω(τlr, τrr) −uω(τlr, τrr).

The following example shows that the inclusion in Theorem 2.7 (b) can-
not be replaced by equality, in general.

Example 2.9. Consider the bitopological space (R, τu, τu). Then Qc ∈
qω(τu, τu) = q((τu)ω , (τu)ω) = (τu)ω, while as q(τu, τu) = τu, then Qc /∈
q(τu, τu).

The following example shows that the inclusion in Theorem 2.7 (c) can-
not be replaced by equality, in general.

Example 2.10. Consider the bitopological space (R, τlr , τrr). Then (0, 1) ∈
〈τlr, τrr〉 ⊆ 〈τlr , τrr〉ω, while (0, 1) /∈ qω(τlr, τrr).

The next example shows that the intersection of two q-ω-open sets is
not q-ω-open in general. Therefore, the family of all q-ω-open sets of a
bitopological space (X, τ, σ) does not form a topology on X , in general.

Example 2.11. Let X = R, τ = τlr, σ = τrr, A1 = (−∞, 1), and A2 =
(0,∞). Then A1 and A2 are q-ω-open sets in (X, τ, σ) but A1 ∩A2 = (0, 1)
is not q-ω-open.

For a bitopological space (X, τ, σ), Proposition 1.9 (b) says that q(τ, σ)
does not form a topology on X , in general. However, we have the following
result.
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Proposition 2.12. Let (X, τ, σ) be a bitopological space. Then q(τ, σ) is a
topology on X if and only if q(τ, σ) = 〈τ, σ〉.
Proof. Necessity. Suppose q(τ, σ) is a topology on X . By Proposition 1.9
(a), we have q(τ, σ) ⊆ 〈τ, σ〉. Also, since τ ∪ σ ⊆ q(τ, σ), then by the
definition of 〈τ, σ〉, we have 〈τ, σ〉 ⊆ q(τ, σ).

Sufficiency. Suppose that q(τ, σ) = 〈τ, σ〉. As 〈τ, σ〉 is a topology on X ,
then q(τ, σ) is a topology on X . �

Corollary 2.13. Let (X, τ, σ) be a bitopological space. Then qω(τ, σ) is a
topology on X if and only if qω(τ, σ) = 〈τ, σ〉ω.
Proof. By Theorem 2.2 (a), 〈τ, σ〉ω = 〈τω , σω〉, also qω(τ, σ) = q(τω , σω).
Therefore, applying Proposition 2.12 on (X, τω, σω) we get the result. �

The following lemma will be used in the proof of the next main result.

Lemma 2.14. Let (X, τ, σ) be a bitopological space and let A = {W −C :
W ∈ u(τ, σ) and C ⊆ X is countable }. Then (X, τω, σω) is s-Lindelöf if
and only if every cover of X, consisting of elements of A, has a countable
subcover.

Proof. Necessity. Suppose (X, τω, σω) is s-Lindelöf and let W be a cover
of X with W ⊆ A. Since W ⊆ A ⊆ τω ∪ σω, then W is τωσω-open cover
of (X, τω , σω), and thus, there exists a countable family of elements of W
covers X .

Sufficiency. Let W = {Wα : α ∈ ∆} be a τωσω-open cover of (X, τω, σω).
For each α ∈ ∆, there exists an indexed set Ωα such that

Wα =
⋃

β∈Ωα

(Vβ − Cβ)

where Vβ ∈ τ ∪ σ and Cβ ⊆ X is countable set for every β ∈ Ωα. Thus,
{Vβ − Cβ : β ∈ ⋃

α∈∆

Ωα} is a cover of X consists of elements of A, and by

assumption it has a countable subcover. This implies that W also has a
countable subcover. �

Theorem 2.15. For a bitopological space (X, τ, σ), the following are equiv-
alent.

