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ALGEBRAIC STRUCTURES OF SOME SETS

OF PYTHAGOREAN TRIPLES II

Marek Wójtowicz

Abstract. A natural bijection from Z
2 onto the set of all Pythagorean triples

P = {(a, b, c) ∈ Z
3 : a2+ b2 = c2} is given (Theorem 6). Consequently, all algebraic

structures of Z2 are carried in a natural way onto P (Theorems 7, 8, and 9). This

solves the open problem of defining ring operations under which P is essentially a

different ring than the one constructed by B. Dawson (Example, Section 5). This

article and the enumeration of its sections and theorems is a continuation of the

author’s paper [3].

4. Elements of P. Corollary 1 given in Section 2 yields the useful base

for a description of all sets Pn, n 6= 0 (the case n = 0 is obvious), and their

elements by giving the apparent form of natural numbers xn ≥ 2 with ψn(Pn) =

xnZ (Proposition 1 below). To this end we define two functions Z → Z: quasi-square

root ∗

√
, and degree of evenness dev, respectively, as follows.

If pα1

1 · . . . · pαk

k is the prime factorization of |n| ≥ 1, then ∗

√
n := pβ1

1 · . . . · pβk

k ,

where βj = [(αj + 1)/2], j = 1, . . . , k, and [x] denotes the integer part of x, and
∗

√
0 := 0.

If n = 2rn0, where r, n0 ∈ Z, r ≥ 0 and (2, n0) = 1, then

dev(n) =

{

1, for r odd,

2, for r even and r ≥ 0.

(A function similar to quasi-square root was used by Dawson in [1].) In the proofs

of Propositions 1 and 2 we shall use the following properties of ∗

√
and dev (recall

that if pα1

1 · . . . · pαk

k is the prime factorization of n ∈ N, then the square-free kernel

of n is defined as t(n) = p1 · . . . · pk, and n is called a square-free number provided

that t(n) = n).

(1) 0 ≤ ( ∗

√
n)2 ≤ |n|t(|n|).

(2) If n | a2, for some a ∈ Z, then ∗

√
n | a.
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(3) For every integer n, l, p with l ≥ 0 and p prime we have
∗

√
n2 = |n| and

∗

√

p2l+1 = pl+1.

(4) n/ ∗

√
n and ( ∗

√
n)2/n are integers for all n 6= 0.

(5) We have ∗

√
nm ≤ ∗

√
n ∗

√
m for all n,m ∈ Z, and ∗

√
nm = ∗

√
n ∗

√
m whenever

(n,m) = 1.

(6) If n 6= 0, then ( ∗

√
n)2/n is even if and only if dev(n) = 1 (and so ( ∗

√
n)2/n is

odd if and only if dev(n) = 2).

(7) For all s ∈ Z we have dev(2s+ 1) = 2, and dev(4s+ 2) = 1.

(8) ∗

√
n = |n| if and only if |n| is square-free.

(9) If n, r ∈ N with r odd and (n, r) = 1, then dev(nr) = dev(n).

Proposition 1. Let ψn be the ring isomorphism defined in Theorem 1 and

acting from Pn onto the ring ideal Gn = xnZ, where xn is some integer greater

than or equal to 2 and n 6= 0. Then xn = dev(n) ∗

√
n. In particular, xn = x2n = 2 ∗

√
n

for n odd, and hence, xr = x2r = 2r for every odd and square-free number r ∈ N.

Proof. We shall consider the case n ≥ 1 only; for n ≤ −1 the proof is similar.

We have ψn(Pn) = {a(n)k − n : a
(n)
k = kxn + n and (a

(n)
k , b

(n)
k , c

(n)
k ) ∈ Pn, k ∈ Z},

where b
(n)
k and c

(n)
k are defined in Section 1. Hence,

(10) a
(n)
1 = xn + n.

Since (a
(n)
1 )2 − n2)/2n = b

(n)
1 ∈ N, we have n | (a(n)1 )2; hence, by property (2),

(11) a
(n)
1 = t ∗

√
n for some t ∈ N.

By (4), (10), and (11), we obtain

(12) xn = l ∗

√
n, where l = t− n/ ∗

√
n ∈ N,

and so, by (10), a
(n)
1 = l ∗

√
n + n; putting this value into the formula defining b

(n)
1

we obtain

b
(n)
1 (l) = (( ∗

√
n)2/n) · (l/2) + l ∗

√
n.

It follows that l equals the least natural number with b
(n)
1 (l) ∈ N. By properties

(4) and (6) we have that l = 1 = dev(n) provided that ( ∗

√
n)2/n is even, and

l = 2 = dev(n) for ( ∗

√
n)2/n odd. Finally, by (12), we get xn = dev(n) ∗

√
n. The

particular case follows from properties (5), (7) and (8).

