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UNIVERSAL FORMS: THE FOUR-SQUARE THEOREM

AND ITS GENERALIZATIONS

Mark B. Beintema and Azar N. Khosravani

1. Introduction. The problem of writing a positive integer as a sum of

squares has been a source of fascination for centuries, attracting the attention of

some of the finest mathematical minds throughout history. One well-known result

along these lines is the “Four-Square Theorem.”

Theorem 1. If n is a positive integer, then there exist integers x, y, z, and w

such that n = x2 + y2 + z2 + w2.

As many readers are no doubt aware, the first correct proof of the theorem is

due to Lagrange. However, the history of this theorem, and its impact on the devel-

opment of modern number theory, are less well-known. In Section 1 of this paper

we give a historical account of the Four-Square Theorem and present a proof due to

Euler. In Section 2, we present a generalization due to Ramanujan. For references

we list the most readily accessible, most of which can be found in any college library.

For biographical information on the mathematicians involved, we recommend [13 or

14]. Finally, although we attempt to follow the thread of reasoning of the original

work, where convenient we use modern terminology.

2. The Four-Square Theorem. The first explicit statement of the Four-

Square Theorem was given in 1621 by Claude Bachet, who in that year published

a Latin translation of Diophantus’ Arithmetic. In his commentary, Bachet stated

that he had verified the theorem for all numbers up to 325, and remarked that

Diophantus himself seemed to have known the theorem. The reason for doing so

was that, although Diophantus gives necessary conditions for an integer to be the

sum of two squares, or of three squares, no precondition is given for an integer

to be the sum of four squares. Among the mathematicians to read Bachet’s text

was Fermat, and it was in the margins of this book that he wrote many of his

most famous results and conjectures (including his fabled “last theorem”). In the

1630’s, Fermat began a long and fruitful correspondence with Mersenne in which he

formulated many results and conjectures concerning the represenation of integers

by quadratic forms [13]. In a letter from 1636 [7], Fermat stated that he had a

proof of the theorem, presumably by his method of descent. Like Bachet, Fermat

also credited knowledge of the theorem to Diophantus.
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In the same letter containing the statement of the Four-Square Theorem, Fer-

mat states the following result concerning triangular numbers. An integer n is

triangular if there exists a positive integer a such that n = a(a+ 1)/2.

Theorem 2. Every positive integer is the sum of three triangular numbers.

The theorem on triangular numbers was rediscovered independently by Gauss,

resulting in one of the most famous entries of his celebrated “mathematical diary”

EYPHKA! Num = ∆+∆+∆.

Although Fermat never published proofs of the Four-Square Theorem or the

Triangular Number Theorem, his remarks inspired Euler, who subsequently worked

on the problem for nearly forty years. Learning of Fermat’s work through corre-

spondence with Goldbach, Euler set out to prove many of the former’s results and

conjectures. Over the years 1730 to 1770, he proved a number of results related

to the Four-Square Theorem. In 1730, Euler stated that the Four-Square Theorem

would follow from Fermat’s Theorem on triangular numbers. The proof that follows

is essentially due to Gauss [8].

Proof. We begin with the observation (also due to Euler) that every integer of

the form 8k + 3 is the sum of three squares. Assuming Theorem 2, we write

k =

3
∑

i=1

ci(ci + 1)/2 =
1

2

3
∑

i=1

c2i + ci

hence,

8k + 3 =

3
∑

i=1

(2ci + 1)2.

Adding 1 to each side, we see that 8k + 4 is a sum of four odd squares for any k,

say 8k + 4 =
∑

x2
i . Now we have

4k + 2 =
1

2
x2
i =

(

x1 + x2

2

)2

+

(

x1 − x2

2

)2

+

(

x3 + x4

2

)2

+

(

x3 − x4

2

)2

.
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Rewriting as 4k + 2 =
∑

z2i , and considering congruences modulo 4, we see

that two of the summands are even and two are odd, say z1, z2 are even and z3, z4
are odd. Then we have

2k + 1 =
1

2
z2i =

(

z1 + z2
2

)2

+

(

z1 − z2
2

)2

+

(

z3 + z4
2

)2

+

(

z3 − z4
2

)2

.

