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BOUNDED AND Lp-SOLUTIONS TO A

GENERALIZED LIENARD EQUATION WITH

INTEGRABLE FORCING TERM

Allan Kroopnick

Abstract. This paper presents two theorems concerning the inhomogeneous

differential equation x′′ + c(t)f(x)x′ + a(t, x) = e(t), where e(t) is a continuous

absolutely integrable function. The first theorem gives sufficient conditions when all

solutions to this equation are bounded while the second discusses when all solutions

are in Lp[0,∞).

In this article we shall discuss, using standard methods, the bounded proper-

ties and Lp-properties of solutions of the following generalized Lienard differential

equation with forcing term e(t), i.e. the equation,

(1) x′′ + c(t)f(x)x′ + a(t, x) = e(t).

Our purpose here is to simplify some previous proofs to equations of this type (see

[1] and [2]) as well as extending some of the previous results to include Lp-solutions.

Specifically, we shall see under what conditions the solutions to (1) are Lp-solutions.

Recall that for a solution x to be an Lp-solution, we must have
∫∞

0 |x(t)|pdt < ∞.

Lp-solutions have been previously discussed for the homogeneous case by both

Strauss [3] and the author in [4]. Also, see [2] for an excellent summary of previous

work concerning this kind of equation as well as for its excellent bibliography.

Furthermore, as in [2], we shall not need to make use of Liapunov functions. Finally,

the first result will be of such a nature that it covers the case when no damping

factor appears, i.e., the case

(2) x′′ + a(t, x) = e(t).

We now state and prove a general boundedness theorem. Without loss of generality,

we shall assume t ≥ 0.

Theorem 1. Given the differential equation in (1), where e(t) is continuous on

[0,∞) and
∫∞

0 |e(t)|dt < ∞. Suppose c(·) is continuous on [0,∞) with c(·) ≥ 0

and f(·) is continuous on R with f(x) ≥ 0. Furthermore, if a(t, x) is continuous

on [0,∞) × R with
∫ ±∞

0 a(t, x)dx = ∞ uniformly in t, x ∂
∂ta(t, x) ≤ 0, then any

solution x(·) to (1) as well as its derivative x′(·) are bounded on [0,∞).
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Proof. By standard existence theory, there is a solution to (1) which exists on

[0, T ) for some T > 0. Multiply equation (1) by x′ and perform an integration by

parts on the last term on the RHS from 0 to t < T in order to obtain

x′(t)2/2 +

∫ t

0

c(s)f(x(s))x′(s)2ds+

∫ x(t)

x(0)

a(t, u)du(4)

−

∫ t

0

∫ x(s)

x(0)

∂a

∂s
(s, u)duds = x′(0)2/2 +

∫ t

0

e(s)x′(s)ds

≤ x′(0)2/2 +

∫ t

0

|e(s)x′(s)|ds.

Now if x(t) is unbounded, then for large values of |x| we have that the LHS of (4)

is positive from our hypotheses. By a mean value theorem applied to the second

term on the RHS of (4), equation (4) may be rewritten as

x′(t)2/2 +

∫ t

0

c(s)f(x(s))x′(s)2ds+

∫ x(t)

x(0)

a(t, u)du ds(5)

−

∫ t

0

∫ x(s)

x(0)

∂a

∂s
(s, u(s))duds < x′(0)2/2 + |x′(t)|K

(

K =

∫ ∞

0

|e(t)|dt, 0 < t < t

)

.

Now from (5), we see that if |x| approaches ∞, then so must |x′(t)|. Otherwise, the

LHS of (5) becomes unbounded while the RHS stays bounded which is impossible.

