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Abstract. In this paper, a homotopy algorithm for finding some or all finite eigenvalues

and corresponding eigenvectors of a real symmetric matrix pencil (A,B) is presented, where

A is a symmetric tridiagonal matrix and B is a diagonal matrix with bi ≥ 0, i = 1, 2, . . . , n.

It is shown that there are exactly m (m is the number of finite eigenvalues of (A,B)) disjoint,

smooth homotopy paths connecting the trivial eigenpairs to the desired eigenpairs. And

the eigenvalue curves are monotonic and easy to follow. The performance of the parallel

version of our algorithm is presented.

1. Introduction. Consider the generalized real symmetric eigenvalue problem:

(1) Ax = λBx

where A, B are real symmetric and B is positive semidefinite. By MDR reduction [1], A

can be reduced to a symmetric tridiagonal matrix and B to a positive semidefinite diagonal

matrix simultaneously. Hence, from now on, we will assume A is a real symmetric tridiagonal

matrix and B is a diagonal matrix with bi ≥ 0. Then, (1) is called singular symmetric

tridiagonal eigenproblem.

If all bi’s are positive and well conditioned, then (1) can be reduced to a standard

symmetric tridiagonal eigenproblem. There are many efficient algorithms for that problem.

However, if B is singular, this technique is not available. To the best of our knowledge,

there are few efficient algorithms for solving (1) but Fix Heiberger [3], Bunse Gerstner [1]

and the QZ method [4]. However, the complexity of these methods is O(n3).

In this paper, we will present a new homotopy method for finding some or all finite

eigenpairs of (1).
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Assume in (1)

(2) A =


α1 β2
β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn
βn αn



and B = diag(b1, b2, . . . , bn) with bi ≥ 0.

If βi = 0 for some i, 2 ≤ i ≤ n, then Rn can clearly be decomposed into two com-

plementary subspaces invariant under A. Thus the generalized eigenproblem Ax = λBx is

decomposed in an obvious way into two smaller subproblems. Hence, we will assume that

each βi 6= 0. That is, A is unreduced.

Let D be an n× n symmetric tridiagonal matrix and consider the homotopy H:Rn ×
R× [0, 1]→ Rn × R, defined by

(3)

H(x, λ, t) = (1− t)
(
λBx−Dx
xTBx−1

2

)
+ t

(
λBx−Ax
xTBx−1

2

)

=

(
λBx− [(1− t)D + tA]x

xTBx−1
2

)

=

(
λBx−A(t)x

xTBx−1
2

)

where A(t) = (1− t)D + tA. The pencil (D,B) is called an initial pencil.

In section 2, we will show that the solution set of H(x, λ, t) = 0 in (3) consists of exactly

m (m is the number of finite eigenvalues of (A,B)) disjoint smooth curves (x(t), λ(t)), each

joins an eigenpair of (D,B) to one of (A,B). We call each of these curves a homotopy curve

or an eigenpath and its component λ(t) an eigenvalue curve. We will also show that each

eigenvalue curve is monotonic in t. In section 3, we will give the details of our algorithm.

In section 4, some numerical results will be presented.
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The homotopy method may become an efficient method for this problem since it can

be used to find some or all finite eigenpairs without any waste on computing the infinite

eigenvalues and its complexity is O(n2). It is also a parallel scheme since the homotopy

curves can be followed independently.

2. Preliminary Analysis. If

(4) B =


B1

O1

B2

. . .

Br

 ,we let A =


A1 ∗
∗ A0

1 ∗
. . .

. . .
. . .

A0
r−1 ∗
∗ Ar

 ,

where Oi’s are zero matrices with dim(Oi) = dim(A0
i ), and Bi’s are positive definite diagonal

matrices with dim(Bi) = dim(Ai), i = 1, 2, . . . , r.

Theorem 2.1. Let n(A,B) denote the number of the eigenvalues of the pencil (A,B),

then

n(A,B) = rank(B)−
r∑
i=1

(1− sign(|det(A0
i )|)).

