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ARE THERE FIELD DEPENDENT FORMULAS

FOR THE ROOTS TO POLYNOMIALS?
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Northeast Missouri State University

Some four thousand years ago the Babylonians knew how to find roots to polynomials

of degree two such as x2 − bx + 1, which they recognized as the solution to the following

problem: given b > 0, find a number which when added to its reciprocal gives b. The

technique they used was completing the square. But several millenia would pass before an

algebraic formula for the roots to the general polynomial of degree three would be found. In

the intervening time, the Greeks, Arabs, and Hindus made contributions to the study of the

quadratic and cubic equations. One hinderance was their reluctance to recognize negative,

much less complex, roots as important. Euclid’s geometrical solutions to the quadratic

naturally placed emphasis on positive roots. The Arabs in the ninth century followed in

the Greek tradition and solved certain types of cubic equations using intersecting conics.

The Hindus of the twelfth century had begun to accept the role of negative numbers but

not their square roots.

When the Europeans of the Renaissance began studying equations again, they remained

encumbered by their lack of notation for powers and roots as well as their suspicion of quan-

tities negative or complex. Descartes (1596–1650) verbalized the general feeling when he

called the radicals of negatives imaginary. Nonetheless, in the sixteenth century Tartaglia,

Cardan, and Ferrari succeeded in finding formulas for the roots to the general cubic and

quartic equations. Even then, it was suspected that no such formulas could exist for the

general polynomial of degree n, n ≥ 5, but without justification despite the later efforts of

mathematicians such as Ruffini, Euler, Lagrange, Gauss, and Cauchy. By the early part of

the nineteenth century algebra had progressed far enough through the efforts of these men

for Abel to show that this was indeed the case. A few years later Galois’ pioneering work

put the problem and its solution in what may be called a modern perspective [4].
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We begin by examining the roots to the polynomial

pn(x) = xn + t1x
n−1 + t2x

n−2 + · · ·+ tn−1x+ tn ∈ P (~t)[x]

where P is a prime subfield and ~t denotes the indeterminates t1, t2, . . . , tn which, without

loss of generality, we can assume to be algebraically independent over P (for an explanation

of other notation and a reference for results mentioned here without proof, see [2]). For

any characteristic, this polynomial has n distinct roots, which we denote by u1, u2, . . . , un

(Appendix A). For n = 2, 3, or 4, the roots to pn(x) provide the usual formulas for quadratic,

cubic, or quartic polynomials, respectively. They give all roots for all nth degree polynomials

(n = 2, 3, or 4) with coefficients from any field K for which charK > n (Appendix B). For

example, the roots to x3 + a1x
2 + a2x+ a3 are given by the following formulas u1(~t), u2(~t),

and u3(~t) after substituting ai for ti, i = 1, 2, 3.

u1 = P +Q− t1/3, P = [−q/2 + (p3/27 + q2/4)1/2]1/3, p = t2 − t21/3

u2 = ωP + ω2Q − t1/3, Q = [−q/2− (p3/27 + q2/4)1/2]1/3, q = 2t31/27− t1t2/3 + t3

u3 = ω2P + ωQ− t1/3, ω = −1/2 +
√
−1

√
3/2

Definition 1. A K-formula φn is an expression which gives a root to all polynomials of

degree n with coefficients from a field K and which involves the indeterminates t1, t2, . . . , tn

(into which the coefficients of a particular polynomial are placed), a finite subset of K, and

a finite number of field operations and extractions of roots (in particular, roots of unity

may be used).

One could be more liberal in defining ‘formula’; Hermite did this when he expressed the

roots to the general polynomial of degree 5 in terms of elliptic modular functions [3]. But

if we are to use only field-theoretic descriptions for formulas (that is, first order expressions

in the language of rings) then we must use, as K-formulas, elements from the algebraic

closure of K(~t). Furthermore, if the substitutions ti 7→ ai ∈ K are to be well-defined then

the elements must also be in a radical extension of K(~t) (Appendix E). So we are led back

to Definition 1.

