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ON A PROBLEM OF BERZSENYI REGARDING THE

GCD OF POLYNOMIAL EXPRESSIONS

Les Reid

Abstract. Let G(m, k) = max{GCD((n + 1)m + k, nm + k) | n ∈ N}. The
fact that G(1, k) = 1 is trivial and Berzsenyi has shown that G(2, k) = |4k+1|. We
give explicit formulas for G(m, k) for m = 3, 4, 5.

1. Introduction. In the May/June 1995 issue of Quantum [1], George
Berzsenyi defined

G(m, k) = max{GCD((n+ 1)m + k, nm + k) | n ∈ N}.

It is obvious that G(1, k) = 1. Berzsenyi showed that G(2, k) = |4k + 1| and asked
what could be said about larger values of m. Subsequently, Stan Wagon asked
whether G(5, 5) = 1 in his Problem of the Week 805 [3]. In this article we obtain
explicit formulas for G(3, k) (as reported in [2]), G(4, k), and G(5, k).

2. Preliminaries. We first note that a priori there is no guarantee that
G(m, k) exists. In fact, for m = 6 and k = −1, we have n2 + n + 1 as a common
factor of both (n+1)6 − 1 and n6 − 1, so GCD((n+1)6 − 1, n6 − 1) grows without
bound as n increases. However, if GCD((x + 1)m + k, xm + k) = 1 in Q[x], then
G(m, k) exists.

More generally, suppose that f(x) ∈ Z[x] with GCD(f(x + 1), f(x)) = 1 in
Q[x]. Since Q[x] is a Euclidean Domain there exist p(x), q(x) ∈ Q[x] such that
p(x)f(x + 1) + q(x)f(x) = 1. Clearing denominators, we obtain a(x), b(x) ∈ Z[x]
and A ∈ Z such that a(x)f(x + 1) + b(x)f(x) = A. The last equation shows that
GCD(f(n+ 1), f(n)) divides A, hence max{GCD(f(n+ 1), f(n)) | n ∈ N} exists.

We need the following lemma.

Lemma 2.1. If f(x) ∈ Z[x] and GCD(f(x + 1), f(x)) = 1 in Q[x], we will
denote max{GCD(f(n + 1), f(n)) | n ∈ N} (which exists by the argument above)
by G. We have
a) If d1|GCD(f(n1 + 1), f(n1)) and d2|GCD(f(n2 + 1), f(n2)), then there is an

n3 ∈ N such that LCM(d1, d2)|GCD(f(n3 + 1), f(n3)).
b) If d|GCD(f(n+ 1), f(n)) for some n ∈ N, then d|G.
c) GCD(f(n+G+ 1), f(n+G))=GCD(f(n+ 1), f(n)).
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Proof.

a) We have f(x + h) = f(x) + f ′(x)h + f ′′(x)
2! h2 + . . . , where f(i)(x)

i! ∈ Z[x]. If
d|f(n + 1) and d|f(n), then for all u ∈ Z, f(n+ ud+ 1) = f(n+ 1) + f ′(n+
1)ud + . . . is a multiple of d as is f(n + ud) = f(n) + f ′(n)ud + . . . . Let
a = GCD(d1, d2) and d2 = ab. By the argument above, f(n1 + sd1 + 1) and
f(n1+sd1) are both multiples of d1 for all s ∈ Z and f(n2+tb+1) and f(n2+tb)
are both multiples of b for all t ∈ Z. But since d1 and b are relatively prime,
we can find s, t ∈ N such that tb − sd1 = n1 − n2 (we can force s and t in
N by replacing t by t + d1y and s by s + by for y sufficiently large). Letting
n3 = n1 + sd1 = n2 + tb, we have both d1 and b as factors of both f(n3 + 1)
and f(n3). Since d1 and b are relatively prime, d1b = LCM(d1, d2) is also a
factor of both f(n3 + 1) and f(n3).

b) There is some N ∈ N such that GCD(f(N + 1), f(N)) = G. Applying the
result from part a) with d1 = d, n1 = n, d2 = G,n2 = N we have

LCM(d,G)|GCD(f(n3 + 1), f(n3)) ≤ G.

But this implies that LCM(d,G) = G and hence, d|G.

c) If d|f(n + 1) and d|f(n), then by the result from part b), d|G so G = dt.
Using the argument from part b), d|f(n+ dt+ 1) = f(n+G+1) and d|f(n+
dt) = f(n + G). Similarly, if d|f(n + G + 1) and d|f(n + G), then d|G and
d|f(n+G− dt+ 1) = f(n+ 1) and d|f(n+G− dt) = f(n).

