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JAPANESE THEOREM: A LITTLE KNOWN THEOREM
WITH MANY PROOFS. (PART II)

Mangho Ahuja, Wataru Uegaki, and Kayo Matsushita

1. Later Attempts. By early 20th century Japanese mathematics had flour-
ished and papers by Japanese mathematicians began to appear in western journals.
In a 1906 paper in Mathesis [4], Prof. T. Hayashi conveyed no less than five differ-
ent proofs of our theorem by Japanese mathematicians. To exhibit the rich variety
of approaches to the theorem, all five proofs are presented here. While some proofs
are easy, and others require a little patience, they all testify to the level of sophis-
tication of Japanese mathematics at that time. Readers should refer to Part I for
results (E1) to (E5) and (G1) to (G8).

Japanese Theorem (Quadrilateral Case). Let ABCD be a quadrilateral in-
scribed in a circle. Let r1, r2, r3, and r4 be the radii of the circles C1, C2, C3, and
C4 inscribed in the triangles ABC, BCD, CDA, and DAB, respectively. Then
r1 + r3 = r2 + r4.

Nagasawa’s Proof. (Kamenosuke Nagasawa was born in 1860 and graduated
from college in 1878. He had written 150 books and translations before his death
in 1927.)
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Let a, b, c, d, e, and f denote the lengths of the perpendiculars from O to lines
AB, BC, CD, DA, AC, and BD, respectively. Using (G4) on triangles ABC and
CDA, we get R + r1 = a + b − e, and R + r3 = c + d + e. On adding, we have
2R + r1 + r3 = a + b + c + d. Similarly, from triangles BCD and DAB we get
2R+ r2 + r4 = a+ b+ c+ d. On equating the two results, we get r1 + r3 = r2 + r4.

Proof by Sawayama. (Yuzaburo Sawayama (1860–1936) was a professor in the
Japanese army and later at the Tokyo Physics College.)
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Let a, b, c, d, e, and f denote perpendicular from O to lines AB, BC, CD, DA,
AC, and BD, respectively. Let us extend the perpendicular, say from O to AB,
to reach the midpoint of the arc AB. Let u1 denote the length from the midpoint
of the chord AB to the midpoint of the arc AB. Let u2, u3, u4, u5, and u6 be
similarly defined for the chords BC, CD, DA, AC, and BD, respectively. Note
that u1 = R − a, u2 = R − b, and so on. From triangle ABC, u1 + u2 + (2R −

u5) = (R − a) + (R − b) + (R + e) = 3R − (a + b − e), which by (G4) equals
3R − (R + r1) = 2R − r1. Similarly, from triangle CDA we get u3 + u4 + u5 =
(R−c)+(R−d)+(R−e) = 3R−(c+d+e) = 3R−(R+r3) = 2R−r3. On adding these
two, we get u1+u2+u3+u4+2R = 4R−(r1+r3), or u1+u2+u3+u4 = 2R−(r1+r3).
Similarly, from triangles BCD and DAB we get u1+u2+u3+u4 = 2R− (r2+ r4).
On equating the two we get r1 + r3 = r2 + r4.

Proof by Nozaki. (Very little is known about Tsunezo Nozaki. His proof below
uses result (G7) which says that I1I2I3I4 is a rectangle.)
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If I1, I2, I3, and I4 denote the incenters of triangles ABC, BCD, CDA, and DAB,
respectively, then by (G7) we know that the figure I1I2I3I4 is a rectangle. Using
(G6) we get OI21 + OI23 = OI22 + OI24 . But for each i, OI2i = R2

− 2Rri by (G3).
This means R2

− 2Rr1 +R2
− 2Rr3 = R2

− 2Rr2 +R2
− 2Rr4, which simplifies to

r1 + r3 = r2 + r4.

Proof by Matsuo and Omori. (Very little is known about the two authors.
Their proof hinges on a clever observation that the projection of I1I3 perpendicular
to AC is exactly r1 + r3. Since I1I3 = I2I4 we only need to show that I1I3 and AC

intersect at the same angle as I2I4 and BD.)
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Let AC intersect I1I3 in V and BD intersect I2I4 in W . Angles AV I3 and BWI2,
will be equal if we can show that the other two angles of triangles AV I3 and BWI2
are equal.

First, 6 V AI3 = 1
2
(6 CAD) = 1

2
(6 CBD) = 6 I2BW .

Secondly, to prove that the angles V I3A and WI2B are equal, we note that
6 V I3A = 6 V I3I4 + 6 I4I3A, and 6 WI2B = 6 WI2I1 + 6 I1I2B. But, in the rectan-
gle I1I2I3I4 the angles V I3I4 and WI2I1 are equal. So we only need to show that
6 I4I3A = 6 I1I2B.

From (G2) we know that the points A, I4, I3, and D lie on a circle with center
H . Also, the points B, I1, I2, and C lie on a circle with center F . So, 6 I4I3A =
6 I4DA = 1

2
(6 BDA) = 1

2
(6 BCA) = 6 BCI1 = 6 I1I2B.

Thus, triangles AV I3 and BWI2 are similar and 6 AV I3 = 6 BWI2.
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Since I1I3 = I2I4, and I1I3 cuts AC at the same angle as I2I4 cuts BD, the
projection of I1I3 perpendicular to AC equals the projection of I2I4 perpendicular
to BD. These projections being exactly r1+r3 and r2+r4, we have r1+r3 = r2+r4.