Why do we allow a formula to use a finite subset ofK rather than restricting this subset

to be from K’s prime subfield P? After all, the quadratic, cubic, and quartic formulas only

use elements from the prime subfield. One reason, as we will see, is that the two approaches

are equivalent if K is infinite. But more importantly, this ‘field specific’ definition only
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requires the formula to work for polynomials from K[x]. Of course, the usual formulas

for polynomials of degree less than five are not field dependent in this manner. They are

examples of our next definition.

Definition 2. A formula is universal if it is a K-formula for every field K of a given

characteristic.

We can always assume that the indeterminates in a (universal) formula have been

chosen to be algebraically independent over the particular field to which it is being applied.

Generally we will use t1, . . . , tn for these indeterminates. However, for a field of the form

K(~t) we will take x1, . . . , xn to be the (algebraically independent) indeterminates.

Since a universal formula φn (for charP ) is valid for the field P (~t), replacing xi by ti

in φn yields a root to pn(x) ∈ P (~t)[x]. As a universal formula, φn can only involve a subset

of P (not P (~t)). So this root to pn(x) is the universal formula φn, only expressed in the

indeterminates ti rather than the xi. Thus, the roots to pn(x) provide the only possible

universal formulas.

Conversely, these roots will be universal formulas if and only if they lie within a radical

extension of P (~t) and are well-defined under any substitution ~t 7→ ~a (Appendix B). This

condition insures that the roots can be expressed in the form which we require of formulas

in general (Definition 1).

To determine when universal formulas exist, then, is to first determine when the roots

to pn(x) are contained in some radical extension of P (~t); that is, when pn(x) is solvable by

radicals over P (~t). Noting that pn(x) ∈ P (~t)[x] is irreducible (Appendix A) and recalling

that the normal closure of a radical extension of a field is again a radical extension of that

field, it follows that if one root of pn(x) yields a universal formula then each of the other

roots to pn(x) must as well.

If there exist n K-formulas, yielding all the roots to all the polynomials overK of degree

n, then, by definition, each such root must lie within some radical extension of K. Thus,

the simplest instance in which one can determine that there does not exist a K-formula φn

is if there exists a specific polynomial f(x) ∈ K[x] of degree n with a root which is not in

any radical extension of K. This is fairly common when K is the field of rational numbers

and n ≥ 5; e.g. x5 − 6x + 3 (this occurs because the polynomial’s Galois group over Q is

not solvable [2]).

But this is not the only situation in which a K-formula does not exist. All of the roots

to polynomials with real coefficients lie within a single radical extension of the reals since
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C = R(i) is an algebraically closed radical extension of the reals (thus, any polynomial’s

Galois group over R is solvable). For instance, even though the roots to x5 − 6x+3 can be

written in terms of field operations and radicals over R, they cannot be the result of using

some universal formulas for the roots to 5th degree polynomials over fields of characteristic

zero; just consider the example given in the previous paragraph. The reason why there

are no R-formulas for the roots to 5th degree polynomials is that any such formula would

necessarily be universal, as we shall see. Of course, if there are no R-formulas for 5th degree

polynomials then there cannot be R-formulas for nth degree polynomials for any n > 5

(otherwise we could multiply by a power of x and solve the n = 5 case).

Galois theory tells us precisely when the roots to pn(x) will be K-formulas (hence,

universal formulas). It is based on the following two results.

(1) pn(x) is solvable by radicals over K(~t) implies that its Galois group AutK(~t)K(~u) is

solvable (the converse is true if either charK = 0 or charK > n).

(2) AutK(~t)K(~u) ∼= Sn, hence is solvable if and only if n ≤ 4.

Hence, if a root to pn(x) is a (universal) formula then n ≤ 4. Conversely, for n ≤ 4 and

either charK = 0 or charK > n then these roots provide the (usual) universal formulas

for quadratics, cubics, and quartic polynomials. Also, these results show that the roots to

pn(x), n ≥ 5, do not provide K-formulas, much less universal formulas.

However, we can ask why there could not still be formulas which are not roots to pn(x).

In particular, might there exist such formulas even if pn(x) is not solvable by radicals? Of

course one could only expect such formulas to work for polynomials over some restricted

set of fields, perhaps even a single field. In search of such formulas, we begin in the same

manner that gave rise to the roots ui.