Note that part c) of the lemma shows that GCD(f(x + 1), f(x)) is periodic
with period G. Consequently, we may replace N by Z in the definition of G(m, k)
(or more generally, G).

3. G(3,k).

Theorem 3.1.

G(3, k) =

{

27k2 + 1 if k ≡ 0 mod 2

(27k2 + 1)/4 if k ≡ 1 mod 2.
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Proof.

Case 1: k = 2j. Let D = 27k2 + 1. If we take

a(n, k) = 6n2 − (9k + 3)n+ 9k + 1 and

b(n, k) = 6n2 − (9k − 15)n− 18k + 10,

then
a(n, k)((n+ 1)3 + k)− b(n, k)(n3 + k) = 27k2 + 1.

Hence, G(3, k)|D.
If we choose n = 54j2(6j + 1), then

(n+ 1)3 + k

= (108j2 + 1)(314928j7 + 157464j6 + 23328j5 + 2916j4 + 756j3 + 54j2 + 2j + 1)

and

n3 + k = (108j2 + 1)(2j)(157464j6 + 78732j5 + 11664j4 − 108j2 + 1).

But 108j2 + 1 = 27k2 + 1 = D, so G(3, k)|D by part b) of Lemma 2.1. Therefore,
G(3, k) = D.

Case 2: k = 2j + 1. Let

a(n, j) = n4 + (j + 1)n3 + 3n2 − (7j + 5)n+ (2j2 + 12j + 6) and

b(n, j) = n4 + (j + 4)n3 + (3j + 9)n2 − (4j − 8)n+ (2j2 − 14j − 2).

Note that

a(n, j)((n+ 1)3 + k)− b(n, j)(n3 + k) = 54j2 + 54j + 14.

But

a(n, j) = n4 + (j + 1)n3 + 3n2 − (7j + 5)n+ (2j2 + 12j + 6)

≡ n+ (j + 1)n+ n+ (j + 1)n+ 0 ≡ 0 mod 2
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and

b(n, j) = n4 + (j + 4)n3 + (3j + 9)n2 − (4j − 8)n+ (2j2 − 14j − 2)

≡ n+ jn+ (j + 1)n+ 0 + 0 ≡ 0 mod 2.

Therefore, a(n, j)/2 and b(n, j)/2 are both integers and

(a(n, j)/2)((n+1)3+k)−(b(n, j)/2)(n3+k) = 27j2+27j+7 = (27k2+1)/4 = D/4.

Hence, G(3, k)|(D/4).
Choose n = −3j − 2. Then

(n+ 1)3 + k = −j(27j2 + 27j + 7) and n3 + k = −(j + 1)(27j2 + 27j + 7),

so (D/4)|G(3, k) by part b) of Lemma 2.1. Therefore, G(3, k) = D/4.

4. G(4,k).

Theorem 4.1.

G(4, k) =
pα1
1 . . . pαr

r |16k + 1|

5ǫ(k)
,where ǫ(k) =

{

1 if k ≡ 4 mod 5

0 otherwise

and the prime factorization of |4k − 1| is pα1

1 . . . pαr

r qβ1

1 . . . qβs

s with pi ≡ 1 mod 4
and qi ≡ 3 mod 4.

Proof. Letting

a(n, k) = 20n3 − 10n2 − (16k − 4)n+ (24k − 1) and

b(n, k) = 20n3 + 70n2 − (16k − 84)n− (40k − 35)

we have

a(n, k)((n+ 1)4 + k)− b(n, k)(n4 + k) = (4k − 1)(16k + 1),

so G(4, k)|(4k − 1)(16k + 1).
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If n = 8k, then

(n+ 1)4 + k = (16k + 1)(256k3 + 112k2 + 17k + 1) and

n4 + k = (16k + 1)(256k3 − 16k2 + k),

so by part b) of Lemma 2.1 (16k + 1)|G(4, k).

Let |4k − 1| = pα1
1 . . . pαr

r qβ1

1 . . . qβs

s be the prime factorization of |4k − 1| with
pi ≡ 1 mod 4 and qi ≡ 3 mod 4. For a given pi, since pi ≡ 1 mod 4 we can find
a λi such that λ2

i ≡ −1 mod pαi

i and since pi is odd we can find a µi such that
2µi ≡ 1 mod pαi

i . Note that we also have 4k ≡ 1 mod pαi

i . If n = µi(λi− 1), then

24((n+ 1)4 + k) = (2µi(λi − 1) + 2)4 + 16k ≡ (λi + 1)4 + 4

= λ4
i + 4λ3

i + 6λ2
i + 4λi + 1 + 4

≡ 1− 4λi − 6 + 4λi + 1 + 4 ≡ 0 mod pαi

i .

