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AREA OF A TRIANGLE IN TERMS OF

THE TAXICAB DISTANCE

Münevver Özcan and Rüstem Kaya

Abstract. In this study, we use the taxicab distance function to calculate the

area of a triangle, and give the taxicab version of Heron’s Formula.

1. Introduction. The taxicab plane R
2
T
is almost the same as the Euclidean

analytical plane R
2. The points are the same, the lines are the same, and angles

are measured in the same way. However, the distance function is different. Taxicab

distance between the points P and Q is the length of a shortest path from P to Q

composed of line segments parallel to the coordinate axes. That is, if P = (x1, y1)

and Q = (x2, y2) then the taxicab distance from P to Q is dT (P,Q) = |x1 − x2|+

|y1 − y2|.

The taxicab plane geometry is non-Euclidean since it fails to satisfy the side-

angle-side axiom but satisfies all the remaining twelve axioms of the Euclidean plane

geometry [5]. Since the taxicab plane geometry has a different distance function

it seems interesting to study the taxicab analogues of the topics that include the

concept of distance in the Euclidean geometry. A few of such topics have been

studied by some authors [1, 2, 3, 4, 6, 7, 9, 10]. The group of isometries that

preserve taxicab distance is determined in [8].

Here, we study the following problem: How can one compute the area of a

triangle in the analytical plane by using the taxicab distance? Clearly, a well-

known formula

area of a triangle = (base× height)/2

is not, in general, valid in R
2
T
. It is valid if and only if the base is parallel to any

one of the coordinate axes. (In this case, Euclidean and taxicab lengths of the base

and height are the same.) The area of a triangle can also be computed using the

three sides of the triangle. Let the sides of a triangle have lengths a, b, c. Introduce

the semiperimeter p = (a+ b+ c)/2 and the area A. Then

A2 = p(p− a)(p− b)(p− c),

is known as Heron’s Formula. The aim of this work is to give a taxicab version of

Heron’s Formula.
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2. Extension of Heron’s Formula to the Taxicab Plane. Let the sides of

a triangle ABC, in the taxicab plane, have lengths aT = dT (B,C), bT = dT (A,C)

and cT = dT (A,B), and denote the taxicab-semiperimeter pT = (aT + bT + cT )/2.

The following two propositions give the taxicab versions of Heron’s formula in some

special cases.

Proposition 1. If one side of a triangle ABC, say BC, is parallel to one of the

coordinate axes and none of the angles B and C is an obtuse angle, then for the

area A of ABC,

A =
1

2
aT (pT − aT ) =

1

4
aT (bT + cT − aT ).

Proof. Consider the triangle ABC. Let hT = dT (A,BC) and a′
T
= dT (B,A′),

where A′ denotes the foot of the altitude from A, (Figure 1).

Figure 1. BC is parallel to a coordinate axis. B and C are not obtuse angles.

For the triangles ABA′ and AA′C we get

a′T = cT − hT and bT = hT + (aT − a′T ),

respectively. From these equalities;

bT = hT + aT − cT + hT and hT = (bT + cT − aT )/2,

and consequently,

A =
1

2
aThT =

(

aT
2

)(

−aT + bT + cT
2

)

.
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Using the taxicab-semiperimeter pT , in the above statement one obtains,

A =
1

2
aT (pT − aT )

which completes the proof. Unfortunately, in all the remaining cases, one needs a

new distance parameter a′
T

to determine the area of a given triangle in terms of

the taxicab lengths of sides.

Proposition 2. If one side of a triangle ABC, say BC, is parallel to one of the

coordinate axes and one of the angles B and C is not an acute angle, then for the

area A of ABC

A =
1

2
aT (pT − (aT + a′T )),

where a′
T
= dT (A

′, B) or a′
T
= dT (A

′, C) depending on whether B or C is not an

acute angle, respectively; and A′ denotes the foot point of the altitude from A.

Proof. Consider any of the triangles ABC in Figure 2a or Figure 2b and let

dT (A,A
′) = hT , where the side BC is parallel to one of the coordinate axes.

Figure 2a. BC is parallel to a coordinate axis and B is not an acute angle.
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Figure 2b. BC is parallel to a coordinate axis and C is not an acute angle.

It is easily seen, from the triangles AA′C and AA′B that

hT = bT − (aT + a′T ) and hT = cT − a′T

if B is not an acute angle. Thus, bT = aT + cT . Then for the area A of the triangle

ABC,

A =
1

2
aThT =

1

2
aT (bT − (aT + a′T )) =

1

2
aT

(

bT + bT
2

− (aT + a′T )

)

=
1

2
aT

(

aT + bT + cT
2

− (aT + a′T )

)

.

