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1. Residues Modulo A Prime. Standard theorems on quadratic residues form

an integral part of any introductory course on the theory of numbers. Seldom is much

material presented on residues of higher order. Let p be a prime and let the integer a

satisfy 1 ≤ a < p. Then a is said to be a kth order residue of p (or modulo p) if the

congruence

xk ≡ a (mod p)

has a solution. For example, 6 is a cubic residue (3rd order residue) of 7 since 33 ≡ 6

(mod 7).

Here, we summarize some elementary theorems about cubic and quartic (4th order)

residues of prime moduli. The following theorem is central [1,2].

Theorem 1. xk ≡ a (mod p) has a solution if and only if a(p−1)/d ≡ 1 (mod p), where

d = (k, p− 1). If the congruence has a solution, then it actually has d incongruent solutions

modulo p.

Proof. Since p is a prime, it has a primitive root, say r [2]. Then from index arithmetic

we have that xk ≡ a (mod p) holds if and only if

k · indrx ≡ indra (mod p− 1).

Let d = (k, p− 1) and z = indrx, that is, x ≡ rz (mod p). Then the congruence kz ≡ indra

(mod p − 1) has no solutions (z) or d incongruent solutions modulo p − 1 if and only if

d -| indra or d | indra, respectively. Hence, xk ≡ a (mod p) has d incongruent solutions

modulo p if and only if d | indra or if and only if (p− 1)indra = n(p− 1)d for some n ∈ Z
+.

This is equivalent to a(p−1)/d ≡ 1 (mod p) since indr1 = 0.
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The theorem is a generalization of Euler’s Criterion for quadratic residues.

2. Cubic Residues. Throughout this section k = 3. When p = 5, 7, 11, 13, 17, 19 and

23, the number of cubic residues of these primes are 4, 2, 10, 4, 16, 6 and 22, respectively. A

pattern is evident.

Theorem 2. The number of cubic residues of p > 3 is (p− 1)/3 or p− 1, depending on

whether p is of the form 3j + 1 or 3j + 2, respectively.

Proof. If p = 3j + 1, then d = (k, p − 1) = (3, 3j) = 3, so from Theorem 1, a is a

cubic residue of p if and only if a(p−1)/3 − 1 ≡ 0 (mod p). Lagrange’s Theorem [3,4] says

that in Zp this polynomial congruence has at most (p− 1)/3 solutions. However, a related

theorem says that if m | (p− 1), then the congruence xm− 1 ≡ 0 (mod p) has the full set of

m solutions [4]. Thus, since (p− 1)/3 | (p− 1), then a(p−1)/3 − 1 ≡ 0 (mod p) has exactly

(p− 1)/3 solutions in Zp.

If p = 3j + 2, then d = (k, 3j + 1) = (3, 3j + 1) = 1 and a is a cubic residue to p if

and only if a(p−1) ≡ 1 (mod p). This holds for all a satisfying 1 ≤ a ≤ p − 1 by Fermat’s

Theorem, so there are p− 1 cubic residues of p.

We let S
(3)
p denote the set of cubic residues of the prime p. The sets S

(3)
p for the first

few primes are shown in Table 1.

p 2 3 5 7 11 13

S
(3)
p {1} {1, 2} {1, 2, 3, 4} {1, 6} {1, 2, · · · , 10} {1, 5, 8, 12}

TABLE 1. Cubic Residues of the First Few Primes

These sets have algebraic structure. We recall that an element α of a field F is an nth root

of unity if αn = 1.

Theorem 3. The cubic residues of a prime p form a multiplicative group.

Proof. Let F be any field and Un the set of all nth roots of unity in F . If αn = 1, βn = 1,

then (αβ)n = αnβn = 1, so field multiplication is closed on Un. Associativity is inherited

from F . Now let α ∈ Un be arbitrary, and define τ = αn−1. Then ατ = τα = αn = 1, so

every element in Un has a multiplicative inverse and Un is therefore a group. In particular,

let F = Zp and p = 3j + 1. Then from Theorems 1 and 2, Un is S3
p , the set of all jth roots

of unity. If F = Zp and p = 3j + 2, then Un is S
(3)
p , the set of all (3j + 1)st roots of unity.

Thus, we see from Table 1 that in Z7 the set S
(3)
7 is the set of two square roots of 1, and

in Z13 the set S
(3)
13 is the set of four fourth roots of 1. We also observe from Table 1 that for



26 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

p > 2, |S
(3)
p | is even. For when p = 3j+2, then |S

(3)
p | = p−1, and when p = 3j+1 is prime,

then p is actually of the form 6j + 1, so (p− 1)/3 = 2j is even. It is also obvious that S
(3)
p

is a cyclic group since it is either Uj or U3j+1, corresponding to p = 3j + 1 or p = 3j + 2.

The cyclic nature of S
(3)
p also follows from the observation that S

(3)
p is a subgroup of Z∗

p,

the multiplicative group of all nonzero elements of the finite field Zp, and this latter group

is cyclic [5,6].