The main result of this section reads as follows.
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Theorem 6. For every (a, b, c) ∈ P∗ := P\P0 there exists exactly one pair

(k, n) ∈ Z× (Z\{0}) with

a = a(k, n) = k · dev(n) · ∗

√
n+ n,

b = b(k, n) = k2 · (dev(n) ·
∗

√
n)2

2n
+ k · dev(n) · ∗

√
n,

c = c(k, n) = b(k, n) + n.

Conversely, for every (k, n) ∈ Z × (Z\{0}), the triple (a, b, c), where the numbers

a, b, c are defined as above, is an element of P∗. Consequently, the function α:Z2 →
P , given by the rule

α(k, n) =

{

(a(k, n), b(k, n), c(k, n)) for n 6= 0

(0, k, k) for n = 0

maps both Z
2 onto P and Z × (Z\{0}) onto P∗ bijectively. The inverse function

α−1:P → Z
2 is of the form: (a, b, c) → (k, n), where

k = k(a, b, c) =
a+ b− c

dev(c− b) · ∗

√
c− b

and n = n(a, b, c) = c− b for c− b 6= 0,

and k(0, j, j) = j and n(0, j, j) = 0.

Proof. Since P = ∪n∈ZPn, and since the sets Pn, n ∈ Z, are pairwise disjoint,

by Proposition 1 and the presence of elements of P given in Section 1, the first

part of the theorem is clear. To prove the second part we must show that b(k, n)

and c(k, n) are integers for all k, n ∈ Z. Assume that n 6= 0 (the case n = 0 is

trivial), and observe that the number dev(n) ∗

√
n is even, whence, by property (4),

s(n) := (dev(n) ∗

√
n)2/2n is an integer. It follows that for every k ∈ Z we have

b(k, n) = k2s(n) + kdev(n) ∗

√
n ∈ Z, and hence, c(k, n) = b(k, n) + n ∈ Z also. If
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(a, b, c) ∈ P∗, then c − b = n 6= 0, hence, by the formula defining a(k, n), we have

k = k(a, b, c) = (a+ b− c)/(dev(c− b) · ∗

√
c− b); hence, we get the form of α−1.

5. The Ring and the Lattice Structures on P . Now we are in position

to transfer two ring structures from Z
2 onto P : the “coordinatewise” one, where

the additive zero is (0, 0) and the multiplicative unit is (1, 1), and the complex one,

with the additive zero defined as above and the multiplicative unit equals (1, 0).

The reader should note that the ring operations presented below are different from

those constructed by B. Dawson (see Example below), and this solves affirmatively

the open problem stated in [1], to define other operations in a natural way (cf. the

remark after Lemma in Section 1) under which P is essentially a different ring than

Dawson’s. Moreover, the operations given in Theorem 7 do not extend Grytczuk’s

operations (i.e., when restricted to Pn, n 6= 0, these operations take values outside

of Pn, in general, and the present author could not find any satisfactory extensions

of Grytczuk’s operations). Nevertheless, Dawson’s multiplicative unit of P and the

unit given in Theorem 7 (i) are identical; we denote this particular triple (3, 4, 5)

as 1P .

The two theorems given below are now immediate consequences of Theorem 6

and the Lemma.

Theorem 7. The set P is a commutative ring with unit under the following

pairs of addition and multiplication:

(i) (a1, b1, c1)⊕ (a1, b1, c1) := α(k1 + k2, n1 + n2), and (a1, b1, c1)⊙ (a1, b1, c1) :=

α(k1k2, n1n2), with the additive zero (0, 0, 0) = α(0, 0) and the multiplicative

unit 1P = α(1, 1);

(ii) (a1, b1, c1)⊕ (a1, b1, c1) := α(k1 + k2, n1 + n2), and (a1, b1, c1)⊙ (a1, b1, c1) :=

α(k1k2 − n1n2, k1n2 + k2n1), with the additive zero (0, 0, 0) and the multi-

plicative unit (0, 1, 1) = α(1, 0), where the numbers kj = k(aj , bj, cj) and

nj = n(aj , bj, cj), j = 1, 2, and the function α are defined in Theorem 6.

Theorem 8. The set P is a distributive lattice under the following partial

ordering:

(a1, b1, c1) ≤ (a2, b2, c2) if and only if

k(a1, b1, c1) ≤ k(a2, b2, c2) and n(a1, b1, c1) ≤ n(a1, b1, c1),
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where the numbers k(aj , bj , cj) and n(aj , bj, cj), for j = 1, 2, are defined in Theorem

6.

Example. We shall show that Dawson’s operations denoted here by ⊕D and

⊙D, differ from those given in Theorem 7. In case (i), we have 1P ⊕ 1P = α(1, 1)⊕
α(1, 1) = α(2, 2) = (6, 8, 10) = 2 · 1P , and (4, 3, 5) ⊙ (4, 3, 5) = α(1, 2) ⊙ α(1, 2) =

α(1, 4) = (8, 6, 10) = 2 · (4, 3, 5). On the other hand, from [1] it follows that

1P ⊕D 1P = (4, 3, 5), and that (4, 3, 5)⊙D (4, 3, 5) = (16, 30, 32) = 2 · (8, 15, 16).
In case (ii), the addition is identical as in case (i), and we have (4, 3, 5) ⊙

(4, 3, 5) = α(1, 2)⊙ α(1, 2) = α(−3, 4) = (−8, 6, 10) = 2 · (−4, 3, 5).