It follows that every odd integer is the sum of four squares. Now, if n =
∑

x2
i ,

then easily 4n =
∑

(2xi)
2; thus, if n is the sum of four squares, so is 4n. The result

now follows by noting that every even integer can be written either in the form

4a(2k + 1) or 4a(4k + 2).

Euler continued working on the Four-Square Theorem over the ensuing

decades, trying a number of approaches [2]. The following identity, established

by Euler in 1748, proved to be essential to the eventual proof of the theorem.

Lemma 3. (a2 + b2 + c2 + d2)(α2 + β2 + γ2 + δ2) = x2 + y2 + z2 + w2, where

x = aα+ bβ + cγ + dδ y = aβ − bα− cγ + dδ

z = aγ + bδ − cα− dβ w = aδ − bγ + cβ − dα.

This lemma shows that if two integers can each be written as the sum of four

squares, then their product can be written as a sum of four squares as well. The

proof of the theorem is thereby reduced to proving that every prime number can be

written as the sum of four squares. In 1749, Euler came one step closer to a proof.

Theorem 4. If N is prime, then there exist four squares, none of which is

divisible by N , whose sum is divisible by N .

Proof. To prove this theorem, he first establishes some facts about what are

now called quadratic residues. Recall that an integer x is a quadratic residue modulo

N if, for some integer a, x ≡ a2 (mod N). Euler quickly proves the following: (1)

the product of two quadratic residues is again a quadratic residue, (2) the product of

a residue and non-residue is a non-residue, and (3) the product of two non-residues

is a quadratic residue.

Assume that it is not possible to find three squares, not all divisible by N ,

whose sum is divisible by N . Then for any x, y relatively prime to N , we know

that N does not divide the sum x2 + y2. It follows that if a is a quadratic residue

modulo N , then −a is a non-residue; in particular, −1 is a non-residue. Let a be any

nonzero quadratic residue modulo N . Then there exists x, y so that x2+y2 ≡ a+1
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(mod N). Now if −(a + 1) was a quadratic residue, there would be three squares

whose sum was divisible by N ; by assumption, this is not the case. Thus, −(a+1)

is a non-residue. Recalling that −1 is a non-residue, and invoking (3) above, we see

that a + 1 is a quadratic residue whenever a is. Letting a = 1, we deduce that all

integers are quadratic residues modulo N , an obvious contradiction.

The Four-Square Theorem would now follow if it could be shown that every

divisor of a sum of four squares is itself a sum of four squares. Despite extended

efforts, Euler was unable to complete this part of the proof.

Joseph Louis Lagrange corresponded extensively with Euler on a number of

mathematical subjects. He succeeded in proving many of Fermat’s conjectures

concerning binary quadratic forms – indeed, at this time Lagrange was developing

a very general theory on such forms. In 1770, building upon Euler’s work and using

results from the theory of binary forms, he succeeded in proving that all primes can

be written as a sum of four squares, thus, obtaining the first correct proof of the

Four-Square Theorem. Ironically, just two years later, Euler succeeded in proving

the final step that was missing from his earlier efforts [6]. We present Euler’s simpler

proof below.

Theorem 5. If N is a divisor of the sum of four squares, no one of which is

divisible by N , then N is the sum of four squares.

Proof. The strategy is a classic “descent” argument. Show that if N divides a

sum of four squares, then there is a strictly smaller sum of four squares for which

N is also a divisor. By repeated applications of the argument, one finally deduces

that N itself is a sum of four squares. Begin by writing Nn = p2 + q2 + r2 + s2,

where

p = a+ nα, q = b+ nβ, r = c+ nγ, s = d+ nδ. (1)

We can assume that each of a, b, c, and d has absolute value less than or equal to

n/2.

Substituting the values (1), we have

Nn = a2 + b2 + c2 + d2 + 2n(aα+ bβ + cγ + dδ) + n2(α2 + β2 + γ2 + δ2). (2)

Immediately we see that n divides a2 + b2 + c2 + d2, say

nn′ = a2 + b2 + c2 + d2. (3)

Dividing both sides of (2) by n, we get N = n′ + 2x+ n(α2 + β2 + γ2 + δ2), where

x = aα+ bβ + cγ + dδ. Thus,

Nn′ = (n′)2 + 2xn′ + nn′(α2 + β2 + γ2 + δ2). (4)
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By the lemma, and (3) above, we have

nn′(α2 + β2 + γ2 + δ2) = (a2 + b2 + c2 + d2)(α2 + β2 + γ + δ2

= x2 + y2 + z2 + w2, with x as above.

