
26 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

RESIDUES – Part II

CONGRUENCES MODULO POWERS OF 2

Joseph B. Dence and Thomas P. Dence

A previous paper [1] summarized some theorems on cubic and quartic residues

modulo an odd prime. These results may be regarded as extensions of corresponding

theorems for quadratic residues modulo a prime. In the present paper we present,

as the next logical step, some results on congruences modulo powers of the single

prime 2. Certain of these results are formulas which are not well-known. They are

not usually encountered in introductory number theory texts, but could form the

basis for one or two lectures in a first course on number theory.

1. Quadratic Residues. A kth-power residue modulo m is an integer A 6= 0

such that (A,m) = 1 and the congruence xk ≡ A (mod m) is solvable [2]. The

residues A in the cases of k = 2, 3, 4 are referred to as quadratic, cubic, and quartic

residues, respectively, and if m = 2n these residues are necessarily odd. For the

remainder of this article we shall assume that A is a least positive residue, that is,

1 ≤ A < 2n.

Theorem 1. If A is a quadratic residue modulo 2n, then A = 8k + 1, for some

nonnegative integer k.

Proof. The theorem is trivially true for n = 1, 2, and for A = 1, so assume

n ≥ 3 and k > 0. Since A is odd, then any solution x0 of x2 ≡ A (mod 2n) must

be odd. Let x0 = 2j + 1; then x2
0 = 4j2 + 4j + 1 = 4j(j + 1) + 1 = 8m+ 1, m > 0,

since either j or j + 1 must be even. Hence, we have

8m+ 1 ≡ A (mod 2n)

and as n ≥ 3, then A itself is of the form 8k + 1.

Table 1 gives all of the incongruent quadratic residues modulo 27, along with

a solution x0 in each case, of x2 ≡ A (mod 27).
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A x0 A x0

1 1 65 31

9 3 73 29

17 23 81 9

25 5 89 27

33 47 97 49

41 13 105 19

49 7 113 25

57 43 121 53

Table 1. Quadratic Residues Modulo 128

We notice that every A is of the form 8k + 1; this suggests the converse of

Theorem 1.

Theorem 2. If A = 8k + 1, k ≥ 0, then x2 ≡ A (mod 2n) is solvable.

Proof. By listing the particular cases, one can show that the theorem is true

for 1 ≤ n ≤ 5; hence, assume that n ≥ 6. The theorem then holds trivially for

A = 1; assume it also holds for A = A0 = 8k0 + 1, with n fixed, and that x = x0 is

a solution in this case. Consider next

(3x0 +B · 2n−2)2 ≡ 8(k0 + 1) + 1 (mod 2n)

≡ A0 + 8 (mod 2n),

where B is to be determined. After expansion of the binomial on the left-hand side,

we obtain

(3x0 · 2
n−1)B ≡ 8(1−A0) (mod 2n),

upon making use of 9x2
0 ≡ 9A0 (mod 2n) and B2 · 22n−4 ≡ 0 (mod 2n), n ≥ 4.

Let z = 2n−6 ·B, so that the above congruence becomes

(96x0)z ≡ −64k0 (mod 2n),

or

(3x0)z ≡ −2k0 (mod 2n−5).
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But as x0 is odd and (3x0, 2
n−5) = 1, then this congruence has a unique solution

z ≡ z0 (mod 2n−5). It follows that B ·2n−2 = 16z0, and so x ≡ 3x0+16z0 (mod 2n)

is a solution to x2 ≡ A0+8 (mod 2n). The theorem then follows from the Principle

of Mathematical Induction.

Thus, from Table 1 let A0 = 25, k0 = 3, x0 = 5. Then a solution of 15z ≡ −6

(mod 4) is z0 ≡ 2 (mod 4), and so x ≡ 15 + 16 · 2 ≡ 47 (mod 128) is a solution to

x2 ≡ 33 (mod 128).

Corollary 2.1. The number of incongruent quadratic residues modulo 2n is 1

if n = 1 or 2, and 1
4φ(2

n) = 2n−3 if n ≥ 3.

