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Abstract. A one-to-one correspondence between the set of all Pythagorean triples and

Z× Z is established, resulting in a ring of Pythagorean triples.

A triple 〈a, b, c〉 is called a Pythagorean triple if a, b, and c are integers such that

a2 + b2 = c2. It seems natural to ask whether operations can be defined on the set P of

all Pythagorean triples in such a way as to give P a ring structure. In fact, since a Pythag-

orean triple is determined by any two of the three integers, one might attempt to obtain a

ring structure isomorphic to Z×Z (where Z represents the set of integers and the operations

on Z × Z are defined coordinatewise) by finding a one-to-one correspondence between P

and Z× Z. The establishment of such a correspondence and the resulting ring structure is

the objective of this paper.

The Sets Pn. Throughout this article, all variables will be assumed to represent

integers unless otherwise stated. If r is a real number, the quantity ⌈r⌉ will represent the

smallest integer greater than or equal to r.

It is a sometimes overlooked fact that if 〈a, b, c〉 ∈ P and c 6= b, then

〈a, b, c〉 =

〈

a,
a2 − n2

2n
,
a2 + n2

2n

〉

, where n = c− b.

(The cases n = 1 and n = 2 appear in the exercise sets of some textbooks, e.g. [1].) We

now have two parameters, a and n, which determine the triple; although the mapping given

by 〈a, b, c〉 7→ (a, n) is not onto Z× Z, a variant of this idea will yield the desired result.

For n ∈ Z, let Pn = { 〈a, b, c〉 ∈ P : c− b = n }. The following lemma is helpful in the

characterization of Pn.

Lemma 1.1. Let a, n ∈ Z with n 6= 0. Then

〈

a,
a2 − n2

2n
,
a2 + n2

2n

〉

∈ P
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if and only if either n is odd, a is odd and n|a2, or n is even, a is even and 2n|a2.

Proof. Suppose

〈

a,
a2 − n2

2n
,
a2 + n2

2n

〉

∈ P.

Suppose n is odd. We have that 2n|a2 + n2; thus a2 + n2 is even. However, n2 is odd, and

thus a2, and consequently a, are odd. Also, since n|a2 + n2 and n|n2, we have n|a2. Next,

suppose n is even. As above, a2 + n2 is even. However, n2 is even, and thus, a is even.

Since 2n|n2, we have 2n|a2.

Conversely, if either (1) or (2) hold, both

a2 − n2

2n
and

a2 + n2

2n

are integers. But,

a2 +

(

a2 − n2

2n

)2

=

(

a2 + n2

2n

)2

;

thus
〈

a,
a2 − n2

2n
,
a2 + n2

2n

〉

∈ P.

The next three propositions characterize Pn in its various cases.

Proposition 1.2. Let n be odd with n = pa1
1 pa2

2 · · · pam

m
its prime factorization. Then

Pn =

{〈

a,
a2 − n2

2n
,
a2 + n2

2n

〉

: a = dr, d odd

}

,

where r = pb11 pb22 · · · pbm
m

and bk =
⌈

ak

2

⌉

for k = 1, . . . ,m.

Proof. First note that

a2 + n2

2n
−

a2 − n2

2n
= n.
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Let
〈

a,
a2 − n2

2n
,
a2 + n2

2n

〉

∈ Pn.

Then by Lemma 1.1, n|a2, i.e., pa1
1 pa2

2 · · · pam

m |a2. Consequently, with bk as defined above,

pb11 pb22 · · · pbm
m

|a. Therefore, a = dr for some d ∈ Z where r is as defined above. Also by

Lemma 1.1, a must be odd; hence, d must also be odd.

Conversely, suppose a is an odd multiple of r. Then a is odd and a2 is a multiple of

p2b11 p2b22 · · · p2bmm . Hence, n|a2. By Lemma 1.1,

〈

a,
a2 − n2

2n
,
a2 + n2

2n

〉

∈ Pn.

Proposition 1.3. Let n be even such that n 6= 0 with n = 2a0pa1
1 pa2

2 · · · pam

m its prime

factorization. Then

Pn =

{〈

a,
a2 − n2

2n
,
a2 + n2

2n

〉

: a = dr, d ∈ Z

}

where r = 2b0pb11 pb22 · · · pbmm , b0 =
⌈

a0+1
2

⌉

, and bk =
⌈

ak

2

⌉

for k = 1, . . . ,m.

The proof is analagous to the proof of Proposition 1.2. The only significant difference

is that when Lemma 1.1 is applied, we have 2n|a2, causing b0 to be defined as stated.