Also, as |x′(t)| approaches∞, so must |x′(t)| from (5). On any compact subinterval

of [0, T ), choose t where x′(t) is a maximum. Now integrate equation (1) as before



VOLUME 10, NUMBER 1, WINTER 1998 17

from 0 to t and divide by x′(t) (assume x′(t) > 0, a similar argument works for

x′(t) < 0 except the inequality is reversed) in order to obtain

1/(x′(t))x′(t)2/2 +

∫ t

0

c(s)f(x(s))x′(s)2ds+

∫ x(t)

x(0)

a(s, u)du(6)

−

∫ t

0

∫ x(s)

x(0)

∂a

∂s
(s, u)duds ≤ x′(0)2/2x′(t) + |x′(t)|K/x′(t).

Now if x′(t) approaches ∞, then the LHS becomes unbounded while the RHS of

(6) stays bounded, which is a contradiction. Thus, |x| and |x′| must stay bounded

on [0, T ). A standard argument now permits the solution to be extended on all of

[0,∞) [5].

Under somewhat stronger conditions, the solutions are Lp-solutions. We now

state and prove this theorem.

Theorem 2. The hypotheses are the same as Theorem 1. In addition, suppose

c(t) > c0 > 0 for some positive constant c0, a(t, x)x ≥ a0x
p (p > 1) for some

positive constant a0, and c′(t) ≤ 0, then all solutions to (1) are Lp-solutions and x′

is square integrable.

Proof. From equation (5) we see that x′ must be square integrable since 0 ≤
∫ t

0
c(t)f(x)x′2dt < ∞ and

∫∞

0
c(t)f(x)x′2dt ≥

∫∞

0
c0f0x

′2dt, where f0 is a lower

bound for f(x) on the interval [−B,B] and B is a bound for x on [0,∞). In

order to see that x is in Lp[0,∞), we must first multiply equation (1) by x. After

integrating from 0 to t and integrating by parts the first term on the LHS, we obtain

x(t)x′(t)−

∫ t

0

x′(s)2ds+

∫ t

0

c(s)f(x(s))x(s)x′(s)ds(7)

+

∫ t

0

x(s)a(s, x(s))ds = x(0)x′(0) +

∫ t

0

e(s)x(s)ds.
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Next, let F (x) =
∫ x

0
uf(u)du. Now upon integration by parts, the above may be

rewritten as

x(t)x′(t)−

∫ t

0

x′(s)2ds+ c(t)F (x(t)) −

∫ t

0

F (x(s))c′(s)ds(8)

+

∫ t

0

x(s)a(s, x(s))ds ≤ K,

where K = |x(0)x′(0)| +
∫∞

0
|e(s)x(s)|ds + |c(0)F (x(0))|. Since the RHS of (8) is

bounded and all terms on the LHS of (7) are either bounded or positive, the result

follows.

Remark 1. If we stiffened the requirement that xa(t, x) ≥ 0 in Theorem 1,

the proof would be somewhat simpler since all terms on the LHS of (5) are always

positive and we would also have
∫∞

0
x(t)a(t, x(t))dt < ∞, using the reasoning of

Theorem 2.

Example. Consider the differential equation

(9) x′′ + k(t)x′ + l(t)x2m−1 = f(t),

where k(·) and l(·) are continuous functions defined for t ≥ 0, with k(·) and l(·)

having continuous non-positive derivatives with k(t) > k0 > 0, l(t) > l0 > 0, and
∫∞

0
|f(t)|dt < ∞. Given these conditions, the above theorems show all solutions to

(9) are bounded with
∫∞

0
x′(t)2dt < ∞ and

∫∞

0
x(t)2mdt < ∞.

Remark 2. The above results probably cannot be improved much more because

of the following example. Consider the equation,

(10) x′′ + x′/(4(t+ 1)) + x/(8(t+ 1)2) = e(t),

where e(t) is continuous and absolutely integrable over R. We then have x(t) =

(t + 1)1/2 is an unbounded solution to the corresponding homogeneous equation

(i.e., the case when e(·) = 0) so the general solution to (10) is unbounded and yet

we have that c(t) > 0, a(t) > 0, and f(x) = 1 after looking at equation (1).
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