SOME INEQUALITIES IN PTOLEMAIC SPACES
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ABSTRACT. In this note, we establish some new interesting inequal-
ities in Ptolemaic spaces.

1. INTRODUCTION AND MAIN RESULTS

Ptolemy’s inequality in R? states: If A, B, C, D are vertices of a quadri-
lateral, then
AB-CD+ BC-AD > AC - BD (1.1)
with equality if and only if ABCD is a convex cyclic quadrilateral.
I. J. Schoenberg [1] has shown that Ptolemy’s inequality holds if a, b, ¢, d
are any four points in a real inner-product space.

Definition 1.1 ([2]). Let X be real normed linear space with norm || - ||.
X is called Ptolemaic if for every a,b,c,d € X we have
lla—cll- b —=dll < lla=bl-[lc=d| +|o—cl - [la—d].  (1.2)

In this note, we establish some new interesting inequalities in Ptolemaic
spaces.

Proposition 1.2. Let a,b,c,d, e, f be elements of P, which is a Ptolemaic
space. Then

lla =0l -lle=fl-lld— el
+lla—=ol-lle=dll-lle=fll+lb—c| - lla—d - fle = [l
+lo—cll-lld—el-lf —al +llc=dl-b—el-lf - al
2 lla—d[l-[lb—el-[lc=fII. (1.3)
Let’s interpret the elements a,b,c,d, e, f as the vertices, in that order,
of a hexagon. A hexagon has three diagonals, not two, and in fact, the
product on the right of (1.3) is the product of the three diagonals. There
are five products on the left. Two of these, ||b— | - ||d —e] - || f — a]| and
lla = b|| - [lc —d|| - |le = f]| are the products of three sides that don’t touch

each other, and the other three are the products of a diagonal with the two
sides that do not intersect.
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Proof. We apply (1.2) for {a,b,c,d}, {b,c,d,e} and we obtain that
lla=bll-llc=fll-lld—el (1.4)
+ (la=ol - lle=dll +[b—cll - lla—dI}) - [le = ]
+(lo—cll-lld—el +[lc=dll - [Io—ell) - [[f = all
2 lla—=bll-llc=fll-lld—e
+lla—cl-llb—dll-lle—=fll+ 1o —dl-[lc—ell-[lf - all.
Using (1.2) for {a,c, e, f}, {a,b,d, e} on the right-hand side of (1.4) becomes
lla—=bll-llc=fll-lld—el (1.5)
Flla—cll-o=dll-lle=Fl +11b—dll - lc —el - [[f = all
= lla=bl[-fle = fII - lld —ell
+(la—cl-lle=fll+llc—el-lIf —all) - [[b—d|
2 lla—=bl-lle=fl-lld—ell +lla —ell - lc = fII - b — dl
= (lla =0l [ld = el +lla—ell - [[b=dI}) - [lc = [l
> [la —d[| - [[o—ell - [lc = f].
From (1.4) and (1.5) we obtain (1.3). O

Example 1.3. The equality holds for a regular hexagon. For example, if we
take the siz elements to be in the Euclidean plane and to be (cos %, sin 2%’“)
for 0 < k <5. Each diagonal has length 2 and each side has length 1. The
product of diagonals on the right is 8, the two products of 3 sides on the
left are each 1, and the three products of 2 sides and a diagonal are each 2,
so the left-hand side is also 8.

If we use the £* norm in the plane, that is, ||(x,y)|| = |z| + |y|, and

square the hexahedron by using the points
a, ba C, dv €, f = (17 0)5 (17 1)5 (_15 1)7 (_17 0)5 (_15 _1)5 (17 _1)

we get that the horizontal diagonal is 2 and the other two are 4, so the right-
hand side is 32. The horizontal sides are 2 and the vertical sides are 1, so
the two products of 3 sides are 2, the product with the horizontal diagonal
is 8, and the other two products with diagonals are 4 each, so the left-hand
side is 2+ 2+ 8 + 4 + 4 = 20, which is less than the right-hand side of 32.