Finally, we have the case n = 0, whose proof is omitted.

Proposition 1.4. P0 = { 〈0, x, x〉 : x ∈ Z }.

A Ring Structure for P. The results of the previous section make it clear how to

proceed with the problem at hand. The rest of this paper consists of the formalization of

this process.

Definition 2.1. Define r′ : Z+ → Z
+ by r′(x) = 2b0pb11 pb22 · · · pbm

m
, where x has prime

factorization x = 2a0pa1
1 pa2

2 · · · pam

m , bk =
⌈

ak

2

⌉

for k = 1, . . . ,m, and

b0 =

{

0, if x is odd
⌈

a0+1
2

⌉

, if x is even.
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This is the r, depending on n, of Propositions 1.2 and 1.3.

Definition 2.2. Define d′ : P → Z by

d′(〈a, b, c〉) =











a

r′(c−b) , if c− b even, n 6= 0
a

r′(c−b)
−1

2 , if c− b odd

b, if c− b = 0.

This is the d (modified for the case n odd) of Propositions 1.2 and 1.3, and the x of

Proposition 1.4.

Putting these together, we have

Theorem 2.3. The mapping ϕ : P → Z× Z given by

ϕ (〈a, b, c〉) = (c− b, d′ (〈a, b, c〉))

is both injective and surjective. Consequently, 〈P,⊕,⊙〉 is a commutative ring with identity

where ⊕ and ⊙ are operations on P defined by

〈a, b, c〉 ⊕ 〈d, e, f〉 = ϕ−1 (ϕ (〈a, b, c〉) + ϕ (〈d, e, f〉))

and

〈a, b, c〉 ⊙ 〈d, e, f〉 = ϕ−1 (ϕ (〈a, b, c〉) · ϕ (〈d, e, f〉)) .

Proof. Propositions 1.2, 1.3, and 1.4 with Definitions 2.1 and 2.2. Note that + and ·

represent coordinatewise addition and multiplication on Z × Z. The operations on P are

really those of Z× Z interpreted through the correspondence ϕ.

The following proposition contains interesting observations about 〈P,⊕,⊙〉, the proofs

of which are left as exercises for the reader.

Proposition 2.4.

If 〈a, b, c〉, 〈e, f, g〉 ∈ P then

〈a, b, c〉 ⊕ 〈e, f, g〉 =















〈

h, h
2
−n

2

2n , h
2+n

2

2n

〉

, for n 6= 0 even
〈

k, k
2
−n

2

2n , k
2+n

2

2n

〉

, for n odd

〈0, j, j〉, for n = 0,
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where

h = [d′ (〈a, b, c〉) + d′ (〈e, f, g〉)] r′(n)

n = c− b+ g − f

k = [2 [d′ (〈a, b, c〉) + d′ (〈e, f, g〉)] + 1] r′(n)

j = d′ (〈a, b, c〉) + d′ (〈e, f, g〉) .

If 〈a, b, c〉, 〈e, f, g〉 ∈ P then

〈a, b, c〉 ⊙ 〈e, f, g〉 =















〈

h, h
2
−n

2

2n , h
2+n

2

2n

〉

, for n 6= 0 even
〈

k, k
2
−n

2

2n , k
2+n

2

2n

〉

, for n odd

〈0, j, j〉, for n = 0,

where

h = d′ (〈a, b, c〉) d′ (〈e, f, g〉) r′(n)

n = (c− b)(g − f)

k = [2d′ (〈a, b, c〉) d′ (〈e, f, g〉) + 1] r′(n)

j = d′ (〈a, b, c〉) d′ (〈e, f, g〉) .

The additive identity in 〈P,⊕,⊙〉 is 〈0, 0, 0〉.

The multiplicative identity in 〈P,⊕,⊙〉 is 〈3, 4, 5〉.

The additive inverse I(〈a, b, c〉) of 〈a, b, c〉 is given by

I(〈a, b, c〉) =











〈a,−b,−c〉, if c− b even, c− b 6= 0
〈

h, h
2
−m

2

2m , h
2+m

2

2m

〉

, if c− b odd

〈0,−b,−c〉, if c− b = 0,

where h = a− 2r′(c− b)and m = b− c.

The units in 〈P,⊕,⊙〉 are 〈3, 4, 5〉, 〈−3,−4,−5〉, 〈−1, 0, 1〉, and 〈1, 0,−1〉.
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The fact that P is partitioned into the sets Pn leaves an interesting avenue for further

exploration. Also, it may be possible to define other operations in a natural way under

which P is essentially a different ring. This is left as an open problem.
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