Proof. See [6].

Choose k such that βk+1 is an off-diagonal element of Ai for some i or the off-diagonal

element of A which joins block matrices A0
i−1 and Ai, then let

(5) D =

(
D1 0
0 D2

)
,

where

D1 =


α1 β2
β2 α2 β3

. . .
. . .

. . .

βk−1 αk−1 βk
βk αk

 , D2 =


αk+1 βk+2

βk+2 αk+2 βk+3

. . .
. . .

. . .

βn−1 αn−1 βn
βn αn

 ,
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and then let

B =

(
B1 0
0 B2

)

with dim(Bi) = dim(Di), i = 1, 2.

Let A(t) and B be the same as in (3), then we get the following corollary immediately.

Corollary 2.1.

n(A(t), B) = rank(B)−
r∑
i=1

(1− sign(|det(A0
i )|)) = n(A,B) for t ∈ (0, 1].

n(D1, B1) + n(D2, B2) = n(A,B).

Therefore, there are exactly m = n(A,B) finite homotopy curves.

Theorem 2.2. Let H and D be given in (3) and (5), then the homotopy paths are

distinct and smooth.

Proof. Differentiating H(x, λ, t) = 0 with respect to t, we get

(6) Hxẋ+Hλλ̇+Ht = 0.

By the simple computation, we have

(7)

(
λB −A(t) Bx
xTB 0

)(
ẋ
λ̇

)
=

(
(A−D)x

0

)
.

Now, we show

(8) H(x,λ)(x, λ, t) =

(
λB −A(t) Bx
xTB 0

)

is nonsingular if (λ(t), x(t)) is an eigenpair of (A(t), B).
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Since (λ(t)B−A(t)) is an unreduced tridiagonal matrix for any t in (0, 1] and (λ(t), x(t))

is one of its eigenpairs, dim(ker(λ(t)B −A(t))) = 1. If H(x,λ)(x, λ, t)y = 0 for some y, then

(9)

{
(λ(t)B −A(t))y1 +Bxy2 = 0

xTBy1 = 0

where y = (y1, y2)T .

Clearly, x(t)TBx(t) 6= 0. Otherwise, x1 = 0 since b1 > 0 and bi ≥ 0. Hence, (λ(t)B −
A(t))x = 0 implies that the last n− 1 columns of λ(t)B−A(t) are linearly dependent. This

contradicts to the fact that λ(t)B −A(t) is an unreduced tridiagonal matrix.

Since x(t)TBx(t) 6= 0 and xT (t)(λ(t)B − A(t)) = 0, y2 = 0 from (9). Hence, y1 ∈
ker(λ(t)B−A(t)). Since dim(ker(λ(t)B−A(t))) = 1 and xTBy1 = 0, y1 = 0. Hence, y = 0,

i.e., H(x,λ)(x, λ, t) is nonsingular.

By the nonsingularity of H(x,λ)(x, λ, t) and the implicit function theorem, the homotopy

curves are distinct and smooth.

It follows from Corollary 2.1 and Theorem 2.2 that none of the homotopy paths come

from infinity at t = 0 and diverges to infinity at t = 1.

Let (A)1 denote the lower (n − 1) × (n − 1) submatrix of A, (A)1 denote the upper

(n− 1)× (n− 1) submatrix of A.

Lemma 2.1. The eigenvalues of (A,B) strictly separate the eigenvalues of ((A)1, (B)1),

where A is an unreduced symmetric tridiagonal matrix and B is a diagonal matrix with

b1 > 0 and bi ≥ 0.

Proof. See [15].

Theorem 2.3. The eigenvalue curve λ(t) is either constant or strictly monotonic. Fur-

thermore, if all eigenvalues of the initial pencil (D,B) are distinct, then

(i) λ̇(t)λ̈(t) > 0 for t small, if λ̇(t) 6≡ 0.

(ii) λ(t) is bounded by two consecutive eigenvalues of (D,B).