We may be interested to ascertain how often the congruence

x2 ≡ A (mod 2n)

is solvable, where A is even and 2 ≤ A < sn. Any such values of A that per-

mit a solution do not qualify as quadratic residues modulo 2n, but let us write,

nevertheless,

x2 ≡ 2ar (mod 2n),

where 2 ≤ 2ar < 2n and r is odd. If a is even, this reduces to u2 ≡ r (mod 2n−a),

and this is solvable if and only if r ≡ 1 (mod 23) from Theorems 1 and 2. If a is

odd, the congruence becomes 2u2 ≡ r (mod 2n−a), and this is not solvable. Hence,

we have

Corollary 2.2. The number of even integers A in the interval 2 ≤ A < 2n for

which x2 ≡ A (mod 2n) is solvable is the number E2(n) of integers of the form 2ar,

where 4 ≤ 2ar < 2n, a > 0 is even, and r = 8k + 1.

Some values of the number E2(n) in Corollary 2.2 are listed in Table 2 for the

first few n.

n E2(n) n E2(n)

2 0 7 6

3 1 8 11

4 1 9 22

5 2 10 43

6 3 11 86

Table 2. Values of the Function E2(n)
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Given n, the number of allowed values of r in Corollary 2.2 is 2n−3. The total

number Tn of products 2ar satisfying the conditions of Corollary 2.2 depends on

whether n is odd or even. When n is odd we find by induction that

Tn = 1+

(n−5)/2
∑

k=0

4k =
2 + 2n−3

3
(n ≥ 5),

and when n is even the result is

Tn = 1 +

(n−6)/2
∑

k=0

2 · 4k =
1 + 2n−3

3
(n ≥ 6).

These formulas are also accurate for n = 3, 4, respectively. Finally, combining these

formulas with Corollary 2.1 gives

Corollary 2.3. The number of integers A in the interval 1 ≤ A < 2n for which

x2 ≡ A (mod 2n) is solvable is (2+2n−1)/3 when n ≥ 1 is odd, and is (1+2n−1)/3

when n ≥ 2 is even.

The contrast with the case when the modulus is a prime is startling. Thus,

212 = 4096 has (1 + 211)/3 = 683 integers A (of which, only 512 are actually

quadratic residues) for which x2 ≡ A (mod 212) is solvable, whereas the nearest

prime of 4093 has 2046 such integers A (all of which are quadratic residues).

2. Cubic Residues. An odd prime p has either p−1 or (p−1)/3 incongruent

cubic residues, according as p = 3k + 2 or p = 3k + 1 [1]. The pattern is different

when the modulus is 2n, as the next theorem shows.

Theorem 3. If k ≥ 3 is odd, then every odd A satisfying 1 ≤ A < 2n is a

kth-power residue modulo 2n, for all n ∈ Z
+.

Proof. Let {x1, x2, . . . , x2n−1} be the odd integers {1, 3, . . . , 2n − 1}. Corre-

sponding to each xi we compute Ai, the least positive kth-power residue modulo

2n. Suppose xi 6= xj but Ai = Aj , for some i, j. Then

xk
i − xk

j ≡ 0 (mod 2n)
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or

(xi − xj)(x
k−1
i + xk−2

i xj + · · ·+ xk−1
j ) ≡ 0 (mod 2n).

The binomial factor xi−xj is divisible by at most n−1 powers of 2 since xi, xj < 2n.

The polynomial factor is the sum of an odd number of odd terms and so is not

divisible by 2. The contradiction implies Ai 6= Aj , and therefore the Ai’s appear

merely as a permutation of the xi’s.

In an exercise, Rosen [3] asserts that our Theorem 3 holds, even if k is not

odd. This assertion is false. For example, 3 is not a quartic residue modulo 8.

Furthermore, Rosen’s “proof” begins by supposing 2n to have a primitive root,

which is false for n > 2.

Table 3 gives the least positive solution x0 to the congruence x3 ≡ A (mod 2n)

for n = 5 and for every odd A in the interval [1, 31]. We notice that x3
0 ≡ A

(mod 25) implies A3 ≡ x0 (mod 25). This interesting behavior also holds for moduli

2, 4, 8, 16, but it is not general for moduli of the form 2n.