Let K denote a field (of arbitrary characteristic) and suppose v1, . . . , vn are from the

algebraic closure of K(~t). The vi are roots to the polynomial

qn(x) = xn − f1(~v)x
n−1 + · · ·+ (−1)n−1fn−1(~v)x+ (−1)nfn(~v) ∈ K(f1(~v), . . . , fn(~v))[x],

where the fi, 1 ≤ i ≤ n, denote the symmetric polynomials in n variables and ~v denotes

v1, . . . , vn.

The elements v1, . . . , vn are K-formulas for polynomials of degree n if and only if

(3) v1(~t), . . . , vn(~t) are contained within a radical extension of K(~t), and

(4a) for each substitution ~t 7→ ~a ∈ Kn, v1(~a), . . . , vn(~a) are each well-defined, and for each i,

fi(v1(~a), . . . , vn(~a)) = ai. Does this imply that the new formulas vi must be the roots
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ui to pn(x)? One can show the answer would be yes if the vi’s were within a radical

extension of K(f1(~v), . . . , fn(~v)), but we are not assuming this to be true.

From a model theory perspective, condition (4a) is simply

(4b) if K satisfies (−1)ifi(v1(~t), . . . , vn(~t)) ≈ ti, 1 ≤ i ≤ n,

then must (−1)ifi(v1(~t), . . . , vn(~t)) = ti, 1 ≤ i ≤ n? If so, then the vi’s are the roots

to pn(x).

We show this must be the case when K is an infinite field (Appendix D). Thus, the

only K-formulas, K an infinite field, are the universal formulas given by the roots to pn(x),

n ≤ 4.

If K is a finite field could there exist formulas for the roots to all polynomials of degree

n even if n ≥ 5 or if charK ≤ n? In view of Galois’ results, (1) and (2), it may not seem

likely. But despite the failure of the roots to pn(x) to provide formulas in these cases,

perhaps there are other formulas which work only for K. After all, such a K-formula need

only solve a finite number of polynomials.

The problem of finding roots within a specific finite field arises in some applications

(for example, coding theory). Of course this can be accomplished by trying all the elements;

a method for this which makes use of the cyclic structure of the finite field’s multiplicative

group is the Chien search [1].

I would like to thank Dan Cazacu and Suren Fernando whose interest and comments

were very helpful in preparing this note.

Appendix

All notation and assumptions are the same as in the body of the paper.

A. pn(x) = xn+t1x
n−1+· · ·+tn−1x+tn is irreducible and separable overK(t1, . . . , tn).

Proof. First we show that pn(x) is separable over K(~t). It certainly would suffice to

show that its set of roots {u1, . . . , un} is algebraically independent overK. This follows from

the algebraic independence over K of the set t1, . . . , tn and the fact that K(t1, . . . , tn) =

K(f1(~u), . . . , fn(~u)) ⊆ K(u1, . . . , un).

Now we show pn(x) is irreducible over K(~t). Let E denote the symmetric rational

functions in K(x1, . . . , xn). Then AutK(~t)K(~u) ∼= AutEK(~x) ∼= Sn. If pn(x) is factored

over K(~t) then the coefficients of the factor polynomials would be in K(~t) hence, fixed by

the Galois group of pn(x). But these coefficients are symmetric polynomials (in m < n

variables) of m of the roots to pn. Since the roots to pn(x) are distinct and its Galois group

is Sn, these coefficients cannot be fixed by the Galois group, a contradiction.
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B. Let u1(~t), . . . , un(~t) lie within a radical extension of K(~t) and assume they are

each defined under the substitution ~t 7→ ~a ∈ Kn. Then u1(~a), . . . , un(~a) are the roots to

pn(x) = xn + a1x
n−1 + · · · + an−1x + an ∈ K[x]. Also, each ui(~a) lies within a radical

extension of K.

Proof. This can be thought of as an extension of the fact that the ‘evaluation map’

(on a commutative polynomial ring) is a morphism, to include the evaluation of radical

expressions as well. While most people would not doubt this, one can become frustrated

if pressed by a student for a proof. This may be because it is implicitly assuming certain

notational conventions.

