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NONEMPTY INTERSECTIONS OF MIDDLE α CANTOR SETS

Gregory J. Davis

Periodically, one is lucky enough to be able to find an interesting result from

current mathematical research that is accessible to undergraduate students. This

paper describes such a result from the field of Dynamical Systems. Here we will

be exploring the nonempty intersections of two middle α Cantor sets as they are

translated across one another. We will present criteria for which the intersection

between two such Cantor sets is always nonempty as they are translated across one

another. This fact has generated much interest and discussion in some of my upper

division classes for mathematics majors and perhaps it can do the same for others.

In the past, most students of mathematics have been introduced to Cantor

sets in an introductory course of real analysis. In introductory real analysis, the

middle third Cantor set is explored as an example of an uncountable, closed set

which contains no interior points or isolated points and has Lebesgue measure zero.

More recently, with the popularization of fractals, the middle third Cantor set has

become a standard example of a self-similar set. The middle third Cantor set is

merely a specific example of a middle α Cantor set, where α has been set to 1/3.

While the result that we will present here is interesting in its own right, it is also

interesting to know some of the motivation for studying intersecting Cantor sets.

Earlier we noted that this problem is connected to the discipline of Dynamical

Systems. A brief history of why intersections of Cantor sets are important in

Dynamical Systems starts in the late 1800’s with Poincaré. Poincaré had identified

a problem common to understanding many nonlinear dynamical systems, i.e, how to

describe changes in the system as a homoclinic bifurcation takes place. It is known

that as such a bifurcation takes place, the behavior of a deterministic dynamical

system can change dramatically from an easy to understand stable system to a

completely chaotic system.

Over the past 20 years, there has been much work done in understanding ho-

moclinic bifurcations (see [9] for a recent overview of the subject). Several major

theories have been built around homoclinic bifurcations: omega explosions [8], in-

finitely many co-existing sinks [1, 7, 10], and antimonotonicity [4]. Each of these

theories rely on knowledge of how certain stable and unstable manifolds intersect
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as homoclinic bifurcations take place. It turns out that these manifolds intersect

in the shape of Cantor sets. It is here that the problem of understanding the in-

tersections of Cantor sets as they are translated across one another has become of

importance in Dynamical Systems theory.

Recall the standard construction for a middle α Cantor set. First, we let C0

be the closed interval I of length 1 and 0 < α < 1. Although we identify I with

[0, 1], a middle α Cantor set construction can be carried out in any closed interval

of length 1 (or any closed interval in general).

Now, remove from C0 the open middle interval of length α to obtain C1 which

consists of two closed intervals, each of length β (where β = (1 − α)/2).

Next, remove the open middle interval (which is of length αβ) from the two closed

intervals in C1 to obtain C2 which consists of four closed intervals each of length

β2.

This process is continued indefinitely, creating a nested collection of closed

nonempty sets C0 ⊃ C1 ⊃ C2 ⊃ C3 ⊃ · · · , where each Cn is the union of 2n

intervals, each of length βn. We define the middle α Cantor set C to be the infinite

intersection:

C =

∞
⋂

n=0

Cn.
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Notice that at every stage in the construction of a middle α Cantor set, each closed

interval in Ci is divided into three parts – two closed intervals which move on to

the next construction stage and a gap (open interval) which is removed. Let c be a

closed interval from Ci. If c has length l(c) prior to being divided, then when c is

divided into three parts, the length of each of the two subsequent closed intervals

will be βl(c) and the length of the subsequent gap will be αl(c). The ratio of the

length of the closed intervals to the length of the gap which separates them is always
βl(c)
αl(c) =

β
α
. This common ratio, denoted by τ(C), will represent the thickness of the

middle α Cantor set. The concept of thickness for Cantor sets was first introduced

by Newhouse in [6] and was refined in [7].

We will now begin our study of intersecting Cantor sets. Suppose that two

(possibly different) middle α Cantor sets C and D are positioned in such a way

that they are constructed on top of each other. Then C ∩ D 6= ∅, because they

would have at least points 0 and 1 in common. A more challenging situation is

the following one. Suppose that the initial construction intervals C0 and D0 are

arbitrarily positioned such that C0 overlaps D0, that is, C0 ∩D0 6= ∅.

We can think of C0 as having been translated to the right x units (0 ≤ x ≤ 1) in

relation to D0. Notice that the intersection of C0 and D0 can vary anywhere from

the complete interval [0, 1] when x = 0, to a single point when x = 1.

Now, will C ∩D 6= ∅? If C is a middle αc Cantor set, D is a middle αd Cantor

set, and C ∩D is nonempty, then we must have C1 ∩D1 6= ∅. The only way that

C1 ∩D1 = ∅, when C0 ∩D0 6= ∅, is if αd > βc and αc > βd,
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or βc

αd
< 1 and βd

αc
< 1. Therefore,

(

βc

αd

)(

βd

αc

)

< 1. If, on the other hand, we have

that
(

βc

αd

)(

βd

αc

)

≥ 1, then either αd ≤ βc or αc ≤ βd and C1 ∩ D1 6= ∅. Note that
(

βc

αd

)(

βd

αc

)

≥ 1 is equivalent to
(

βc

αc

)(

βd

αd

)

= τ(C)τ(D) ≥ 1. Hence, C0 ∩ D0 6= ∅

together with τ(C)τ(D) ≥ 1 implies C1 ∩ D1 6= ∅. Newhouse used the concept

of thickness for Cantor sets in [7] to prove a technical result which has had far

reaching consequences in the field of Dynamical Systems [4, 6, 8]. It has also

spurred further study in the structure of intersecting Cantor sets (e.g., [2, 3, 5, and

11]). The following interesting result, accessible for undergraduates, is a special

case of Newhouse’s lemma, which is the focus of our study.