A x0 A x0

1 1 17 17

3 27 19 11

5 29 21 13

7 23 23 7

9 25 25 9

11 19 27 3

13 21 29 5

15 15 31 31

Table 3. Cubic Residues Modulo 32

Theorem 4. If A is odd and 1 ≤ A < 2n, then x3 ≡ A (mod 2n) implies A3 ≡ x

(mod 2n) only for n = 1, 2, 3, 4, 5.

Proof. If x3 ≡ A (mod 2n), then A3 ≡ (Ax)2x (mod 2n), so A3 ≡ x (mod 2n)

holds if and only if (Ax)2 ≡ 1 (mod 2n), or x8 ≡ 1 (mod 2n), for all odd x.

This latter congruence holds for n = 4 from Euler’s theorem, and hence, also for
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n = 1, 2, 3. That it also holds for n = 5 follows from writing the congruence x8 ≡ 1

(mod 25) equivalently as

(x4 + 1)(x2 + 1)(x+ 1)(x− 1) ≡ 0 (mod 25),

and noting that exactly one of the factors x + 1, x − 1 must be congruent to 0

(mod 4). However, 38 6≡ 1 (mod 2n) for all n ≥ 6. This proves the theorem.

Now consider even A that permit solutions of x3 ≡ A (mod 2n). Write A =

2ar, where 2 ≤ 2ar < 2n and r ≥ 1 is odd. By reasoning parallel to that used for

Corollary 2.2, we deduce

Theorem 5. The number of even integers A in the interval 2 ≤ A < 2n for

which x3 ≡ A (mod 2n) is solvable is the number E3(n) of integers of the form 2ar,

where 8 ≤ 2ar < 2n, 3|a, and 1 ≤ r is odd.

For comparison with the quadratic case, we list in Table 4 the values of the

function E3(n) in Theorem 5 for the first few n. For n ≥ 6 we have E3(n) > E2(n).

n E3(n) n E3(n)

2 0 7 9

3 0 8 18

4 1 9 36

5 2 10 73

6 4 11 146

Table 4. Values of the Function E3(n)

As with the quadratic case, the total number Tn of products 2ar satisfying

the conditions of Theorem 5 depends on the form of n. When n = 3k we find by

induction that

Tn =

k−2
∑

m=0

4 · 8m =
2n−1 − 4

7
(n ≥ 3),

when n = 3k − 1, then

Tn =

k−2
∑

m=0

2 · 8m =
2n−1 − 2

7
(n ≥ 2),
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and when n = 3k − 2, then

Tn =

k−2
∑

m=0

8m =
2n−1 − 1

7
(n ≥ 4).

Combination of these formulas with Theorem 3 yields, analogous to Corollary 2.3,

Corollary 5.1. The number of integers A in the interval 1 ≤ A < 2n for which

x3 ≡ A (mod 2n) is solvable is



















1, if n = 1;

(2n+2 − 4)/7, if n = 3k;

(2n+2 − 2)/7, if n = 3k − 1;

(2n+2 − 1)/7, if n = 3k − 2.

Simple comparison shows that for all n > 1 the number of integers A in the

interval 1 ≤ A < 2n for which x3 ≡ A (mod 2n) is solvable exceeds the number for

which x2 ≡ A (mod 2n) is solvable. This is possibly counter to intuition.

4. Quartic Residues. A result analogous to Theorems 1 and 2 holds for

quartic residues and may be established by similar means.

Theorem 6. The integer A is a quartic residue modulo 2n if and only if A =

16k + 1 for k a nonnegative integer.

Proof. (⇒) Suppose A0 is a quartic residue modulo 2n and let x0 = 2j + 1 be

a solution of x4 ≡ A0 (mod 2n). Then

x4
0 = 16j4 + 32j3 + 24j2 + 8j + 1 = 8j(j + 1)(2j2 + 2j + 1) + 1 = 16m+ 1, m > 0

(the case m = 0 is trivial). Hence, we have

16m+ 1 ≡ A0 (mod 2n)

and as we may assume n ≥ 4 (because the lower cases can be disposed of directly),

then A0 itself is of the form 16k + 1.
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(⇐) The theorem can be shown directly to hold in this direction for n ≤ 7.