(a) (X, τ, σ) is s-Lindelöf,
(b) (X, τω , σω) is s-Lindelöf,
(c) every cover of X, consisting of elements of qω(τ, σ), has a countable

subcover, and
(d) every cover of X, consisting of elements of q(τ, σ), has a countable

subcover.
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Proof. (a) → (b) Suppose that (X, τ, σ) is s-Lindelöf. We apply Lemma
2.14. Let W = {Wα − Cα : α ∈ ∆, where Wα ∈ u(τ, σ) and Cα ⊆ X is
a countable set} be a cover of X . Since

⋃

α∈∆

Wα = X , then by (a), there

exists a countable set ∆′ ⊆ ∆ such that {Wα : α ∈ ∆′} covers X . Put G =
⋂

α∈∆′

Cα and for each x ∈ G, choose αx ∈ ∆ such that x ∈ (Wαx
− Cαx

).

Thus, {Wα −Cα : α ∈ ∆′} ∪ {Wαx
− Cαx

: x ∈ G} is a countable subcover
of W .

(b) → (c) Suppose that (X, τω , σω) is s-Lindelöf. Let W = {Wα : α ∈ ∆}
be a cover of X consists of elements of qω(τ, σ). For each α ∈ ∆, there exist
Aα ∈ τω and Bα ∈ σω such that Wα = Aα ∪ Bα. Since {Aα, Bα : α ∈ ∆}
covers X and {Aα, Bα : α ∈ ∆} ⊆ u (τω , σω), then by (b), there exists a
countable set ∆′ ⊆ ∆ such that {Aα, Bα : α ∈ ∆′} covers X . It follows
that {Wα : α ∈ ∆′} is a countable subcover of W .

(c) → (d) Let U be a cover of X with U ⊆ q(τ, σ). Then by Theorem
2.7 (b), U ⊆ qω(τ, σ), and so U has a countable subcover.

(d) → (a) Follows because u(τ, σ) ⊆ q(τ, σ). �

Theorem 2.16. For a bitopological space (X, τ, σ), the following are equiv-
alent.

(a) (X, τ, σ) is p-Lindelöf,
(b) (X, τω , σω) is p-Lindelöf.

Proof. (a) → (b) Suppose that (X, τ, σ) is p-Lindelöf. Let W = {Wα : α ∈
∆} be a p-open cover of (X, τω, σω). Take α1, α2 ∈ ∆ such that Wα1

∈
τω,Wα2

∈ σω , and Wαi
6= ∅ for every i = 1, 2. For each α ∈ ∆, there exists

an indexed set Ωα such that Wα =
⋃

β∈Ωα

(Vβ − Cβ) where {Cβ : β ∈ Ωα} is

a family of countable subsets of X and

({Vβ : β ∈ Ωα} ⊆ τ or {Vβ : β ∈ Ωα} ⊆ σ) .

For every i = 1, 2, choose βi ∈ Ωαi
such that Vβ1

∈ τ, Vβ2
∈ σ, and Vβi

6= ∅.
Therefore, {Vβ : β ∈ ⋃

α∈∆

Ωα} is a p-open cover of (X, τ, σ). Since (X, τ, σ)

is p-Lindelöf, then there exists a countable set ∆′ ⊆ ∆ such that for every
α ∈ ∆′, there exists a countable set Γα ⊆ Ωα such that

{

Vβ : β ∈
⋃

α∈∆′

Γα

}

covers X . Put

G =
⋂

{

Cβ : β ∈
⋃

α∈∆′

Γα

}

.
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Then G is countable and
{

Vβ − Cβ : β ∈
⋃

α∈∆′

Γα

}

is a cover of X − G. For each x ∈ G, choose αx ∈ ∆ such that x ∈ Wαx
.

Thus, {Wα : α ∈ ∆′} ∪ {Wαx
: x ∈ G} is a countable subcover of W .