Proof. Let f1 = det(D1 − λB1), f2 = det(D2 − λB2), f3 = det((D1)1 − λ(B1)1) and

f4 = det((D2)1 − λ(B2)1). Since

det(A(t)− λ(t)B) = det

(
D1 − λ(t)B1 tβk+1

tβk+1 D2 − λ(t)B2

)
= 0,
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we have

(10) f1(λ(t))f2(λ(t))− t2β2
k+1f3(λ(t))f4(λ(t)) = 0.

If there exists a t0 in [0, 1] for which f3(λ(t0))f4(λ(t0)) = 0 then either f3(λ(t0)) = 0 or

f4(λ(t0)) = 0; say f3(λ(t0)) = 0. It follows from Lemma 2.1 that f1(λ(t0)) 6= 0. Hence,

f2(λ(t0)) = 0 in (10); accordingly,

f1(λ(t0))f2(λ(t0))− t2β2
k+1f3(λ(t0))f4(λ(t0)) ≡ 0.

This implies det(A(t)− λ(t0)B) = 0. Thus, λ(t) = λ(t0) for all t in [0, 1].

Assume f3(λ(t))f4(λ(t)) 6= 0 for any t in [0, 1]. Write λ̇(t) = d
dtλ(t). Differentiating

(10) with respect to t yields,

(11)
d

dλ
[f1(λ(t))f2(λ(t))− t2β2

k+1f3(λ(t))f4(λ(t))]λ̇(t) = 2tβ2
k+1f3(λ(t))f4(λ(t))

so,

d

dλ
[f1(λ(t))f2(λ(t))− t2β2

k+1f3(λ(t))f4(λ(t))] 6= 0 for any t ∈ (0, 1].

Hence,

λ̇(t) =
2tβ2

k+1f3(λ(t))f4(λ(t))
d
dλ [f1(λ(t))f2(λ(t))− t2β2

k+1f3(λ(t))f4(λ(t))]
6= 0 for any t ∈ (0, 1].

Therefore, the eigenvalue curve is strictly monotonic.

Furthermore, if all the eigenvalues of (D,B) are distinct, then we claim that

(12)
d

dλ
[f1(λ(t))f2(λ(t))− t2β2

k+1f3(λ(t))f4(λ(t))]

∣∣∣∣
t=0

6= 0.
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Otherwise,

d

dλ
[f1(λ(t))f2(λ(t))− t2β2

k+1f3(λ(t))f4(λ(t))]

∣∣∣∣
t=0

=
d

dλ
[f1(λ(t))f2(λ(t))]

∣∣∣∣
t=0

=
d

dλ
f1(λ(t))

∣∣∣∣
t=0

f2(λ(0)) + f1(λ(0))
d

dλ
f2(λ(t))

∣∣∣∣
t=0

= 0.

Since λ(0) is an eigenvalue of (D,B), we have f1(λ(0))f2(λ(0)) = 0. If f1(λ(0)) = 0

then f2(λ(0)) 6= 0 since all eigenvalues of (D,B) are distinct. Hence, d
dλf1(λ(t))|t=0 = 0.

Consequently, λ(0) is a multiple eigenvalue of (D1, B1) which contradicts to the fact that

D1 is unreduced. The proof of (12) for the case f2(λ(0)) = 0 follows by the same argument.

Hence,

λ̇(t) =
2tβ2

k+1f3(λ(t))f4(λ(t))
d
dλ [f1(λ(t))f2(λ(t))− t2β2

k+1f3(λ(t))f4(λ(t))]

is well defined for t in [0, 1] and λ̇(0) = 0.

Now, let g = f1f2, f = β2
k+1f3f4 and h = (g − t2f)λ = h(t, λ(t)), then λ̇ = 2tf/h

(13) λ̈(t) = −4t2
f2(g − t2f)λλ

h3
+ 8t2

fλf

h2
+

2f

h
.

Since f2(g−t2f)λλ/h3 and fλf/h
2 are continuous in [0, 1], they are bounded. By (13),

λ̈(0) = lim
t→0

λ̈(t) = lim
t→0

2f/h.