6. The Field Structure on P∗. The following observation leads to the

construction of the field structure on some classes of subsets of P . Theorem 6 and

properties (7) and (8) yield

Proposition 2. For every odd and square-free number r ≥ 1 we have α(1, r) =

r1P . In particular, for each pair of different odd prime numbers p, q we have

α(1, pq) = pq1P .

This result suggests to find a multiplication ◦ on Z × (Z\{0}) with (1, p) ◦
(1, q) = (1, pq) for all odd prime numbers p, q and to carry it onto P∗, with the

help of the function α, to obtain the equation α((1, p) ◦ (1, q)) = α(1, p) ⊙ α(1, q).

There exist two multiplications which fulfill that requirement: the coordinatewise

multiplication, just used in Theorem 7 (i), and the multiplication connected with

fractions, where the pair (1, n) corresponds to the fraction 1/n. Let R denote the

equivalence relation on Z× (Z\{0}) of the form

(k1, n1)R(k2, n2) if and only if k1n2 = k2n1,

and let R(α) be carried from Z× (Z\{0}) onto P∗, by means of α, relation R, i.e.

(a1, b1, c1)R(α)(a2, b2, c2) if and only if

(a1 + b1 − c1)(c2 − b2)dev(c2 − b2)
∗

√

c2 − b2

= (a2 + b2 − c2)(c1 − b1)dev(c1 − b1)
∗

√

c1 − b1.

(The form of R(α) obtained from R, where kj = k(aj , bj , cj) and nj = n(aj , bj , cj),

for j = 1, 2, are defined in Theorem 6.) The equivalence classes determined byR and
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R(α), respectively, we denote by [ ]R and [ ]R(α), respectively. From Theorem 6 it fol-

lows that the function α̂:Z× (Z\{0}) → P∗ of the form α̂([(k, n)]R) = [α(k, n)]R(n)

is bijective. Since (Z × (Z\{0}))/R possesses the field structure (of fractions), α̂

transfers this structure onto P∗ automatically. We also have the (additive zero) ele-

ment [0, 1]R going to [(0, 0, 0)]R(α) and the (multiplicative unit) element [(1, 1)]R go-

ing to [1P ]R(α). It is easy to check that (a, b, c)R(α)(0, 0, 0) provided that a+b = c,

and that (a, b, c)R(α)1P whenever a + b − c = (c − b)dev(c − b) ∗

√
c− b (for exam-

ple, [1P ]R(α) = [(6, 8, 10)]R(α)(= [α(2, 2)]R(α) = [(21, 72, 75)]R(α)(= [α(3, 3)]R(α)))).

This proves the following theorem.

Theorem 9. The set P∗/R(α) is a commutative field under the following op-

erations of addition ⊕ and multiplication ⊙

[(a1, b1, c1)]R(α) ⊕ [(a2, b2, c2)]R(α) := [α(k1n2 + k2n1, n1n2)]R(α),

[(a1, b1, c1)]R(α) ⊙ [(a2, b2, c2)]R(α) := [α(k1k2, n1n2)]R(α),

where for the given representatives (a′j , b
′
j, c

′
j) of [(aj , bj, cj)]R(α), the integers kj =

k(a′j , b
′
j, c

′
j) and nj = n(a′j , b

′
j, c

′
j), for j = 1, 2, are defined as in Theorem 6. The

additive zero is [(0, 0, 0)]R(α), and the multiplicative unit is [(3, 4, 5)]R(α). The

additive inverse of the element [(a, b, c)]R(α) is

⊖ [(a, b, c)]R(α) = [(A,B,C)]R(α), where

A = − a+ b− c

dev(c− b)
+ c− b, B = (A2 − (c− b)2)/2(c− b), C = B + c− b

(equivalently, ⊖[α(k, n)]R(α) = [α(−k, n)]R(α) ). The multiplicative inverse of the

element [(a, b, c)]R(α) for a+ b 6= c is

[(a, b, c)]−1
R(α) = [(E,F,G)]R(α), where

E = (c− b) · dev
(

a+ b− c

dev(c− b) · ∗

√
c− b

)

· ∗

√

a+ b− c

dev(c− b) · ∗

√
c− b

,

F = (E2 − (c− b)2)/2(c− b), G = F + c− b
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(equivalently, for k 6= 0, we have [α(k, n)]−1
R(α) = [α(n, k)]R(α)].

By way of example, we have⊖[(4, 3, 5)]R(α) = ⊖[α(1, 2)]R(α) = [α(−1, 2)]R(α) =

[(0,−1, 1)]R(α), and [(4, 3, 5)]−1
R(α) = [α(1, 2)]−1

R(α) = [α(2, 1)]R(α) = [(5, 12, 13)]R(α).
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