(b) → (a) Suppose that (X, τω, σω) is p-Lindelöf. Let U be a p-open
cover of (X, τ, σ). Then U is a p-open cover of (X, τω, σω) and hence is has
a countable subcover. �

Theorem 2.17. Let (X, τ, σ) be an s-Lindelöf bitopological space and A be
a q-ω-closed subset in (X, τ, σ). Then A is an s-Lindelöf subset of (X, τ, σ).

Proof. Suppose that (X, τ, σ) is s-Lindelöf. Let U be a τσ-open cover of A.
Then U ⊆ qω(τ, σ) and X −A ∈ qω(τ, σ), and thus U ∪ {X −A} is a cover
of X and consists of elements of qω(τ, σ). Therefore, by Theorem 2.15,
U ∪{X−A} has a countable subcover A. Put U ′ = A−{X−A}. Then U ′

is countable, U ′ ⊆ U , and U ′ covers A. Therefore, A is an s-Lindelöf subset
of (X, τ, σ). �

Corollary 2.18. Let (X, τ, σ) be an s-Lindelöf space and A ⊆ X. If A is
a u-ω-closed subset in (X, τ, σ), then A is an s-Lindelöf subset of (X, τ, σ).

Proof. Since u-ω-closed sets are q-ω-closed in (X, τ, σ), by Theorem 2.17,
we get the result. �

Corollary 2.19. Let (X, τ, σ) be an s-Lindelöf space and A ⊆ X. If A is
a u-closed subset in (X, τ, σ), then A is an s-Lindelöf subset of (X, τ, σ).

Proof. Since u-ω-closed sets are q-ω-closed in (X, τ, σ), by Theorem 2.17,
we get the result. �

Theorem 2.20. Let (X, τ, σ) be a p-Lindelöf bitopological space and A be
a q-ω-closed nonempty proper subset in (X, τ, σ). Then A is a Lindelöf
subset of (X, τ) or A is a Lindelöf subset of (X, σ).

Proof. Since A is q-ω-closed, X −A = W ∪M where W ∈ τω and M ∈ σω .
Since A is a proper subset of X , W 6= ∅ or M 6= ∅.

Case 1. W 6= ∅. We show that A is a Lindelöf subset of (X, σ). Let U
be a cover of A with U ⊆ σ. Since A is nonempty, then there exists U0 ∈ U
such that U0 6= ∅. Thus, U ∪ {W,M} is a p-open cover of (X, τω, σω), and
by Theorem 2.16, it follows that there exists a countable family A ⊆ U ∪
{W,M} which covers X . Let U ′ = A − {W,M}. Then U ′ is countable,
U ′ ⊆ U , and U ′ covers A. It follows that A is a Lindelöf subset of (X, σ).

Case 2. M 6= ∅. Similar to that used in Case 1, we can show that A is a
Lindelöf subset of (X, τ). �
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Corollary 2.21. Let (X, τ, σ) be a p-Lindelöf bitopological space and A be
a q-closed proper subset in (X, τ, σ). Then A is a Lindelöf subset of (X, τ)
or A is a Lindelöf subset of (X, σ).

Proof. Since every q-closed is q-ω-closed, then by Theorem 2.20, we get the
result. �

Corollary 2.22. Let (X, τ, σ) be a p-Lindelöf bitopological space and A be
a u-closed proper subset in (X, τ, σ). Then A is a Lindelöf subset of (X, τ)
or A is a Lindelöf subset of (X, σ).

Proof. Since every u-closed is q-ω-closed, then by Theorem 2.20, we get the
result. �

3. u-ω-continuous and q-ω-continuous functions

Definition 3.1. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function. Then

(a) f is said to be p-ω-continuous if both f : (X, τ1) → (Y, σ1) and
f : (X, τ2) → (Y, σ2) are ω-continuous.

(b) f is said to be u-ω-continuous if for each A ∈ u(σ1, σ2), f
−1(A) ∈

uω(τ1, τ2).
(c) f is said to be q-ω-continuous if for each A ∈ q(σ1, σ2), f

−1(A) ∈
qω(τ1, τ2).