Hence, λ̇(t)λ̈(t) > 0 for small t, since λ̇(t) = 2tf/h.

Now we show that each eigenvalue curve λi(t) is bounded by two consecutive eigenvalues

of (D,B). If there exists a t0 6= 0 such that λi(t0) = λj(0) for some j, then

f1(λi(t0))f2(λi(t0))− t20β2
k+1f3(λi(t0))f4(λi(t0)) = 0
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from (10). Since λi(t0) = λj(0) for some j, f1(λi(t0))f2(λi(t0)) = 0. Therefore,

f3(λi(t0))f4(λi(t0)) = 0, since t20β
2
k+1 6= 0. Hence, λi(t) is constant.

From Theorem 2.2 and Theorem 2.3, every eigenvalue curve must be one of those in

Figure 1. These results provide very important information in designing our code.

Figure 1.

3. Algorithm. The algorithm to follow the eigenpath (x(t), λ(t)) has the basic features

given below.

(i) Initiating at t = 0

(ii) Prediction

(iii) Correction

(iv) Step-size selection

(v) Terminating at t = 1.

In this section, we give a detailed description of these features.

(i) Initiating at t = 0.

Choose the initial pencil (D,B) as mentioned in the last section and also try to make

the sizes of the blocks D1 and D2 roughly the same.

When the initial matrix D is decided, we calculate the eigenvalues of (D1, B1) and

(D2, B2) by the multisection method.

(ii) Prediction.
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Assume that after i steps the approximate value (x̃(ti), λ̃(ti)) on the eigenpath

(x(t), λ(t)) at ti is known and the next step-size h is determined; that is, ti+1 = ti + h. We

want to find an approximate value (x̃(ti+1), λ̃(ti+1)) of (x(ti+1), λ(ti+1)) on the eigenpath

at ti+1. Notice that (x̃(ti+1), λ̃(ti+1)) is an approximate eigenpair of (A(ti+1), B).

We use the Euler predictor to predict the eigenvalue at ti+1, namely,

λ0(ti+1) = λ(ti) + λ̇(ti)h.

When i > 1, we know precisely which two consecutive eigenvalues of the initial pencil (D,B)

bound λ(t). Since λ(t) is strictly monotonic, λ(ti) must be either a lower bound or an upper

bound of λ(t). If λ0(ti+1) is not in that interval, we let λ0(ti+1) be the middle point of the

interval. To predict the eigenvector, we use the inverse power method of A(ti+1) on x(ti)

with shift λ0(ti+1). At ti = 0, since we skip the calculations of eigenvectors of (D,B), x(0)

is not available. We choose a random vector to substitute for x(0).

(iii) Correction.

Simple computation shows that Newton’s method for the nonlinear problem of n + 1

equations

(14) F (λ, x) =

{
λBx−Ax = 0
xTBx−1

2 = 0

in the n+ 1 variables λ, x1, x2, . . . , xn at (λ(k), x(k)) is the inverse iteration,

(15) (A− λ(k)B)y = x(k)

and

(16)

{
λ(k+1) = λ(k) + (x(k))T x(k)+1

2(x(k))T y

x(k+1) = (λ(k+1) − λ(k))y.

Newton’s method is used as a corrector. The stop point (xj(ti+1), λj(ti+1)) of New-

ton’s iteration will be taken as an approximate eigenpair (x̃(ti+1), λ(ti+1)) of A(ti+1). As

mentioned in (ii), we know the upper and lower bounds of λ(t). When (x̃(ti+1), λ̃(ti+1))
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is taken as an approximate eigenpair of (A(ti+1), B), we check if λ̃(ti+1) is still in that

interval. If the checking fails, we reduce the step size to h/2 and repeat the whole process

once again beginning with the eigenvalue prediction in (ii).

(iv) Step-size selection.