Similarly,

24(n4 + k) = (2µi(λi − 1))4 + 16k ≡ (λi − 1)4 + 4

= λ4
i − 4λ3

i + 6λ2
i − 4λi + 1 + 4

≡ 1 + 4λi − 6− 4λi + 1 + 4 ≡ 0 mod pαi

i .

By part b) of Lemma 2.1, pαi

i |G(4, k).
Using part a) and b) of Lemma 2.1 and the results above, LCM(16k +

1, pα1
1 . . . pαr

r ) divides G(4, k). If k 6≡ 4 mod 5, then 4k − 1 and 16k + 1 are
relatively prime and hence, LCM(pα1

1 . . . pαr

r , 16k + 1) = pα1
1 . . . pαr

r (16k + 1). If
k ≡ 4 mod 5, then GCD(4k − 1, 16k + 1) = 5 and hence, one of the pi = 5, so
LCM(pα1

1 . . . pαr

r , 16k + 1) = pα1
1 . . . pαr

r (16k + 1)/5.
To finish the proof, we must show that none of the qi are factors of G(4, k) and

that when k ≡ 4 mod 5, 5 cannot appear to a higher power than already exhibited.
To prove the former, consider the equation

(2n+ 5)(n4 + k)− (2n− 3)((n+ 1)4 + k) = 10n2 + 10n+ 8k + 3. (1)
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If qi were a factor of G(4, k), we would have 10n2+10n+8k+3 ≡ 0 mod qi. Since
qi is a factor of 4k − 1, we have 4k ≡ 1 mod qi. Therefore,

10n2 + 10n+ 8k + 3 ≡ 10n2 + 10n+ 2 + 3 ≡ 5(2n2 + 2n+ 1) ≡ 0 mod qi.

Since qi ≡ 3 mod 4 and GCD(5, qi) = 1, it follows that 2n2 + 2n+ 1 ≡ 0 mod qi.
But this implies that (2n + 1)2 ≡ −1 mod qi which is impossible since qi ≡ 3
mod 4.

If k ≡ 4 mod 5, we must show that if 4k − 1 = u5i and 16k + 1 = v5j, where
u and v are not divisible by 5, then 5i+j does not divide G(4, k). Suppose that it
did. Since we’ve seen above that (16k + 1)|G(4, k), we’d have 5i(16k + 1)|G(4, k).
Note that since k ≡ 4 mod 5 we have i > 0 and j > 0. The equation

(2n2 − 2n+ 1)((n+ 1)4 + k)− (2n2 + 6n+ 5)(n4 + k) = (4k − 1)(2n+ 1)

shows that we would have (4k − 1)(2n + 1) ≡ 0 mod 5i(16k + 1). This implies
that u(2n + 1) ≡ 0 mod (16k + 1), and since u is relatively prime to 16k + 1,
(2n+1) ≡ 0 mod (16k+1). Hence, n ≡ 8k mod (16k+1), so n = 8k+(16k+1)t.
Now Equation (1) shows that 10n2 +10n+8k+3 ≡ 0 mod 5i(16k+1). However,
this yields

10n2 + 10n+ 8k + 3 = 10(8k + (16k + 1)t)2 + 10(8k + (16k + 1)t) + 8k + 3

= (16k + 1)(10(16k + 1)t2 + 10(16k+ 1)t+ 40k + 3)

≡ 0 mod 5i(16k + 1),

which implies that

10(16k+ 1)t2 + 10(16k + 1)t+ 40k + 3 ≡ 0 mod 5i.

But this is a contradiction since the left-hand side is congruent to 3 mod 5.

5. G(5,k).

Theorem 5.1.

G(5, k) =

{

(3125k4 + 625k2 + 1)/11 if k ≡ ±1 mod 11

3125k4 + 625k2 + 1 otherwise
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Proof. Denote 3125k4 + 625k2 + 1 by D.

Case 1: If k 6≡ ±1 mod 11, then D 6≡ 0 mod 11. Let

a(n, k) = (1250k2 + 70)n4 − (625k2 + 275k+ 35)n3 − (125k2 − 275k − 15)n2

− (625k3 − 500k2 + 200k + 5)n+ 1250k3 − 375k2 + 125k + 1

and

b(n, k) = (1250k2 + 70)n4 + (5625k2 − 275k+ 315)n3

+ (9250k2 − 1100k+ 540)n2 − (625k3 − 6125k2 + 1575k − 420)n

− 1875k3 + 875k2 − 875k + 126.