Proposition. If C andD are two middle α Cantor sets which satisfy C0∩D0 6= ∅

and τ(C)τ(D) ≥ 1, then C ∩D 6= ∅.

We will use an inductive proof to show that if C0 ∩D0 6= ∅ and τ(C)τ(D) ≥ 1,

then Cn ∩Dn 6= ∅ for all n ≥ 0.

We notice that each of the intersections Cn ∩ Dn (n ≥ 0) is a closed and

bounded set and that (C0 ∩ D0) ⊃ (C1 ∩ D1) ⊃ (C2 ∩ D2) ⊃ · · · . Thus, the

Closed Nested Interval Theorem implies the desired result – the following infinite

intersection is nonempty:

∞
⋂

n=0

(Cn ∩Dn) = C ∩D 6= ∅.

Earlier we saw that C0∩D0 6= ∅, together with τ(C)τ(D) ≥ 1, forces C1∩D1 6=

∅. This is the base case for our induction argument. Now suppose Ci ∩ Di 6= ∅;

we need to prove that Ci+1 ∩ Di+1 6= ∅. If Ci ∩ Di 6= ∅, then at least one of the

2i closed intervals in Ci must intersect one of the 2i closed intervals in Di. Let c

and d be a pair of closed intervals (c ⊂ Ci and d ⊂ Di) which satisfy the condition

c ∩ d 6= ∅. Then the closed intervals c and d will satisfy one of the following two

cases.
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Case 1. One closed interval is a subset of the other; that is, c ⊂ d or d ⊂ c.

For example:

Case 2. Each closed interval is not a subset of the other; c − (c ∩ d) 6= ∅ and

d− (c ∩ d) 6= ∅. For example:

If c is a component of Ci, then in the next or (i+ 1)st stage, c will be divided into

two closed intervals denoted by cL and cR and a gap denoted by gc (similarly, d

will be divided into dL, dR, and gd):

In the (i)th stage for Case 1, we will assume (without loss of generality) that c ⊂ d.

In the (i+1)st stage of the Cantor sets’ constructions, we will have one of the two

following situations:
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or

That is, either c 6⊂ gd or c ⊂ gd. If c 6⊂ gd, then clearly Ci+1 ∩ Di+1 6= ∅. In the

situation where c ⊂ gd, we need to recall that there is a bounded gap g adjacent to

c (on either the left or right) which satisfies l(c)
l(g) = τ(C) (where l(c) is the length of

c and l(g) is the length of the gap). Suppose that g is on the left of c. Recall that
l(dL)
l(gd)

= τ(D) and, as we have assumed, τ(C)τ(D) ≥ 1. We now have

1 ≤ τ(C)τ(D) =

(

l(c)

l(g)

)(

l(dL)

l(gd)

)

=

(

l(dL)

l(g)

)(

l(c)

l(gd)

)

<
l(dL)

l(g)
.

(Since c ⊂ gd, we have l(c) < l(gd), which implies l(c)
l(gd)

< 1.) Hence, l(g) ≤ l(dL),

which in turn implies that dL intersects the component c′ of Ci just to the left of

the gap g:

Finally, we see that dL intersects the right component of c′ in Ci+1. Therefore,

Ci+1 ∩Di+1 6= ∅ and the verification of Case 1 is complete.

In the (i)th stage of Case 2, where each closed interval is not a subset of the

other, we will assume (without loss of generality) that c and d have the following

orientation.
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Here, we claim that in the (i+1)st stage, Ci+1 ∩Di+1 6= ∅. Assume for a moment

that our claim is incorrect. Then we would have the following situation.

Here, l(cL)
l(gd)

< 1 and l(dR)
l(gc)

< 1. The last two inequalities imply that

1 >

(

l(cL)

l(gd)

)(

l(dR)

l(gc)

)

=

(

l(cL)

l(gc)

)(

l(dR)

l(gd)

)

= τ(C)τ(D).

Since we have assumed τ(C)τ(D) ≥ 1, we have a contradiction. Hence, we must

have that Ci+1∩Di+1 6= ∅. We have now completed our verification of Case 2. This

also completes the induction argument and therefore the proof of the proposition

is now complete.

Note 1. Cantor sets C and D, which satisfy the hypothesis τ(C)τ(D) ≥ 1,

occupy about 38% of the αc − αd parameter space. The area of the shaded region

in the figure below represents the region where τ(C)τ(D) ≥ 1 and has area 2 ln 2−1.
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Note 2. If the hypothesis τ(C)τ(D) ≥ 1 is replaced with τ(C)τ(D) > 1 and we

further assume that C0∩D0 contains more than a single point, then it can be shown

that the nonempty intersection C ∩D includes at least one interior point, that is,

C and D will intersect at a point which is not an endpoint of the construction

intervals.
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