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Abstract. In this paper, we shall give some criteria which guarantee the safety of
choosing a diagonal starting matrix of the homotopy method for the symmetric tridiagonal
eigenproblem.

1. Introduction. The homotopy continuation method can be used to solve the
symmetric eigenvalue problem:

(1) Ax = λx

where A is an n× n real symmetric tridiagonal matrix of the form

(2) A =


α1 β2
β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn
βn αn

 .

In (2), if some βi = 0, then Rn is clearly decomposed into two complementary subspaces
invariant under A. Thus, the eigenproblem is decomposed in an obvious way into two smaller
subproblems. Therefore we will assume that each βi 6= 0. That is, A is unreduced.

Consider the homotopy, H:Rn × R× [0, 1]→ Rn × R, defined by

(3)

H(x, λ, t) = (1− t)
(
λx−Dx
xT x−1

2

)
+ t

(
λx−Ax
xT x−1

2

)

=

(
λx− [(1− t)D + tA]x

xT x−1
2

)

=

(
λx−A(t)x

xT x−1
2

)
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where A(t) = (1 − t)D + tA. Here, D is the initial matrix, a specially chosen symmetric
tridiagonal matrix such that A(t) is unreduced for t in (0, 1]. It can be seen that the
solution set of H(x, λ, t) = 0 in (3) consists of disjoint smooth curves (x(t), λ(t)), each joins
an eigenpair of D to one of A. We call each of these curves a homotopy curve or an eigenpath
and its component λ(t) an eigenvalue path. Thus, by following the eigenpaths emanating
from the eigenpairs of D at t = 0, we can reach all the eigenpairs of A at t = 1.

The theoretical aspect of the continuation approach to the eigenvalue problems has been
studied in [1,2,3,9]. A first attempt was made in [7] to make the method computationally
efficient. In [7], the initial matrix D was chosen as D = diag{α1, α2, . . . , αn}. An efficient
parallel and robust algorithm was given in [6]. Evidenced by the numerical results, the
algorithm is strongly competitive with other methods in terms of speed, accuracy and
orthogonality, and leads in speed in almost all cases. In [6],

(4) D =

(
D1 0
0 D2

)

where

D1 =


α1 β2
β2 α2 β3

. . .
. . .

. . .

βk−1 αk−1 βk
βk αk

 , D2 =


αk+1 βk+2

βk+2 αk+2 βk+3

. . .
. . .

. . .

βn−1 αn−1 βn
βn αn

 .

It is desirable to choose D as a diagonal matrix, consisting of the diagonal part of A,
rather than the form in [6]. If D is a diagonal matrix, then eigenvalues and corresponding
eigenvectors of D are immediately available. Thus, the work of solving the eigenproblem
of D is saved. In [7], Li and Rhee showed that this strategy worked very well for certain
matrices, such as [1, i, 1], i = 1, 2, . . . , n. That is, if we choose D = diag{1, 2, . . . , n}
in solving the eigenproblem of the matrix [1, i, 1], the eigenpaths are still very flat and
easy to follow. However, this strategy breaks down when we consider the eigenproblem of
tridiagonal matrices [1, 2, 1]. The eigenpaths are rather difficult to follow. In this paper, we
shall give some criteria which guarantee the safety of choosing a diagonal starting matrix
D.

2. Criteria. Let (A)1 denote the (n − 1) × (n − 1) matrix obtained by deleting the
first row and column of A, and (A)1 the (n− 1)× (n− 1) matrix obtained by deleting the
last row and column of A. Let λi(A) denote the ith smallest eigenvalue of A.
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Theorem 1. If αi < αi+1, i = 1, 2, . . . , n− 1 and if there exists a constant c, 0 < c ≤ 1
such that

(A)1 − (A)1 − c min
1≤i≤n−1

(αi+1 − αi)I

is positive semidefinite then

min
1≤i≤n−1

(λi+1 − λi) ≥ c min
1≤i≤n−1

(αi+1 − αi)

where λi = λi(A).
Proof. Since A is symmetric, so are (A)1 and (A)1. Let

µ1 ≤ µ2 ≤ · · · ≤ µn−1

and
δ1 ≤ δ2 ≤ · · · ≤ δn−1

be the eigenvalues of (A)1 and (A)1, respectively, then by Cauchy’s interlacing theorem [10],

(5) λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn

(6) λ1 ≤ δ1 ≤ λ2 ≤ · · · ≤ δn−1 ≤ λn.

Since (A)1 = (A)1+cαI+[(A)1−(A)1−cαI], and (A)1−(A)1−cαI is positive semidefinite,
where

α = min
1≤i≤n−1

(αi+1 − αi),

by the Courant-Fisher maximum characterization [12],

λi((A)1) ≥ λi((A)1 + cαI) for any i, 1 ≤ i ≤ n− 1

i.e.,
µi − δi ≥ cα > 0, 1 ≤ i ≤ n− 1.

By (5) and (6),
λ1 ≤ δ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ δn−1 ≤ µn−1 ≤ λn.

Hence,
λi+1 − λi ≥ µi − δi ≥ cα, 1 ≤ i ≤ n− 1
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and
min

1≤i≤n−1
(λi+1 − λi) ≥ c min

1≤i≤n−1
(αi+1 − αi).

Corollary 1. If

(A)1 −

α1

. . .

αn−1

 = (A)1 −

α2

. . .

αn

 ,

then

(7) min
1≤i≤n−1

(λi+1 − λi) ≥ min
1≤i≤n−1

(αi+1 − αi).

Proof. (7) follows immediately from Theorem 1, since

(A)1 − (A)1 −

 α2 − α1

. . .

αn − αn−1

 = 0.

Let A(t) = (1 − t)D + tA, where D is a diagonal matrix consisting of the diagonal
elements of A. Then we have the following corollary.

Corollary 2.

min
1≤i≤n−1

(λi+1(t)− λi(t)) ≥ c min
1≤i≤n−1

(αi+1 − αi), t ∈ [0, 1].

Proof.

(8)
(A(t))1 − (A(t))1 − αI = t((A)1 − (A)1 − αI)

+ (1− t)diag(α2 − α1 − α, α3 − α2 − α, · · · , αn − αn−1 − α),

where
α = c min

1≤i≤n−1
(αi+1 − αi), 0 < c ≤ 1.
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Clearly, the second term of the right hand side of (8) is positive semidefinite and the first
term is positive semidefinite by assumption. Hence, (A(t))1 − (A(t))1 − αI is positive
semidefinite for t ∈ [0, 1]. By Theorem 1,

min
1≤i≤n−1

(λi+1(t)− λi(t)) ≥ c min
1≤i≤n−1

(αi+1 − αi) t ∈ [0, 1].

Remark. If (βi+1 − βi)2 < (αi − αi−1)(αi+1 − αi), i = 2, 3, . . . , n − 1 and αi < αi+1,
i = 1, 2, . . . , n− 1, then A satisfies the conditions in Theorem 1.

If A satisfies the conditions in Theorem 1, we may choose the initial matrix D as
a diagonal matrix consisting of the diagonal elements of A, then A(t) is an unreduced
symmetric tridiagonal matrix and the eigenvalue curves are not only distinct, but also very
well separated. There is a lower bound between any two eigenvalue curves so that the
eigenvalue curves are easy to follow.

Example 1. A = [1, i, 1], where i = 1, 2, . . . , 20. If we let D = diag{1, 2, . . . , 20}, then
all the eigenvalue curves are very well separated. See Figure 1.

Figure 1. The eigenvalue curves of [1, i, 1] matrix with D = [0, i, 0].
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