Theorem 3.2. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function. Then

(a) f is p-ω-continuous if and only if f : (X, (τ1)ω , (τ2)ω) → (Y, σ1, σ2)
is p-continuous.

(b) f is u-ω-continuous if and only if f : (X, (τ1)ω , (τ2)ω) → (Y, σ1, σ2)
is u-continuous.

(c) f is q-ω-continuous if and only if f : (X, (τ1)ω , (τ2)ω) → (Y, σ1, σ2)
is q-continuous.

Proof. (a) follows from the definitions and Proposition 1.3.
(b) and (c) follow directly from the definitions. �

Proposition 3.3. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function. Then the
following conditions are equivalent:

(a) The function f is q-continuous.
(b) The inverse image of every u-open set is q-open.
(c) The inverse image of every u-closed set is q-closed.
(d) For each x ∈ X and each u-open set V ⊆ Y containing f(x), there

is a q-open set U ⊆ X containing x such that f(U) ⊆ V .
(e) The inverse image of every q-closed set is q-closed.
(f) For every A ⊆ X, f(q-Cl(τ1,τ2)(A)) ⊆ q-Cl(σ1,σ2)(f(A)).

(g) For every B ⊆ Y , q-Cl(τ1,τ2)(f
−1(B)) ⊆ f−1(q-Cl(σ1,σ2)(B)).
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Proof. (a) → (b) Let A ∈ u (σ1, σ2). Then A ∈ q (σ1, σ2) and by (a),
f−1 (A) is q-open.

(b) → (c) Let H be be a u-closed set in Y . Then by (b), f−1 (Y −H) =
X − f−1 (H) is q-open and hence f−1 (H) is q-closed.

(c) → (d) Let x ∈ X and V ⊆ Y be a u-open set with f (x) ∈ V . Then
V is q-open and Y −V is q-closed. By (c), we have X − f−1 (V ) is q-closed
and f−1 (V ) is q-open. Put U = f−1(V ). Then, U is q-open, x ∈ U , and
f(U) ⊆ V .

(d) → (e) Let C ⊆ Y be q-closed. We are going to see that X − f−1(C)
is q-open. As Y − C is q-open, there exist A ∈ σ1and B ∈ σ2 such that
Y − C = A ∪ B. Thus for each x ∈ X − f−1(C) = f−1(Y − C), f (x) ∈ A
(which is u-open) or f (x) ∈ B (which is u-open) and by (d), there exists
a q-open set Ux containing x such that f(Ux) ⊆ A ⊆ Y − C or f(Ux) ⊆
B ⊆ Y − C. Since arbitrary union of q-open sets is q-open, it follows that,
X − f−1(C) =

⋃
{

Ux : x ∈ X − f−1(C)
}

is q-open.
(e) → (f) Let A ⊆ X . Since q-Cl(σ1,σ2)(f(A)) is q-closed in Y , then by

(e), f−1(q-Cl(σ1,σ2)(f(A))) is q-closed in X . Since

A ⊆ f−1(q-Cl(σ1,σ2)(f(A))),

then by Proposition 1.16, it follows that

q-Cl(τ1,τ2)(A) ⊆ f−1(q-Cl(σ1,σ2)(f(A))),

and hence,

f(q-Cl(τ1,τ2)(A)) ⊆ q-Cl(σ1,σ2)(f(A)).

(f) → (g) Let B ⊆ Y . Then by (f),

f(q-Cl(τ1,τ2)(f
−1(B))) ⊆ q-Cl(σ1,σ2)(f(f

−1(B))).

Consequently, we have

q-Cl(τ1,τ2)(f
−1(B)) ⊆ f−1(q-Cl(σ1,σ2)(B)).