Thus, we rewrite (4) to get

Nn′ = (n′)2 + 2xn′ + x2 + y2 + z2 + w2 = (n′ + x)2 + y2 + z2 + w2.

Our assumption on the absolute values of a, b, c, and d implies a2+b2+c2+d2 <

n2, hence, n′ < n. Repeating the argument, one obtains a decreasing sequence of

integers Nn′, Nn′′, . . . each a sum of four squares. It follows that N is a sum of

four squares.

3. Universal Forms. Efforts to prove theorems concerning sums of squares

gave rise to the modern theory of arithmetic quadratic forms. It will be useful to

introduce some terminology. A quadratic form is a homogeneous polynomial of

degree two with integer coefficients; i.e. an expression of the form

q(x) =
∑

aijxixj , aij ∈ Z.

A form is called binary (respectively ternary, quaternary) if it involves two

(respectively three, four) variables. We say that a quadratic form q represents an

integer n if the equation q(x) = n has a solution with each x an integer. A form

which represents all positive integers is called universal in the current literature.

Thus, an alternate statement to the Four-Square Theorem is that the form x2 +

y2+z2+w2 is universal. A natural question arises: are there other universal forms?

To answer this question requires representation theorems for ternary forms. Fermat

and Euler each had found some elementary results concerning which integers could

be represented as a sum of three squares [2, 13]. The definitive theorem is due to

Legendre, who proved the following in 1798.

Theorem 6. A positive integer can be written as the sum of three squares if

and only if it is not of the form 4a(8k + 7).

In the Disquisitiones Arithmetica (art. 293), Gauss used this theorem to prove

Fermat’s theorem on triangular numbers, obtaining the Four-Square Theorem as a

corollary (in an argument very similar to that presented previously). In the 19th
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century, Liouville, Pepin, and Jacobi found a number of forms of the type ax2+by2+

cz2+dw2 which represent all positive integers — that is, universal quaternary forms.

However, their interest was more in the enumeration of representations than in the

discovery and classification of univeral forms [2]. It was Ramanujan who undertook

a complete classification of such forms. In 1916, he wrote what was to become a very

influential paper in the theory of quadratic forms [13]. Using Legendre’s Theorem

(which he incorrectly attributes to Cauchy) and similar results, Ramanujan gave

the following generalization of the Four-Square Theorem.

Theorem 7. There are 54 forms q = ax2 + by2 + cz2 + dw2 which represent all

positive integers.

(Initially Ramanujan claimed to have found 55 such forms. It was later pointed

out by Dickson [3] that one of the forms fails to be universal.)

Sketch of Proof. Without loss of generality, assume a ≤ b ≤ c ≤ d. Now a = 1

or else 1 is not represented. Similarly, 1 ≤ b ≤ 2 or else 2 is not represented. Now,

by cases:

x2 + y2 + cz2 + dw2 : Then 1 ≤ c ≤ 3, since if c > 3, 3 is not represented.

x2 + 2y2 + cz2 + dw2 : Then 2 ≤ c ≤ 5, since if c > 5, 5 is not represented.

Continuing this way, Ramanujan arrives at the following allowable values of

(a, b, c, d).

(1,1,1,1) (1,2,3,5) (1,2,4,8)* (1,1,1,2)* (1,2,4,5)

(1,2,5,8) (1,1,2,2) (1,2,5,5)** (1,1,2,9) (1,2,2,2)*

(1,1,1,6) (1,2,3,9) (1,1,1,3) (1,1,2,6,) (1,2,4,9)

(1,1,2,3) (1,2,2,6) (1,2,5,9) (1,2,2,3) (1,1,3,6)

(1,1,2,10) (1,1,3,3)* (1,2,3,6)* (1,2,3,10) (1,2,3,3)

(1,2,4,6) (1,2,4,10) (1,1,1,4)* (1,2,5,6) (1,2,5,10)*

(1,1,2,4)* (1,1,1,7) (1,1,2,11) (1,2,2,4)* (1,1,2,7)