Corollary 3.1. S
(3)
p is a cyclic group of even order for p > 2.

The following theorem shows that if some of the cubic residues of a prime p are known,

it is possible to deduce some additional ones.

Theorem 4. If a is a cubic residue of p, then so is p− a.

Proof. Suppose p = 3j + 1 and a ∈ S
(3)
p ; then a(p−1)/3 ≡ 1 (mod p). Next, since

(p−1)/3 is even, then (p−a)(p−1)/3 ≡ (−a)(p−1)/3 ≡ a(p−1)/3 ≡ 1 (mod p), so p−a ∈ S
(3)
p .

On the other hand, if p = 3j+2, then (p− a)p−1 ≡ (−a)p−1 ≡ ap−1 ≡ 1 (mod p), and thus

in this case, also, p− a ∈ S
(3)
p .

The following two corollaries are immediate from Theorem 4. We let T
(3)
p denote the

sum of all the members of S
(3)
p .

Corollary 4.1. If p > 2, the elements in S
(3)
p occur in pairs, where the sum of the

members of any pair is p.

Corollary 4.2. For all primes p ≥ 5 one has

T (3)
p =

{

jp, if p = 6j + 1

(3j + 1)p/2, if p = 3j + 2.

For example, let p = 43 = 6 · 7 + 1. The cubic residues of 43 are found to be

1, 2, 4, 8, 11, 16, 21, 22, 27, 32, 35, 39, 41, 42; their sum is 301 = 7 · 43. In either case in the

second corollary we have that T
(3)
p is an integral multiple of p.

That p | T
(3)
p can be obtained in still another way. Let m = |S

(3)
p |, where m is either

(p−1)/3 or p−1. Then m | (p−1) and therefore in Zp the congruence xm−1 ≡ 0 (mod p)

has its full complement of roots and from [4], we can write

xm − 1 ≡ (x− a1)(x− a2) · · · (x− am) (mod p).
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We see immediately that

coefficient of xm−1 = −
m
∑

i=1

ai ≡ 0 (mod p)

coefficient of xm−2 =
∑

i<j

aiaj ≡ 0 (mod p),

and so on. The first congruence gives us p | T
(3)
p .

Corollary 4.3. Let A
(3)
p denote the sum of the squares of all the members of S

(3)
p . Then

for p = 5 and all primes p > 7, one has p | A
(3)
p .

Proof. Denote the members of S
(3)
p by a1, a2, . . . , am, where m is either (p − 1)/3 or

p− 1. Then write

A(3)
p = a21 + a22 + · · ·+ a2m

= (a1 + a2 + · · ·+ am)2 − 2
∑

i<j

aiaj

= [T (3)
p ]2 − 2

∑

i<j

aiaj .

Corollary 4.2 gives us p | [T
(3)
p ]2, and the discussion prior to Corollary 4.3 gives us

p |
∑

i<j aiaj , so p | A
(3)
p .

Corollary 4.3 fails for p = 3, 7 because these are the only values of p for which S
(3)
p =

{1, p− 1}, so A
(3)
p = p2 − 2p+ 2 and thus p -| (p2 − 2p+ 2).

Finally, we look at one multiplicative property of cubic residues. We let P
(3)
p denote

the product of all the members of S
(3)
p .

Theorem 5. 1 + P
(3)
p ≡ 0 (mod p).

Proof. The theorem is obviously true when p = 2. When p > 2, the congruence x2 ≡ 1

(mod p) has the solutions x ≡ 1 (mod p) and x ≡ p − 1 (mod p). In view of Theorem 3,

each element ai ∈ S
(3)
p except 1, p− 1 has an inverse aj distinct from itself. Hence,

∏

ai∈S
(3)
p

ai ≡ p− 1 (mod p),
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or P
(3)
p ≡ p− 1 (mod p), which is equivalent to 1 + P

(3)
p ≡ 0 (mod p).

3. Quartic Residues. We denote the set of all quartic residues of a prime p by S
(4)
p ,

and the set of all quadratic residues of p by S
(2)
p . Every quartic residue a is automatically

a quadratic residue since if x4 ≡ a (mod p) has a solution, then y2 ≡ a (mod p) also holds,

where y = x2. Thus, S
(4)
p ⊆ S

(2)
p and we may find all members of S

(4)
p by squaring the

elements of S
(2)
p .

By Euler’s Criterion, a is a quadratic residue of p (p ≥ 3) if and only if

a(p−1)/2 ≡ 1 (mod p),

whereas from Theorem 1 we have that a is a quartic residue of p if and only if

a(p−1)/d ≡ 1 (mod p),

where d = (4, p − 1). For p ≥ 3 one has d = 2 or 4. When d = 2 the sets S
(2)
p , S

(4)
p are

identical, whereas when d = 4 one has |S
(4)
p | = (1/2)|S

(2)
p |. Accordingly, we obtain as the

analog of Theorem 2 (for p ≥ 3).