In the first attempt, we always choose step-size h = 1 − ti at ti < 1. If after the

prediction and correction steps the checking step fails, we reduce the step size to h/2 as

mentioned in (iii). This extremely liberal choice of step-size can be justified because of the

closeness of the matrix D to A as well as the effective checking algorithm. Indeed, since

the initial matrix D is chosen to be so close to A, from our experiences, the majority of the

eigenpairs of A can be reached in one step, i.e., h = 1.

Very small step-size can also cause the inefficiency of the algorithm. Therefore, we

impose a minimum γ on step-size h. If h < γ, we simply give up following the eigenpath

and the corresponding eigenpair of A will be calculated at the end of the algorithm by the

method of bisection with inverse iterations (see (iv)). We usually choose γ ≈ 0.25.

(v) Terminating at t = 1.

At t = 1, when an approximate eigenvalue λ̃(1) is reached, we compute the generalized

Sturm sequence at λ̃(1) ± ελ̃(1) with ε = machine precision to ensure the correct order.

If the checking fails, we have jumped into a wrong eigenpath. More precisely, suppose we

are following the ith eigenpair, the checking algorithm detects that we have reached the

jth eigenpair instead. In this situation, we will save the jth eigenpair before the step-size

is cut. By saving the jth eigenpair, the computation of following the jth eigenpair is no

longer needed.

As mentioned in (iv), we may give up following some eigenpaths to avoid adopting a

step-size that is too small. Without extra computation, we know exactly which eigenpairs

are lost at t = 1. In order to find these eigenpairs, we first use the bisection to find the

missing eigenvalues and then use inverse iteration to find the eigenvectors.

4. Numerical Results. In this section, we present our numerical results. Our

homotopy continuation algorithm is in its preliminary stage, and much development and

testing are necessary. But the numerical results on the examples we have looked at seem

remarkable. Our testing examples are:

Type 1. A is an unreduced symmetric tridiagonal matrix with both diagonal and off-

diagonal elements being uniformly distributed random numbers between 0 and 1. B is a
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diagonal matrix with the first n/2 diagonal elements being uniformly distributed random

numbers between 0 and 1, and the last n/2 being zeros.

Type 2. A is an unreduced symmetric tridiagonal matrix with both diagonal and off-

diagonal elements being uniformly distributed random numbers between 0 and 1. B is a

diagonal matrix with the first 3n/10 and the last 3n/10 diagonal elements being uniformly

distributed random numbers between 0 and 1, and the rest being zeros.

Type 3. A is the Toeplitz matrix [1,2,1]. B is a diagonal matrix with the first n/2

diagonal elements being 1, and the rest being zeros.

Type 4. A is the Toeplitz matrix [1,2,1]. B is a diagonal matrix with the first 3n/10

and the last 3n/10 diagonal elements being 1, and the rest being zeros.

Type 5. A is an unreduced symmetric tridiagonal matrix with both diagonal and off-

diagonal elements being uniformly distributed random numbers between 0 and 1. B is a

diagonal matrix with all diagonal elements being random numbers between 0 and 1.

Table 1: Execution time (second), speed-up and efficiency of STH.
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The homotopy algorithm is to a large degree parallel since each eigenpath can be

followed independently. This inherent nature of the homotopy method makes the parallel

implementation much simpler than other methods.

In our parallel algorithm, after all the eigenvalues of D are computed and put in

increasing order, we assign each processor to trace roughly m/p eigencurves, where m =

n(A,B) = n(D1, B1) + n(D2, B2) and p is the number of processors being used. Let the

first processor trace the first m/p smallest eigencurves from the smallest to the largest and

let the second processor trace the second m/p smallest eigencurves, and so on.

We present the numerical results of the parallel implementation of our algorithm. All

examples were executed on BUTTERFLY GP 1000, a shared memory multiprocessor ma-

chine.

The speed-up is defined as

Sp =
execution time using one processor

execution time using p processors

and the efficiency is the ratio of the speed-up over p.

Table 1 shows the execution time and the speed-up Sp as well as the efficiency Sp/p

of our algorithm STH on all five type matrices. The numerical result shows the homotopy

method may become an excellent candidate for a variety of advanced architectures.
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