
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions,
or new insights on old problems are always welcomed by the problem editor.

175. Proposed by N. J. Kuenzi, Oshkosh, Wisconsin.

The positive integer 45 can be written as a sum of five consecutive positive
integers (SCPI): 45 = 7 + 8 + 9 + 10 + 11; furthermore, 45 can be written
as a SCPI in exactly five ways, namely, 45 = 22 + 23 = 14 + 15 + 16 =
7+8+9+10+11 = 5+6+7+8+9+10 = 1+2+3+4+5+6+7+8+9+10.
Is there a positive integer that can be written as a sum of 2009 consecutive
positive integers and which can be written as a SCPI in exactly 2009 ways?

Comment and Solution by Calvin A. Curtindolph, Fox Lake, Wisconsin.

The solution by Kandasamy Muthuvel to Problem 175 which appeared in
the February 2011 issue of the Missouri Journal of Mathematical Sciences is
incorrect. 32009 may be expressed as a sum of consecutive positive integers
(SCPI) in exactly 2009 ways, but 32009 is not the sum of 2009 consecutive
positive integers (hereafter abbreviated S(2009)CPI. SnCPI will abbreviate
“sum of n consecutive positive integers”). If 32009 were a S(2009)CPI, the
initial term in the sum would be

a =
32009

2009
− 1004 =

32009

72 · 41 − 1004,

which clearly cannot be an integer.

Further, the assertion that 3s, where s > 1, can be written as a SsCPI
and can be written as a SCPI in exactly s ways is false. While the proof
does show that 3s can be written as a SCPI in exactly s ways by showing
the cardinality of the set {n : n = 3t − 1 for some integer t with 1 ≤ t ≤
s/2 or n = 2 · 3t − 1 for some integer t with 0 ≤ t < s/2} is s, the proof
does not show, indeed, cannot show, that s is an element of the set. It is
not. 3s cannot be expressed as a SsCPI, at least not for arbitrary s > 1.

As noted in the journal, I also submitted a solution to this problem. In
that solution, I noted that it could be easily generalized. I now submit a
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generalization of my previous solution useful for constructing a set of inte-
gers S expressible as a SnCPI and expressible as a SCPI in exactly n ways
(where possible).

I note here that a S(N)CPI is, by definition:

S = b+ (b + 1) + · · ·+ (b + (N − 1))

where b is a positive integer and N is an integer greater than 1. This
definition gives rise to the equivalent equations

S =
N(2b+N − 1)

2
,

b =
S

N
− N − 1

2
,

and N2 + (2b− 1)N − 2S = 0.

The positive solution for N of this last equation is

N =
−(2b− 1) +

√

(2b− 1)2 + 8S

2
.

Recall from elementary number theory that if d(X) denotes the number
of positive divisors of the positive integer X , and the prime factoriza-
tion of X = pe11 pe22 · · · pekk , where the pi are distinct primes, then d(X) =
(e1 + 1)(e2 + 1) · · · (ek + 1).

My main result is Theorem 1.

Theorem 1. Let n have prime factorization

n = 2d0qd1

1 · · · qdj

j ,

where d0 = 0 or 1, the qi are distinct odd primes and the di are positive

integers. Suppose there exist nonnegative integers e1, . . . , ek, k ≥ j, such
that

(d1 + e1 + 1) · · · (dj + ej + 1)(ej+1 + 1) · · · (ek + 1) = n+ 1.
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Finally, suppose there exist distinct odd primes pj+1, . . . , pk, each unequal

to any of the qi, such that

2d0n < 2qe11 · · · qejj p
ej+1

j+1 · · · pekk .

Then the positive integer

S = qd1+e1
1 · · · qdj+ej

j p
ej+1

j+1 · · · pekk = 2−d0nqe11 · · · qejj p
ej+1

j+1 · · · pekk

is a SnCPI which may also be expressed as a SCPI in exactly n ways.

Proof. Assume the hypotheses of the theorem are satisfied. Consider the
positive integers

S = qd1+e1
1 qd2+e2

2 · · · qdj+ej
j p

ej+1

j+1 · · · pekk

and 2S = 2qd1+e1
1 qd2+e2

2 · · · qdj+ej
j p

ej+1

j+1 · · · pekk .