Theorem 6. The number of quartic residues of p is (p − 1)/4 or (p − 1)/2, depending

on whether p > 2 is of the form 4j + 1 or 2j + 1 (j odd), respectively, and in either case

|S
(4)
p | = j.

The argument of Theorem 3 carries over unaltered to quartic residues. Further, the

algebraic argument preceding Corollary 3.1 that was used to show the cyclic nature of S
(3)
p

also applies to S
(4)
p .

Theorem 7. The quartic residues of a prime p form a cyclic group under modular

multiplication.

Unlike the case with S
(3)
p , the order of S

(4)
p may be either odd or even. Table 2 shows

the first few cases.

p 2 3 5 7 11 13

S
(4)
p {1} {1} {1} {1, 2, 4} {1, 3, 4, 5, 9} {1, 3, 9}

TABLE 2. Quartic Residues of the First Few Primes

When (p − 1)/4 is not an integer, then (p − 1)/2 is an odd integer. Thus, for primes

p = 3, 7, 11, 19, 23, and so on, S
(4)
p is a group of odd order. When (p− 1)/4 is an integer, it

may be either odd or even. Clearly, we have
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Corollary 7.1. S
(4)
p is a cyclic group of even order if and only if p = 8j + 1.

According to Theorem 4, p − 1 is always a cubic residue of p. In contrast, from

Theorem 1 we see that p − 1 is a quartic residue if and only if (p − 1)/d is even, where

d = (k, p− 1) = (4, p− 1). But now Corollary 7.1 has told us just when (p− 1)/d is even, so

Corollary 7.2. p− 1 is a quartic residue of p if and only if p = 8j + 1.

The algebraic argument following Corollary 4.2 allows one to also say p | T
(4)
p , where

T
(4)
p stands for the sum of all the members of S

(4)
p . Alternately, since S

(4)
p is cyclic, it has a

generator g. From Theorem 6 we have |S
(4)
p | = j for p = 4j+1 or p = 2j+1. The elements

of S
(4)
p can thus be listed modulo p as {g0, g1, g2, · · · , gj−1}, where g0 = 1. Then, if g 6= 1,

T (4)
p = 1 + g1 + g2 + · · ·+ gj−1

=
gj − 1

g − 1
.

Since S
(4)
p has order j, then gj ≡ 1 (mod p). It follows that T

(4)
p ≡ 0 (mod p).

Theorem 8. For p > 5 one has p | T
(4)
p .

Note the requirement that p > 5. When p = 2, 3, or 5, the only quartic residue is 1,

this being so in the last case because of Fermat’s Theorem.

In x4 ≡ a (mod p), as one runs through the nonzero members x of Zp, a symmetry

in the occurrence of the quartic residues a is observed. For example, notice the following

distribution in the case of p = 11.

x 1 2 3 4 5 6 7 8 9 10

a 1 5 4 3 9 9 3 4 5 1

TABLE 3. Symmetry Between Elements of Z11 and

the Corresponding Quartic Residues

Theorem 9. If the quartic residue corresponding to x ∈ Zp is a, then the quartic residue

corresponding to p− x is also a.
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Proof. Direct computation gives

(p− x)4 = p4 − 4p3x+ 6p2x2 − 4px3 + x4

≡ 0− 0 + 0− 0 + a (mod p).

We denote by P
(4)
p the product of all the members of S

(4)
p . For example, from Table 2

we have

P
(4)
11 = 1 · 3 · 4 · 5 · 9 = 540 ≡ 1 (mod 11),

whereas for p = 17,

P
(4)
17 = 1 · 4 · 13 · 16 = 832 ≡ −1 (mod 17).

Theorem 10. For all p one has

P (4)
p ≡

{

−1 (mod p), if p = 8j + 1

+1 (mod p), otherwise.

Proof. The theorem is obviously true when p = 2, 3, 5. When p ≥ 7 is not of the form

8j+1, |S
(4)
p | is odd and the only member of S

(4)
p which is its own inverse is 1 by Corollaries

7.1, 7.2. In this case, the members of S
(4)
p , where |S

(4)
p | = 2n+ 1, can be paired as follows











































1

a1 ↔ a−1
1

a2 ↔ a−1
2

a3 ↔ a−1
3

...

an ↔ a−1
n

and hence,

P (4)
p = 1 ·

n
∏

i=1

ai · a
−1
i ≡ 1 (mod p).
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On the other hand, if p = 8j + 1, then |S
(4)
p | is of even order, p − 1 is an element of

S
(4)
p , where |S

(4)
p | = 2n+ 2, and from the arrangement



















































1

a1 ↔ a−1
1

a2 ↔ a−1
2

a3 ↔ a−1
3

...

an ↔ a−1
n

p− 1

we obtain

P (4)
p = 1 ·

(

n
∏

i=1

ai · a
−1
i

)

· (p− 1) ≡ p− 1 ≡ −1 (mod p).

Theorem 10 contrasts with Theorem 5. Note also that Theorem 8 is almost analogous to

Corollary 4.3
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