Then
a(n, k)((n+ 1)5 + k)− b(n, k)(n5 + k) = D, (2)

and consequently G(5, k)|D.
On the other hand, sinceD is always odd and in this caseD 6≡ 0 mod 11, there

is a positive integer λ such that −22λ ≡ 1 mod D. Let n = λ(625k3 + 90k + 11).
We have

−225((n+ 1)5 + k) = (−22λ(625k3 + 90k + 11)− 22)5 − 225k

≡ ((625k3 + 90k + 11)− 22)5 − 225k ≡ 0 mod D.

The last congruence is demonstrated by explicitly factoring the polynomial (625k3+
90k − 11)5 − 225k using a computer algebra system such as Mathematica. Since
22 is relatively prime to D, we conclude that (n + 1)5 + k ≡ 0 mod D. A similar
argument shows that n5 + k ≡ 0 mod D, so by Lemma 2.1 D|G(5, k) and hence,
G(5, k) = D.

Case 2: If k ≡ ±1 mod 11, one can check that a(n, k) and b(n, k) are both
divisible by 11, so by Equation (2) G(5, k)|(D/11). One can also check that D is
divisible by 121. Denoting D/121 by R, we wish to show that (11R)|G(5, k). Note
that since R is odd, there is a positive integer λ such that −2λ ≡ 1 mod R.
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We are reduced to considering subcases:

Case 2a: If k = 11ℓ + 1 with ℓ 6≡ 3, 9 mod 11, then R 6≡ 0 mod 11. By the
Chinese Remainder Theorem, we can find an n such that

n ≡ λ(75625ℓ3 + 20625ℓ2 + 1965ℓ+ 66) mod R

and

n ≡ 6 mod 11.

We have

−25((n+ 1)5 + k) = (−2λ(75625ℓ3 + 20625ℓ2 + 1965ℓ+ 66)− 2)5 − 25(11ℓ+ 1)

≡ (75625ℓ3 + 20625ℓ2 + 1965ℓ+ 66− 2)5 − 25(11ℓ+ 1)

≡ 0 mod R,

where as before the latter congruence is shown by explicit factorization. Since
(n + 1)5 + k ≡ (6 + 1)5 + 1 ≡ 0 mod 11, we have (n + 1)5 + k ≡ 0 mod 11R. A
similar argument shows that n5 + k ≡ 0 mod 11R, therefore (D/11)|G(5, k).

For the remaining cases, we provide the appropriate choice of n and leave it to
the reader (and a suitable computer algebra system) to verify the results.

Case 2b: If k = 11ℓ− 1 with ℓ 6≡ 2, 8 mod 11, then R 6≡ 0 mod 11 and we can
find an n such that

n ≡ λ(75625ℓ3 − 20625ℓ2 + 1965ℓ− 64) mod R

and

n ≡ 3 mod 11.

Case 3: Let

P = 75625ℓ3 + 20625ℓ2 + 1965ℓ+ 66 and

Q = 75625ℓ3 − 20625ℓ2 + 1965ℓ− 64.
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If k = 11ℓ+ 1 and ℓ ≡ 3 mod 11, take n = λP +R.
If k = 11ℓ+ 1 and ℓ ≡ 9 mod 11, take n = λP + 10R.
If k = 11ℓ− 1 and ℓ ≡ 2 mod 11, take n = λQ +R.
If k = 11ℓ− 1 and ℓ ≡ 8 mod 11, take n = λQ + 10R.

In each case, a calculation shows that (11R)|GCD((n + 1)5 + k, n5 + k) and
hence, (D/11)|G(5, k).

6. Conclusion. We have computed G(3, k), G(4, k), and G(5, k). Preliminary
calculations indicate that there are similar, albeit more complicated, formulas for
G(6, k) and G(7, k), the nature of the formulas depending on the parity of m.

In [1], Berzsenyi also asks to find m and k such that G(m, k) = 1. The author
recklessly conjectures that G(m, k) = 1 if and only if k = 0, but currently has no
proof of this claim.

An additional question is to find m and k such that G(m, k) exists. In Section
2, we saw that G(m, k) does not exist when m = 6 and k = −1. It is not difficult
to show that G(m, k) does not exist if m is a multiple of 6 and k = −1, but the
author is unaware if there are any other cases.

Finally, we return to Wagon’s problem. From the results of Section 5, we see
that G(5, 5) = 3125(5)4 + 625(5)2 + 1 = 1968751, not 1, but the first n for which
GCD((n + 1)5 + 5, n5 + 5) > 1 is when n = 533360. This is a good example to
illustrate that just because a result is true for a large number of examples, it is not
necessarily true in general.
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