S is an odd integer with n+1 positive divisors. Since 2S contains only one
factor of 2, 2S has 2(n+ 1) positive divisors, n+ 1 of which are less than

√
2S and n+1 of which are greater than

√
2S. Let F1, F2, . . . , Fn+1 be the

divisors of 2S which are greater than
√
2S, arranging them in any order

such that Fn+1 = 2S. For each i, 1 ≤ i ≤ n+1, consider Fi−2S/Fi. Clearly
Fi− 2S/Fi is a positive integer. If Fi is odd, then 2S/Fi is even and if Fi is
even then 2S/Fi is odd, hence Fi − 2S/Fi is odd. Set 2b− 1 = Fi − 2S/Fi,
noting that b = (Fi + 1)/2− (S/Fi) is a positive integer.

Now set

N =
−(Fi − 2S/Fi) +

√

(Fi − 2S/Fi)2 + 8S

2

=
−(Fi − 2S/Fi) +

√

(Fi + 2S/Fi)2

2
=

2S

Fi

.

The first of the expressions is the positive root of the quadratic equation

N2 + (Fi − 2S/Fi)N − 2S = 0.
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This gives

S =
N2 + (Fi − 2S/Fi)N

2
=

N2 + (2b− 1)N

2
= N(b − 1) +

N(N + 1)

2

=

N
∑

k=1

b+ (k − 1) = b+ (b+ 1) + · · ·+ (b+ (N − 1)).

We have established S as a S(2S/Fi)CPI (starting with b) for each i,
1 ≤ i ≤ n + 1. Since Fn+1 = 2S, the “SCPI” corresponding to the factor
Fn+1 is the “trivial SCPI” containing only one term: S = S. Since we do
not mean such a trivial sum by the phrase, we are left with exactly n ways
of expressing S as a SCPI.

We now need to show that one of the integers N = 2S/Fi is equal to
n. Consider

F = 21−d0qe11 · · · qejj p
ej+1

j+1 · · · pekk ,

so that

2S/F = 2d0qd1

1 · · · qdj

j = n.

We need to show that F >
√
2S, or equivalently 2S/F = n <

√
2S.

The condition that

2d0n < 2qe11 · · · qejj p
ej+1

j+1
· · · pekk

implies that

(2−d0n)(2d0n) < (2−d0n)(2qe11 · · · qejj p
ej+1

j+1 · · · pekk ).

Thus, n2 < 2S and so n <
√
2S. Hence, for one of the factors Fi, N =

2S/Fi = n, and S is a SnCPI. �

We now apply Theorem 1 to the original problem. Here, n = 2009 =
72 · 41, so that d0 = 0, j = 2, q1 = 7, d1 = 2, q2 = 41, and d2 = 1.
n + 1 = 2010 = 2 · 3 · 5 · 67. There are certainly nonnegative integers
e1, e2, e3, and e4 satisfying (e1 + 3)(e2 + 2)(e3 + 1)(e4 + 1) = 2 · 3 · 5 · 67.
Indeed, noting that e3 and/or e4 may be zero, we have several choices. We
need only restrict our choices of the ei and of the primes p3 and p4 to the
condition that 2009 < 2 ·7e1 ·41e2 ·pe33 ·pe44 , or 2 ·7e1−2 ·41e2−1 ·pe33 ·pe44 > 1.
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For such choices, S = 7e1+2 · 41e2+1 · pe33 · pe44 is a S(2009)CPI expressible
as an SCPI in exactly 2009 ways.

Relating Theorem 1 to the example given in the problem, that 45 is a
S5CPI expressible as a SCPI in exactly 5 ways, we may determine that
the complete set of integers so expressible is {5p2 : p an odd prime, p 6=
5} ∪ {25p : p odd prime, p 6= 5} ∪ {55}.

Finally, I believe the converse of Theorem 1 to be true. I also propose a
nice corollary, assuming the converse of Theorem 1.

Conjecture 2. Let

n = 2d0qd1

1 · · · qdj

j ,

where d0 = 0 or 1, the qi are distinct odd primes and the di are positive

integers. If any of the hypotheses of Theorem 1 fail, that is if

(1) there are no nonnegatve integers e1, . . . , ek, k ≥ j, such that

(d1 + e1 + 1) · · · (dj + e+ j + 1)(ej+1 + 1) · · · (ek + 1) = n+ 1

or

(2) there are no distinct odd primes pj+1, . . . pk, each unequal to any of

the qi, such that

2d0n < 2qe11 · · · qejj p
ej+1

j+1 · · · pekk ,

then there is no positive integer S which is a SnCPI and which may be

expressed as a SCPI in exactly n ways.

Conjecture 3 (dependent on Conjecture 2). S = pn, where p is an odd

prime is a SnCPI and may be expressed as a SCPI in exactly n ways if and

only if n = pn−e, where e ≥ n/2 or n = 2pn−e, where e > n/2.
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