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Abstract. Riemann-Stieltjes integration is an optional topic for a first course in real

analysis. In this paper, we examine some of the pedagogical reasons in favor of its inclusion

and some of the technical anachronisms associated with it.

1. Introduction. As the name suggests, Riemann-Stieltjes (RS) integration is a

notion of integration properly generalizing Riemann integration — the type of integration

covered in freshman calculus. If an undergraduate encounters this somewhat arcane topic at

all, it will be in an upper-level course in real analysis. More likely, a student will encounter

RS integration in a first graduate course in real analysis. In this setting, students arrive

with widely varying backgrounds. Covering RS integration gives the instructor a way to

review the usual development of Riemann integration for those with deficient backgrounds

while at the same time offering something new for those whose undergraduate programs

did include a rigorous treatment of the Riemann integral. Torchinsky has pointed out this

pedagogical benefit in [5].

When studying Riemann integration, one may make use of either Riemann sums or

upper and lower sums; the class of functions so defined is the same. This rather subtle

point can be brought into sharp focus when one discovers that the same does not hold for

RS integration, at least when the distribution function is discontinuous. Far from being

pathological, the discontinuous distribution function is the vehicle by which RS integra-

tion unites the study of Riemann integration with that of probability theory or numerical

integration.

The curriculum of a mathematics major usually includes a course in calculus-based

probability theory. A student who has mastered this material is in a good position to

appreciate the power of the RS integral. RS integration not only unites the apparently

disconnected topics of discrete and continuous probability distributions, but facilitates the

study of mixed-type distributions.
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A student who has studied numerical methods will be familiar with Simpson’s rule

and other numerical integration schemes. RS integration underlines a connection between

numerical quadrature and Riemann integration which is seldom mentioned. For those stu-

dents of analysis who are unfamiliar with numerical methods, RS integration may even be

used as a segue to the study of numerical integration.

2. Two Competing Definitions. The symbol F will always be used to represent a

distribution function on a non-empty closed interval I = [a, b] of the real line R. This is a

real-valued non-decreasing function, necessarily bounded on the interval I.

A partition of the interval I is a set P = {x0, x1, . . . , xn} with a = x0 < x1 < · · · <

xn = b. Let Ik = [xk, xk+1] for k = 0, 1, 2, . . . , n− 1. Define the mesh of P , ‖P‖, to be the

minimum value of ∆xk = xk+1 − xk for k = 0, 1, . . . , n− 1. Given a distribution function

F , let ∆Fk = F (xk+1)− F (xk) for k = 0, 1, . . . , n− 1.

Suppose that g is a bounded real-valued function defined on I. Let

mk = inf{g(x)|x ∈ Ik} and Mk = sup{g(x)|x ∈ Ik}.

We define the lower and upper sums of g corresponding to P with respect to F by

S∗(g, F,P) =

n−1
∑

k=0

mk∆Fk and S∗(g, F,P) =

n−1
∑

k=0

Mk∆Fk.

We say the partition P2 refines P1 (or that P2 is finer than P1) if P1 ⊆ P2. By

induction on the number of points in P2 −P1, it is easy to show that if P2 refines P1, then

for any g and F

S∗(g, F,P1) ≤ S∗(g, F,P2) ≤ S∗(g, F,P2) ≤ S∗(g, F,P1).

By considering a common refinement P = P1 ∪ P2, we see that for any partitions P1 and

P2 we have

S∗(g, F,P1) ≤ S∗(g, F,P2).

Thus, the quantities

L(g, F, I) = sup{S∗(g, F,P)} and U(g, F, I) = inf{S∗(g, F,P)}
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are well-defined, the supremum and infimum being taken over all partitions P of I. Fur-

thermore, L(g, F, I) ≤ U(g, F, I).

Definition 1. We say that g is Darboux-Stieltjes integrable on I with respect to F ,

denoted g ∈ R1(F, I), if L(g, F, I) = U(g, F, I).

Given a partition P of I, choose ck ∈ Ik for each k = 0, 1, . . . , n − 1. Let C =

{c0, c1, . . . , cn−1}. The Riemann sum of g corresponding to P and C with respect to F is

S(g, F,P , C) =

n−1
∑

k=0

g(ck)∆Fk.

Definition 2. Suppose there is a real number A with the property that for any ε > 0

there exists a δ > 0 such that if ‖P‖ < δ then |A − R(g, F,P , C)| < ε for any choice of

C. We say that g is Riemann-Stieltjes integrable on I with respect to F and denote this

g ∈ R2(F, I).

3. Two Classes of Functions.

Theorem 1. R2(F, I) ⊆ R1(F, I).