(g) → (a) Let U be q-open in Y . We show that

X − f−1 (U) = f−1 (Y − U)

is q-closed in X . By (g), it follows that

q-Cl(τ1,τ2)(f
−1(Y − U)) ⊆ f−1(q-Cl(σ1,σ2)(Y − U)).

Since U is q-open in Y , then Y − U is q-closed in X and q-Cl(σ1,σ2)(Y −
U) = Y − U . Therefore, q-Cl(τ1,τ2)(f

−1(Y − U)) ⊆ f−1(Y − U) and hence

f−1(Y − U) is q-closed in X . �

Corollary 3.4. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function. Then the
following conditions are equivalent.

(a) The function f is q-ω-continuous.
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(b) The inverse image of every u-open set is q-ω.
(c) The inverse image of every u-closed set is q-ω-closed.
(d) For each x ∈ X and each u-open set V ⊆ Y containing f(x), there

is an q-ω-open set U ⊆ X containing x such that f(U) ⊆ V .
(e) The inverse image of every q-closed is q-ω-closed.
(f) For every A ⊆ X,

f(q-Cl(τ1)ω ,(τ2)ω)(A)) ⊆ q-Cl((σ1)ω ,(σ2)ω)(f(A)).

(g) For every B ⊆ Y ,

q-Cl(τ1)ω ,(τ2)ω)(f
−1(B)) ⊆ f−1(q-Cl((σ1)ω ,(σ2)ω)(B)).

Proof. By Theorem 3.2 (c), f : (X, τ1, τ2) → (Y, σ1, σ2) is q-ω-continuous
if and only if f : (X, (τ1)ω , (τ2)ω) → (Y, σ1, σ2) is q-continuous. Thus, ap-
plying Proposition 3.3 on f : (X, (τ1)ω , (τ2)ω) −→ (Y, σ1, σ2), we get the
result. �

Theorem 3.5. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function.

(a) If f is p-continuous, then it is p-ω-continuous.
(b) If f is p-ω-continuous, it is u-ω-continuous.
(c) If f is u-continuous, it is u-ω-continuous.
(d) If f is u-ω-continuous, it is q-ω-continuous.
(e) If f is u-continuous, it is q-continuous.
(f) If f is q-continuous, it is q-ω-continuous.

Proof. (a) follows from the definitions and Proposition 1.4.
(b) Suppose that f is p-ω-continuous. Let U ∈ u(σ1, σ2). If U ∈ σi, i =

1, 2, then f−1(U) ∈ (τi)ω ⊆ uω(τ1, τ2).
(c) Suppose that is u-continuous. Let U ∈ u(σ1, σ2). Then f−1(U) ∈

u(τ1, τ2). Since u(τ1, τ2) ⊆ uω(τ1, τ2), then f−1(U) ∈ uω(τ1, τ2).
(d) Suppose that f is u-ω-continuous. Let U ∈ u(σ1, σ2). Then f−1(U) ∈

uω(τ1, τ2). Since uω(τ1, τ2) ⊆ qω(τ1, τ2), then f−1(U) ∈ qω(τ1, τ2).
(e) Suppose that f is u-continuous. Let U ∈ u(σ1, σ2). Since f is u-

continuous, then f−1(U) ∈ u(τ1, τ2). u(τ1, τ2) ⊆ q(τ1, τ2), then f−1(U) ∈
q(τ1, τ2).

(f) Suppose that f : (X, τ1, τ2) → (Y, σ1, σ2) is q-continuous. Let U ∈
u(σ1, σ2). Then f−1(U) ∈ q(τ1, τ2). Since q(τ1, τ2) ⊆ qω(τ1, τ2), then
f−1(U) ∈ qω(τ1, τ2). �

Each of the implications in (a), (c), and (f) in Theorem 3.5 is not re-
versible, as the following example shows.

Example 3.6. The function f : (R, τind, τind) → (R, τcof , τcof ), where f (x)
= x for all x ∈ R is p-ω-continuous, u-ω-continuous, q-ω-continuous, not
p-continuous, not u-continuous, and not q-continuous.
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Implication (b) of Theorem 3.5 is not reversible, as the following example
shows.