Proposition 1.4. Let a,b,c be distinct elements and d be an element of
P, which is a Ptolemaic space. Then

Jd=b] Jd—c| , Jd—c|-|d=al | [d=al-Jd=b] o
la=0bll-lla—=cll ~ [b—cl-lo—al " llc—all-|lc—b]
Proof. We apply (1.2) for {d,b,d 4+ b — a,c} and we obtain that
[b—cll-lb—all <l[d=0b]-lld+b—a—cl]+|d=c|-ld—al. (1.7)
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Using (1.2) for {¢,b,d +b—a,b+ ¢ — a} we obtain
ld+b—a—c|-llc—all <[o—c|-lld=c]+ld—al-[b—al. (1.8)
Multiplying (1.7) by ||c — a|| and substituting (1.8) we obtain
[b—cll-Ib—al -llc=all < llc=al - |d=c] - [|d - af
+ld=bll-lo—cll-lld—cl +[ld = bl - |d = al - b —all, (1.9)
then dividing through by the left-hand side gives us

1< Nd=bll-lld—cll | lld—c|-|ld—all  |ld~al-|d~-b]
“lla=bl-fla=el " lo—cll-lo—all  lle=al-[lc—0b|

O

We can interpret the four elements as the vertices of a tetrahedron. If we
use the inequality (1.9) we have four products, each of which is the product
of three terms, and in each case the three terms are the edges of one face
of the tetrahedron. So our conclusion is that each product is less than or
equal to the sum of the other three.

Example 1.5. The equality holds for a “flattened” tetrahedron in the plane,
with the elements

2T . 27 4 | 4w
a,b,c,d = (1,0), (cos ~ o sin ?) , (cos ~ - sin ?) ,(0,0).

The face abc has sides of \/3, so its product is 3v/3. The other three faces
have sides 1,1, and \/3, so each face product is \/3 and the sum of all three
is 3v/3. With the £ norm we can use the elements

a,b,c,d = (1,0),(0,1),(0,-1),(0,0)

so that the face abc has sides 2,2,2 and product 8, while each small face
has sides 2,1,1 and product 2 for a total of 6.

Proposition 1.6. Let a,b,c be distinct elements and d be an element of
P, which is a Ptolemaic space and let x,y,z be real numbers such that
r+y+z2>0,2y+yz+ zx > 0. Then

16— | le —a lla —bf —
(1.10)

+(z+m)-

(y+2)-

If x =y = z = 1, then inequality (1.10) is equivalent to
la—dl-[la—=cll - la = bl + [|b—dl| - [|[b—c[| - [la = b]
+lle—dl - fla—cll - [Ib—cll = V3lla =] - [b—c| - la—el. (1.11)
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So we can write (1.11) as
ad-ac-ab+bd-bc-ab+cd-ac-be> /3 -ab-bc-ac (1.12)

for a tetrahedron with vertices {a,b, ¢, d}, where ad, ac, etc., denotes dis-
tances, respectively. The geometric interpretation is clear from (1.12).
To prove this result we need the following lemma.

Lemma 1.7. Let o, (3,7,x,y,z be real numbers such that o + 8 + v >
0,a8+B8y+va>0,x+y+2>0, and xy +yz + zx > 0. Then

(B+7)z+(Y+)y+(a+B8)z > 2v/(af + By + va)(zy + yz + zz). (1.13)
Proof. Using the Cauchy-Schwarz inequality twice, we have
B+v)z+(v+a)y+ (a+B)z
=(a+B+7)(@+y+2)—(az+ By +72)

= V(a4 B8+ (@ +y+2)? - (o + By +72)

= V2(aB + By +7a) + (0 + B2 +72)V/2(wy + yz + 22) + (22 + 42 + 22)
— (az + By +72)

> \V2(aB + By +7a)V/2(zy + yz + 27) + Va2 + 52 + 92/ 2 + 2 + 22
— (az + By +72)

=2\/(aB + By +ya)(zy + yz + 22) + /(a® + B2 +77) (22 + % + 22)
— (az + By +72)

> 2y/(aB + By +ya)(zy + yz + 2x).

The lemma is proved. O
Proof of Proposition 1.6. Putting o = ||“Z ZH,B = ”ZI:ZH,V = H in the
Lemma 1.7, we get
ld —al ld — bl ld —c]|
(y+2)- +(z+2)- +(z+y)-
[[b—c| e —al lla — bl

> 2/ (xy + yz + zx)
y CW—GHJW—bH+Hd—MLHd—CH+|d—d,|d—ﬂ).
[o—cl lle—all  fle=al lla=b] " [la=bl [b—¢]
(1.14)

Combining inequalities (1.6) and (1.14) leads to inequality (1.10) immedi-
ately. O
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