Convention has it that a root of xm − q(~t) ∈ K(~t)[x], as a function of x, is denoted by

(q(~t))1/m. Similarly, assuming that q(~a) is defined, (q(~a))1/m denotes a primitive root of

xm − q(~a) (the apparent limitations of such conventions is discussed in Appendix E).

First, we prove the result for polynomials of this basic form. We assume q(~a) is defined

and write xm − q(~t) as g(~t)xm − f(~t) ∈ K[~t][x], where q(~t) = g(~t)/f(~t).

We begin with the usual evaluation map, φ, from the polynomial ring, K[~t][x], to the

ringK[(q(~a))1/m], which maps ~t 7→ ~a ∈ Kn and x 7→ (q(~a))1/m. This map is an epimorphism

which fixes K.

Essentially, we need to show φ factors through the ring K[~t][(q(~t))1/m]. Since this

latter ring is isomorphic to the quotient ring K[~t][x]/(g(~t)xm−f(~t)), it suffices to show that

(g(~t)xm − f(~t)) ⊆ kerφ. But this follows immediately from the fact that φ is a morphism

and the conventions previously mentioned.

To show that we can substitute into the expression ui(~t) as well, we note that since it

lies in a radical extension of K(~t), each ui(~t) is a nested expression of the basic type just

considered. So it suffices to repeat the previous argument (for example, by next using the

ring K[(q(~a))1/m] in place of K) a finite number of times. The assumption that ui(~a) is

defined ensures that each of the basic expressions q(~a) involved is defined.

C. If h ∈ K[x1, . . . , xn], K an infinite field, and h vanishes on Kn then h is the zero

polynomial.

Proof. Basically, each ‘cross-section’ can have only a finite number of roots. More

precisely, h, as an element of K[x1, . . . , xn−1][xn], has an infinite number of roots hence

each coefficient (which is a polynomial in K[x1, . . . , xn−1]) is zero. Continuing in this way,

we see that each coefficient of h must be zero hence, h is the zero polynomial.
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D. Suppose v1(~t), . . . , vn(~t) lie within a radical extension of K(~t), K an infinite field.

For each i, if K satisfies (−1)ifi(v1(~x), . . . , vn(~x)) ≈ xi then (−1)ifi(v1(~t), . . . , vn(~t)) = ti.

Proof. (−1)i(fi(v1(~t), . . . , vn(~t))− ti) is an element of this radical extension; denote it

by w(~t). Let g(x) ∈ K(~t)[x] denote the monic, irreducible polynomial for which it is a root.

If w(~t) 6= 0 then the constant term in g(x) must be nonzero since otherwise we could factor

an x out. The coefficients of g(x) are elements of K(~t) (rational functions). Multiply g(x)

by the product of the denominators of these coefficients to get a polynomial h(~t, x) with

coefficients from K. The constant coefficient of h is a nonzero polynomial h0(~t) ∈ K[~t]. As

in the proof of (B), since w(~t) is a root to h(~t, x), w(~a) is a root to h(~a, x). Thus, h0(~a)

must be zero whenever w(~a) is zero. So h0 vanishes on Kn hence, by (C), h0 is the zero

polynomial, a contradiction. So w(~t) = 0.

In other words, as with polynomials in n variables, a nonzero radical expression in n

variables defined over an infinite field cannot have all n-tuples as roots.

E. An element w from the algebraic closure of K(~t) is a root to a unique monic,

irreducible polynomial h(x) ∈ K(~t)[x]. As in the proof to (D), we may assume h(~t, x) ∈
K[~t, x]. One might try defining w(~a) to be a root to h(~a, x) = xn +

∑n−1
i=0 hi(~a)x

i ∈ K[x].

However, unless dealing with a certain set of polynomials such as xn − h0(~a), it is not clear

how to generally specify which root to assign w(~a) to for the purposes of computation (recall

the conventions stated in the proof to Appendix B). Besides, the purpose of a formula is

to express the roots of a complicated polynomial in terms of field operations and roots of

simpler polynomials, e.g. radicals. This is not to say that some specific variation of a radical

extension could not be used.
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