Example 3.7. The function f : (R, τlr , τrr) → (R, τrr, τlr), where f (x) = x
for all x ∈ R is u-continuous and hence it is u-ω-continuous. However,it is
not p-ω-continuous.

Implications (d) and (e) of Theorem 3.5 is not reversible, as the following
example shows.

Example 3.8. Consider the function f : (R, τlr, τrr) → (R, τrr, τrr), where
f (x) = x2. Let U ∈ u(τrr, τrr) = τrr. Then f−1 (U) = (−∞,−√

a) ∪
(
√
a,∞) if U = (a,∞) with a ≥ 0, f−1 (U) = R if U = (a,∞) with a < 0,

and f−1 (U) = ∅ if U = ∅. In all cases, f−1 (U) ∈ q (τlr, τrr). Therefore,
f is q-continuous and hence it is q-ω-continuous. On the other hand, since
(1,∞) ∈ u(τrr, τrr), while f−1 ((1,∞)) = (−∞,−1)∪(1,∞) /∈ uω (τlr, τrr),
it follows that f is not u-ω-continuous and hence it is not u-continuous.

The following diagram summarizes the implications among the known
and introduced continuity concepts.

p-continuous −→ u-continuous −→ q-continuous
↓ ↓ ↓

p-ω-continuous −→ u-ω-continuous −→ q-ω-continuous

It is known that the composition of two u-continuous functions is u-
continuous. The following result says that the composition of two q-contin-
uous functions is q-continuous.

Theorem 3.9. Consider two functions f : (X, τ1, τ2) → (Y, σ1, σ2) and
g : (Y, σ1, σ2) → (Z, ρ1, ρ2). If f and g are q-continuous, then g ◦ f is
q-continuous.

Proof. Let U ∈ q(ρ1, ρ2). Since g is q-continuous, g−1 (U) ∈ q(σ1, σ2).

Since f is q-continuous, f−1
(

g−1 (U)
)

∈ q(τ1, τ2). Thus, (g ◦ f)−1
(U) =

f−1
(

g−1 (U)
)

∈ q(τ1, τ2). �

Theorem 3.10. Let (X, τ), (Y, σ) be two topological spaces and let f : X →
Y be a function. Then the following are equivalent:

(a) f : (X, τ, τ) → (Y, σ, σ) is p-ω-continuous.
(b) f : (X, τ, τ) → (Y, σ, σ) is u-ω-continuous.
(c) f : (X, τ, τ) → (Y, σ, σ) is q-ω-continuous.
(d) f : (X, τ) → (Y, σ) is ω-continuous.

Proof. (a) → (b) Theorem 3.5 (b).
(b) → (c) Theorem 3.5 (d).
(c) → (d) Let U ∈ σ = σ ∪ σ = u (σ, σ). Then by (c), f−1 (U) ∈

qω (τ, τ) = τω. Hence, f : (X, τ) → (Y, σ) is ω-continuous.
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(d) → (a) Follows directly from the definition of f : (X, τ, τ) → (Y, σ, σ)
is ω-continuous.

The following example shows that the composition of two ω-continuous
functions need not to be ω-continuous, in general. Thus, by Theorem
3.10, it follows that the composition of two p-ω-continuous (resp. u-ω-
continuous, q-ω-continuous) functions need not be p-ω-continuous (resp. u-
ω-continuous, q-ω-continuous), in general. �

Example 3.11. Let f : (R, τu) → (R, τind) be a function defined by

f(x) =

{√
2, if x is rational;

2, if x is irrational.

and g : (R, τind) → (R, τ) be a function defined by

g(x) =

{

2, if x is rational;

1, if x is irrational.

where τ = {R, φ, {1}}. Then f is continuous (and so ω-continuous) and g
is ω-continuous. On the other hand, since f−1(g−1({1})) = f−1(Qc) = Q

and Q is not ω-open set in (R, τu), it follows that g ◦f is not ω-continuous.