Hence, assume n ≥ 8 and that the theorem holds for A = A0 = 16k0 + 1; let x0 be

a solution in this case. We now consider

x4 ≡ A0 + 16 (mod 2n)

and set x = 3x0 +B · 2n−3, where B is to be determined. Substitution and simpli-

fication yield

(27x3
0)z ≡ −1− 20k0 (mod 2n−6),

where z = B ·2n−7. The congruence has a unique solution z ≡ z0 (mod 2n−6) since

(27x3
0, 2

n−6) = 1. It follows that

x = 3x0 + 24(B · 2n−7) = 3x0 + 16z0 (mod 2n)

is a solution to

x4 ≡ A0 + 16 (mod 2n),

so the theorem holds by the Principle of Mathematical Induction.

Corollary 6.1. The number of incongruent quartic residues modulo 2n is 1 if

n = 1, 2, 3, or 4, and 1
8φ(2

n) = 2n−4 if n ≥ 5.

Alternatively, Theorem 6 and its corollary can be shown by an approach that

is more algebraic in spirit. The set of incongruent kth-power residues modulo

m form a group Gk(m) under modular multiplication. Corollary 2.1 states that

|G2(2
n)| = 2n−3 if n ≥ 3. The quartic residues must be found among the members

of G2(2
n), and so by Lagrange’s theorem [4] one has |G4(2

n)| = 2k, where the

positive integer k ≤ n − 4 because 9, for example, is always a quadratic residue

modulo 2n, but is never a quartic residue modulo 2n.

The integer 17 is a quartic residue modulo 25. Assume that it is also a quartic

residue modulo 2n, that is, there are integers x0, k0 such that x4
0 − 17 = k0 · 2n.

Now let x = x0 + 2n−2K, x4 ≡ 17 (mod 2n+1), with K to be determined. The

congruence reduces to

x3
0K ≡ −k0 (mod 2),

which has a unique solution K0 modulo 2. It follows by the Principle of Mathe-

matical Induction that 17 is a quartic residue modulo 2n for all n ≥ 5.
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The powers of 17 constitute a cyclic subgroup H4(2
n) ⊆ G4(2

n). What we

want to do is show that 17 generates all of G4(2
n).

Theorem 7. |H4(2
n)| = |G4(2

n)| = 2n−4 if n ≥ 5.

Proof. When n = 5, then

172
n−4

≡ 1 (mod 2n)

holds. Assume it also holds for n = k. Then

172
k−3

− 1 = (172
k−4

)2 − 1

= (172
k−4

− 1)(172
k−4

+ 1)

and as 2k divides the first factor on the right by the induction hypothesis and 2

divides the second factor, then

172
k−3

≡ 1 (mod 2k+1).

Hence, for any n ≥ 5 the order of H4(2
n) does not exceed 2n−4. The order of

H4(2
n) must be a power of 2, but the power 2n−5 is too small. From the Binomial

Theorem we have

(16 + 1)2
n−5

− 1 = 162
n−5

+ 2n−5(16)2
n−5

−1 + · · ·+ 2n−5(16)1

= 22
n−3

+ 22
n−3+n−9 + · · ·+ 2n−1.

Each term on the right except the last is divisible by 2n, so

172
n−5

6≡ 1 (mod 2n)

and |H4(2
n)| 6< 2n−4. It follows that |H4(2

n)| = 2n−4, and since |G4(2
n)| cannot

exceed 2n−4, it must be that |H4(2
n)| = |G4(2

n)| = 2n−4 and the elements of

G4(2
n) are the numbers indicated in Theorem 6.

Comparing Corollaries 2.1 and 6.1, we see that for n ≥ 5 the number of in-

congruent quartic residues modulo 2n is exactly half the number of incongruent
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quadratic residues modulo 2n. A similar relationship was noted for moduli that

are (4k + 1)-primes [1]. It may be remarked that this relationship between the

sets of quadratic and quartic residues is not general for arbitrary moduli. Thus,

the modulus 12 has identical sets of incongruent quadratic and quartic residues,

namely, the singleton set {1}.
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