(1,2,4,11) (1,1,3,4) (1,2,2,7) (1,1,2,12) (1,2,3,4)

(1,2,3,7) (1,2,4,12) (1,2,4,4)* (1,2,4,7) (1,1,2,13)

(1,1,1,5) (1,2,5,7) (1,2,4,13) (1,1,2,5) (1,1,2,8)*

(1,1,2,14) (1,2,2,5) (1,2,3,8) (1,2,4,14) (1,1,3,5)

(The forms marked * had previously been discovered by Pepin, Liouville, and Ja-

cobi. Dickson showed that the form marked ** does not represent n = 15.
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Having obtained the above list of candidates, Ramanujan proceeds to prove

that each of the forms is universal. First, he shows that for 1 ≤ d ≤ 7, the form

x2 + y2 + z2 + dw2 is universal. This is accomplished by showing that for each d,

there is a suitable w such that N − dw2 is not of the type excluded by Legendre’s

Theorem, and hence, is a sum of three squares. Assume N can be written as

4a(8k+7); otherwise the result follows from Legendre’s Theorem by taking w = 0.

Setting w = 2a, we get N − dw2 = 4a(8k + 7 − d). This is a sum of three squares

for d = 1, 2, 4, 5 or 6, as well as the cases d = 3, k = 0, and d = 7, 0 ≤ k ≤ 2.

For the cases d = 3, k > 0 and d = 7, k > 2 we take w = 2a+1 to obtain

N − dw2 = 4a(8k − 7− 4d), which again is a sum of three squares.

Ramanujan handles the remaining forms by similar arguments, using results

analogous to Legendre’s Theorem, summarized in the following table.

Form Integers Not Represented Smallest Exception

x2 + y2 + z2 4j(8k + 7) 7

x2 + y2 + 2z2 4j(16k + 14) 14

x2 + y2 + 3z2 9j(9k + 6) 6

x2 + 2y2 + 2z2 4j(8k + 7) 7

x2 + 2y2 + 3z2 4j(16k + 10) 10

x2 + 2y2 + 4z2 4j(16k + 14) 14

x2 + 2y2 + 5z2 25j(25k + 10) or 25j(25k + 15) 10

The first line is simply Legendre’s theorem restated. The other results were later

established by Dickson [3].

Ramanujan’s paper sparked renewed interest in the representation theory of

ternary forms. A particularly intriguing comment appears in a footnote in which

Ramanujan discusses the form x2 + y2 + 10z2.

“The even numbers which are not of the form x2 + y2 + 10z2 are

the numbers 4λ(16µ + 6), while the odd numbers that are not of the

form, 3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, . . . , do

not seem to obey any simple rule.”

This form is often referred to in the current literature as simply the “Ramanu-

jan Form”. It has recently been proved that the set of integers not represented by

this form is finite. Moreover, there is evidence to suggest that Ramanujan’s list of

exceptions is complete, save for two numbers: 679 and 2,719 [5, 11].

Our final remarks require a few more definitions. A form q =
∑

aijxixj is

diagonal if aij = 0 for i 6= j. It is called classic if aij is even for i 6= j. A form is

called positive definite (or simply positive) if q(x) > 0 for all x 6= 0. Finally, two

quadratic forms are equivalent if one can be obtained from the other by a linear



160 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

integral change of variable. It is easy to see that equivalent forms represent the

same integers.

Following Ramanujan’s landmark paper, attention turned to non-diagonal

forms. Moreover, the emphasis was increasingly on classifying equivalence classes of

forms. In 1948, “employing an extension of the method of Ramanujan,” Margaret

Willerding [16] showed that there are exactly 178 classes of universal classic posi-

tive quaternary quadratic forms. It is now well-known that there exist only finitely

many universal quaternary quadratic forms; however, a complete classification of

these forms (including forms with odd cross-terms) has yet to be found. The follow-

ing recent result of Conway and Schneeberger [5], known as the “Fifteen Theorem,”

allows a computation approach to demonstrating the universality of classic forms.

Theorem 8. A positive classic form is univeral provided it represents each of

the following integers: 1, 2, 3, 5, 6, 7, 10, 14, 15.

Amazingly, this list of integers is precisely the list of minimal exceptions in

Ramanujan’s case by case analysis.
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