Theorem 3.12. Consider two functions f : (X, τ1, τ2) → (Y, σ1, σ2) and
g : (Y, σ1, σ2) → (Z, ρ1, ρ2).

(a) If f is p-ω-continuous and g is p-continuous, then g ◦ f is p-ω-
continuous.

(b) If f is u-ω-continuous and g is u-continuous, then g ◦ f is u-ω-
continuous.

(c) If f is q-ω-continuous and g is q-continuous, then g ◦ f is q-ω-
continuous.

Proof. (a) follows from the definitions and Proposition 1.14.
(b) Let U ∈ u(ρ1, ρ2). Since g is u-continuous, g

−1 (U) ∈ u(σ1, σ2). Since

f is u-ω-continuous, f−1
(

g−1 (U)
)

∈ uω(τ1, τ2). Thus, (g ◦ f)−1
(U) =

f−1
(

g−1 (U)
)

∈ uω(τ1, τ2).

(c) Let U ∈ u(ρ1, ρ2). Since g is q-continuous, g−1 (U) ∈ q(σ1, σ2). Thus,

(g ◦ f)−1
(U) = f−1

(

g−1 (U)
)

∈ qω(τ1, τ2). �

Corollary 3.13. Let f : (X, τ1, τ2) → (Y, σ1, σ2) and g : (Y, σ1, σ2) →
(Z, ρ1, ρ2) be two functions. If f is q-ω-continuous and g is u-continuous,
then g ◦ f is q-ω-continuous.

Proof. Follows from Theorem 3.5 (e) and Theorem 3.12 (c). �

Theorem 3.14. Let (X, τ1, τ2) and (Y, σ1, σ2) be two bitopological spaces,
A a nonempty subset of X, and f : (X, τ1, τ2) → (Y, σ1, σ2) be a function.
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Let g : (A, (τ1)|A , (τ2)|A ) → (Y, σ1, σ2) be the restriction of f to A defined

by g(x) = f(x) for every x ∈ A. Then

(a) If f is p-ω-continuous, then g is p-ω-continuous.
(b) If f is u-ω-continuous, then g is u-ω-continuous.
(c) If f is q-ω-continuous, then g is q-ω-continuous.

Proof. (a) Let i ∈ {1, 2} and U ∈ σi. Since f is p-ω-continuous, then
f−1(U) ∈ (τi)ω . So, f

−1(U)∩A ∈ ((τi)ω)|A . Therefore, by Proposition 1.1

(c), g−1(U) ∈
(

(τi)|A

)

ω
. Hence, g is p-ω-continuous.

(b) Let U ∈ u(σ1, σ2). Since f is u-ω-continuous, then f−1(U) ∈ (τ1)ω ∪
(τ2)ω . So, f−1(U) ∩ A ∈ ((τ1)ω)|A ∪ ((τ1)ω)|A . Therefore, by Proposition

1.1 (c), g−1(U) ∈
(

(τ1)|A

)

ω
∪
(

(τ2)|A

)

ω
. Hence, g is u-ω-continuous.

(c) Let U ∈ u(σ1, σ2). Since f is q-ω-continuous, then

f−1(U) ∈ qω(τ1, τ2).

So, there exist B ∈ (τ1)ω and C ∈ (τ2)ω such that f−1(U) = B ∪ C.
Then g−1(U) = (B ∩ A) ∪ (C ∩A) with B ∩ A ∈ ((τ1)ω)|A and C ∩ A ∈
((τ2)ω)|A . Therefore, by Proposition 1.1 (c), it follows that g−1(U) ∈
qω((τ1)|A , (τ1)|A ). This shows that g is q-ω-continuous. �

Theorem 3.15. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be q-ω-continuous and
surjective. If (X, τ1, τ2) is s-Lindelöf, then (Y, σ1, σ2) is s-Lindelöf.