Proof by Chou. (Chou’s full name is Shu Tatsu. Chou does not use the fact
that I1I2I3I4 is a rectangle. Instead, his proof shows that r3 − r2, the difference of
perpendiculars from I2 and I3 on CD, equals r4 − r1.)

Let I1, I2, I3, and I4 be the incenters of the triangles ABC, BCD, CDA, and
DAB, respectively. We drop perpendiculars from I1 and I4 to side AB, meeting
AB at I ′1 and I ′4. Similarly, let I2I

′
2 and I3I

′
3 be perpendiculars to CD. We will

note that I1I
′
1 = r1, I4I

′
4 = r4, I2I

′
2 = r2, and I3I

′
3 = r3. We want to show that

r4 − r1 = r3 − r2. Let E, F , G, and H be the midpoints of the arcs AB, BC,
CD, and DA, respectively. Also, let B′ and C′ be points on the circle such that
arc GB = arc GB′, and arc EC = arc EC′. Since arcs EA and EB are equal
and arcs EC and EC′ are equal, we have arc AC′ = arc BC. Similarly, we find
arc DB′ = arc BC. Hence, the arcs AC′ and DB′ are equal, and by adding a piece
of arc B′C′ to both, we have arc AB′ = arc DC′ and hence, 6 AGB′ = 6 DEC′.

Let E, F , G, H be the midpoints of the arcs AB, BC, CD, DA, respectively. From
(G2) we know that a circle with center E passes through the points A, I4, I1, and
B, and a circle with center G passes through the points C, I2, I3, and D. Let CE

and CG denote these two circles. Let circle CE intersect EC′ at J , and circle CG

intersect GB′ at K. Let I1J intersect I4I
′
4 at M and I2K intersect I3I

′
3 at N . The

idea behind these constructions are to show that r4 − r1 = I4M = I3N = r3 − r2.
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We will prove that the triangles I1MI4 and I2NI3 (i) are right angled at M and
N , (ii) are similar because 6 MI1I4 = 6 I3I2N , and (iii) are congruent because
I1M = I2N .

To prove (i), we see that arc EA = arc EB, and arc EC = arc EC′. Hence, AB is
parallel to CC′. Also, from triangle ECC′, we have EC = EC′, and EI1 = EJ ,
hence, I1J is parallel to CC′ and also to AB. Thus, I4I

′
4 is perpendicular to I1J ,

and triangle I1MI4 is right angled at M . Similarly, triangle I2NI3 is right angled
at N .

To prove (ii), we see that 6 MI1I4 = 6 JI1I4 = 1
2
(6 JEI4) = 1

2
(6 AGB′) =

1
2
(6 I3GK) = 6 I3I2N .

To prove (iii), we note that I1M = I ′1I
′
4, and I2N = I ′2I

′
3. Now I ′1I

′
4 = AI ′1 − AI ′4,

and by (G8) equals 1
2
(AB + AC − BC) − 1

2
(AB + AD − BD) = 1

2
(AC + BD −

BC−AD). Doing similar work, I ′2I
′
3 = CI ′3−CI ′2 = 1

2
(CD+AC−AD)− 1

2
(CD+

BC −BD) = 1
2
(AC +BD −BC −AD). Hence, I1M = I2N .

This shows that triangles I1MI4 and I2NI3 are congruent and I4M = r4 − r1 is
equal to I3N = r3 − r2. Hence, r1 + r3 = r2 + r4.

2. Generalization. While the quadrilateral case came to Japan from China,
it was Y. Mikami from Japan who generalized the theorem from the quadrilateral to
a polygon [6]. Instead of showing how some of the proofs already shown here would
work in the case of a polygon, we will show two different proofs using induction.
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One easy way is to choose two non-adjacent vertices Aj and Ak, draw diagonal
AjAk, which will divide the polygon into two smaller polygons, and then use the
induction hypothesis on the two smaller polygons.

Here is another way of showing that the theorem holds even when we add an extra
vertex to the polygon.

Let P be a polygon with n vertices A1, . . . , An, and let Q be a polygon with
vertices A1, . . . , An, An+1. Let Sj(P ) denote the sum of the radii of the incircles of
P when triangulation is done from vertex Aj . Also, let r[ABC] denote the inradius
of triangle ABC. As for S1, obviously S1(Q) = S1(P )+r[AnAn+1A1]. What about
Sj?

We see that Sj(Q) = Sj(P )− r[AjAnA1] + r[AjAnAn+1] + r[AjAn+1A1]. But
from the quadrilateral case we have r[AjAnA1] + r[AnAn+1A1] = r[AjAnAn+1] +
r[AjAn+1A1]. Hence, Sj(Q) = Sj(P ) + r[AnAn+1A1].

Now to prove the general case by induction, let Aj and Ak be any two vertices. By
the induction hypothesis, Sj(P ) = Sk(P ). Then, by adding r[AnAn+1A1] to each



VOLUME 16, NUMBER 3, FALL 2004 157

we get Sj(Q) = Sk(Q). This provides us with the inductive jump to go from P to
Q.

3. Conclusion. One wonders why the Japanese theorem, which is not so well
known even in Japan [8], has so many proofs. While only a few proofs look similar,
others take us through different paths leading to the final summit. But they all
display the power of classical plane geometry, used this time by the people from
the Far East. On reading the different proofs one cannot but develop respect and
admiration for the Japanese mathematicians of that time.

We hope that this paper inspires others to explore and unfold the story behind other
forgotten theorems. Finally, we hope that it encourages fellow mathematicians to
collaborate in similar multicultural projects.
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