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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

143. [2003, 201; 2004, 129] Proposed by José Luis Diaz-Barrero, Universidad

Politécnica de Cataluña, Barcelona, Spain.

Let α, β, and γ be the angles of acute triangle ABC. Prove that
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Solution by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michi-

gan. First we notice that the expressions under the square roots are positive since

1− cotα cotβ =
− cos(α+ β)

sinα sinβ
≥ 0,

since sinα, sin β > 0 and cos(α+ β) ≤ 0. (i.e. α+ β ≥ 90◦; 180◦ − γ ≥ 90◦ implies
γ ≤ 90◦). I’ll make use of the following equality which holds in any triangle:

cotα cotβ + cotβ cot γ + cot γ cotα = 1,

where α, β, and γ are the angles of a given triangle ABC. Denote

a = cotα cotβ, b = cotβ cotγ, c = cotγ cotα.
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Therefore, f is a convex function on (0, 1). By applying Jensen’s Inequality to f

we get that
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Therefore,
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since a+ b+ c = 1.

Also solved by Joe Howard, Portales, New Mexico; Mihai Cipu, Romanian

Academy, Bucharest, Romania; and the proposer.