Proof. Suppose that (X, τ1, τ2) is s-Lindelöf. Let {Wα : α ∈ ∆} be a σ1σ2-
open cover of (Y, σ1, σ2). Since f is q-ω-continuous, then for each α ∈ ∆,
f−1(Wα) ∈ qω(τ1, τ2). Since,

X = f−1(Y ) = f−1

(

⋃

α∈∆

Wα

)

=
⋃

α∈∆

f−1(Wα)

then, {f−1(Wα) : α ∈ ∆} is a cover ofX consisting of elements of qω(τ1, τ2).
Thus, by Theorem 2.15, there exists a countable set ∆′ ⊆ ∆ such that
{f−1(Wα) : α ∈ ∆′} covers X . Since f is surjective, then Y = f(X).
Accordingly,

Y = f(X) = f

(

⋃

α∈∆′

f−1(Wα)

)

=
⋃

α∈∆′

f(f−1(Wα)) ⊆
⋃

α∈∆′

Wα.

Thus we obtain {Wα : α ∈ ∆′} as a countable subcover of {Wα : α ∈ ∆}.
This shows that (Y, σ1, σ2) is s-Lindelöf. �

Corollary 3.16. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a surjective function.
If f is p-continuous (resp. u-continuous, q-continuous, p-ω-continuous,
u-ω-continuous) and (X, τ1, τ2) is s-Lindelöf, then (Y, σ1, σ2) is s-Lindelöf.
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Proof. By Theorem 3.5, every p-continuous (resp. u-continuous, q-contin-
uous, p-ω-continuous, u-ω-continuous) is q-ω-continuous. Then by Theorem
3.15, (Y, σ1, σ2) is s-Lindelöf. �

Theorem 3.17. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be p-ω-continuous and
surjective. If (X, τ1, τ2) is p-Lindelöf, then (Y, σ1, σ2) is p-Lindelöf.

Proof. Suppose that (X, τ1, τ2) is p-Lindelöf. Let {Uα : α ∈ ∆} be a p-open
cover of (Y, σ1, σ2). Since f is p-ω-continuous and

X = f−1(Y ) = f−1(
⋃

α∈∆

Wα) =
⋃

α∈∆

f−1(Wα)

then {f−1(Wα) : α ∈ ∆} is a (τ1)ω (τ2)ω-open cover of (X, (τ1)ω , (τ2)ω).
Take α1, α2 ∈ ∆ such that Wαi

∈ σi − {∅} for i = 1, 2. Since f is p-ω-
continuous, it follows that f−1 (Wαi

) ∈ (τi)ω for i = 1, 2. Also, since f is
surjective, f−1 (Wαi

) 6= ∅ for i = 1, 2. Therefore, {f−1(Wα) : α ∈ ∆} is
a p-open cover of (X, (τ1)ω , (τ2)ω). Since (X, τ1, τ2) is p-Lindelöf, then by
Theorem 2.16, there exists a countable set ∆′ ⊆ ∆ such that {f−1(Wα) :
α ∈ ∆′} coversX . Again since f is surjective, then Y = f(X). Accordingly,

Y = f(X) = f

(

⋃

α∈∆′

f−1(Wα)

)

=
⋃

α∈∆′

f(f−1(Wα)) ⊆
⋃

α∈∆′

Wα.

Thus we obtain {Wα : α ∈ ∆′} as a countable subcover of {Wα : α ∈ ∆}.
This shows that (Y, σ1, σ2) is p-Lindelöf. �

Corollary 3.18. [10] Let f : (X, τ1, τ2) → (Y, σ1, σ2) be p-continuous and
surjective. If (X, τ1, τ2) is p-Lindelöf, then (Y, σ1, σ2) is p-Lindelöf.

Proof. This follows from Theorem 3.5 (a) and Theorem 3.17. �
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