Using pT we obtain, A = 1
2
aT (pT − (aT + a′

T
)). Similarly, in the case where C is

not an acute angle then,

hT = cT − (aT + a′T ) and hT = bT − a′T

from the triangles ABA′ and ACA′. Thus, cT = bT + aT . Now, it can be easily

shown that the above formula is still valid.
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Corollary. Let the side BC of a triangle ABC in the taxicab plane, be parallel

to one of the coordinates axes. Then if the angle B ≥ π/2 or C ≥ π/2 then

bT = aT + cT or cT = aT + bT ,

respectively.

Now, we introduce some new concepts in order to find a general taxicab version

of Heron’s Formula for triangles such that none of their sides is parallel to the

coordinate axes. Let ABC be any triangle in the taxicab plane. Clearly, there

exists a pair of lines passing through every vertex of the triangle, each of which is

parallel to a coordinate axis. A line l is called a base line of ABC if and only if

1. l passes through a vertex,

2. l is parallel to a coordinate axis,

3. l intersects the opposite side (as a line segment) to the vertex in Condition 1.

Clearly, at least one of the vertices of the triangle always has one or two base lines.

Such a vertex of a triangle is called a basic vertex. A base segment is a line segment

on a base line, which is bounded by a basic vertex and its opposite side.

The following theorem gives the general taxicab version of Heron’s Formula.

Theorem 3. Let αT denote the length of a base segment of a triangle. Then

for the area A of a triangle described above,

A =



















αT (pT − (αT + α′

T
))/2 , if there exists only one base line

passing through the basic vertex

αT (pT − (αT + α′

T
+ α′′

T
))/2 , if there exist two base

lines passing through the basic vertex

where a′
T
= dT (D,H), α′′

T
= dT (basic vertex, H ′) and

D = Intersection point of the base line and the opposite side,

H = The point of orthogonal projection of one of the remaining two vertices on the

base line but not on the base segment,

H′= The point of orthogonal projection of the third vertex on the same base line

but not on the base segment.

Proof. Let ABC be a triangle with the basic vertex C, and lC denote a base

line through C. Then D = lC ∩ [AB] where [AB] is the side AB of triangle ABC.

Let H be the orthogonal projection of the vertex B to lC but not on [CD]. This

choice of B is always possible since A and B have symmetrical roles (see Figures 3
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and 4). Now, the triangle ABC is a combination of the triangles ADC and BDC.

If c′
T
= dT (A,D) and c′′

T
= dT (B,D) then the taxicab-semiperimeters of ADC and

BDC are

p′T = (αT + bT + c′T )/2 and p′′T = (αT + aT + c′′T )/2,

respectively. Consequently, using pT = (aT + bT + cT )/2,

p′T + p′′T = pT + αT .

Now two cases are possible.

i. If lC is the only base line through the basic vertex C (Figure 3) then,

Figure 3. A triangle ABC with a base line on the base vertex

the area A1 of ADC is given by

A1 = αT (p
′

T − αT )/2

by Proposition 1, and the area A2 of BDC is given by

A2 = αT (p
′′

T − (αT + α′

T ))/2

by Proposition 2. Then using the equality p′
T
+ p′′

T
= pT + αT ,

A = A1 +A2 = (αT (p
′

T − αT )/2) + (αT (p
′′

T − (αT + α′

T ))/2)

= αT ((p
′

T + p′′T )− αT − (αT + α′

T ))/2

= αT (pT − (αT + α′

T ))/2.
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ii. If there exist two base lines through the basic vertex C (Figure 4) then,

Figure 4. A triangle ABC with two base lines on the base vertex

the area A1 of ADC is given by

A1 = αT (p
′

T − (αT + α′′

T ))/2

and the area A2 of BDC is given by

A2 = αT (p
′′

T − (αT + α′

T ))/2

by Proposition 2. Then using the equality p′
T
+ p′′

T
= pT + αT ,

A = A1 +A2 = (αT (p
′

T − (αT + α′′

T ))/2) + (αT (p
′′

T − (αT + α′

T ))/2)

= αT ((p
′

T + p′′T )− (αT + α′′

T )− (αT + α′

T ))/2

= αT (pT − (αT + α′

T + α′′

T ))/2.

Notice that here αT + α′

T
+ α′′

T
= dT (H,H ′).
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