Proof. Suppose that g ∈ R2(F, I) and let ε > 0 be given. Let A be the number given

in Definition 2 and choose δ > 0 corresponding to ε/2. Clearly, L(g, F, I) ≤ A ≤ U(g, F, I).

Let P be a partition satisfying ‖P‖ < δ. If F (a) = F (b), then F is constant on I and so all

sums evaluate to zero. Otherwise, choose a point ck in each Ik so that

g(ck)−mk ≤
ε

2(F (b)− F (a))
.

It then follows that

S(g, F,P , C)− S∗(g, F,P) <
ε

2
.

Then

|A− S∗(g, F,P)| ≤ |A− S(g, F,P , C)|+ |S(g, F,P , C)− S∗(g, F,P)|

<
ε

2
+

ε

2
.

Similarly, we can find a partition P ′ so that |A − S∗(g, F,P ′)| < ε. As ε is arbitrary, we

have L(g, F, I) = U(g, F, I) = A.
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If F (x) = x, then the two definitions coincide and we have the usual notion of Riemann

integrability. We can say even more.

Theorem 2. If F is continuous on I then for any bounded function g on I, g ∈ R2(F, I)

if and only if g ∈ R1(F, I).

Proof. The implication follows from Theorem 1. For the converse, suppose that g ∈

R1(F, I) and that ε > 0 is given. Suppose that P is an n + 1 point partition of I such

that S∗(g, F,P)− S∗(g, F,P) < ε/2. Let M be an upper bound for |g| on I. Because F is

continuous on a closed interval, it is uniformly continuous. Therefore, there is a δ > 0 so

that

|F (x)− F (y)| <
ε

2Mn
whenever |x− y| < δ.

Let Q be any partition of I such that ‖Q‖ < δ. Let J0, J1, . . . , Jm−1 be the subintervals

of I determined by Q and let dl ∈ Jl for l = 0, 1, . . . ,m − 1. Let D = {d0, d1, . . . , dm−1}.

There are, at most, n − 1 intervals Jl which contain points from P in their interiors. Call

these the bad intervals of Q and the remainder the good intervals. The total contribution

to S(g, F,Q,D) from the bad intervals is bounded in absolute value by ε/2. Let U = Q∪P

and choose a sequence of points E from the intervals so determined. If we do this in such a

way that the points in E coincide with those in D in all of the good intervals of Q, then

|S(g, F,Q,D)− S(g, F,U , E)| <
ε

2
.

Now every interval of U is a subset of some Ik, so for the corresponding element e ∈ E ,

we have mk ≤ g(e) ≤ Mk. From this it easily follows that

S∗(g, F,P) ≤ S(g, F,U , E) ≤ S∗(g, F,P).

Therefore, if we let A be the common value of L(g, F, I) and U(g, F, I), we have shown

that

|A− S(g, F,Q,D)| < ε whenever ‖Q‖ < δ.

The inclusion in Theorem 1 is proper when F is discontinuous; consider the following

example.

Example 1. Suppose that

F =

{

0 if x ∈ [0, 1)

1 if x ∈ [1, 2]
and g =

{

0 if x ∈ [0, 1]

1 if x ∈ (1, 2].
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It is easy to check that S∗(g, F,P) = 0 for any partition P of [0, 2] and that S∗(g, F,P)

is equal to 0 when 1 ∈ P but is equal to 1 when 1 /∈ P . Therefore g ∈ R1(F, I). However,

no matter how small ‖P‖ is, there will always be choices C containing the point 1 and others

which do not. Hence, g /∈ R2(F, I). We note that if we let g = F in this example, then g is

in neither R1(F, I) nor R2(F, I).

The class of Riemann integrable functions on I, denoted R(I), is the class R1(x, I)

(= R2(x, I), by Theorem 2). Most of the familiar properties of R(I) are true of both

R1(F, I) and R2(F, I). In particular, all continuous functions on I are in both R1(F, I)

and R2(F, I), and both classes are linear spaces. As well, if J is a closed interval with

J ⊆ I, then R1(F, I) ⊆ R1(F, J) and similarly for R2. The converse to this last statement

is not true.

Theorem 3. Suppose I = [a, b] and c ∈ (a, b). If g ∈ R1(F, [a, c]) and g ∈ R1(F, [c, b])

then g ∈ R1(F, I). The corresponding statement concerning R2 is false.

Proof. Let L′ = sup{S∗(g, F,Q)} and U ′ = inf{S∗(g, F,Q)}, with the supremum

and infimum taken over all partitions Q of I containing c. Since g is contained in both

R1(F, [a, c]) and R1(F, [c, b]), it follows that L
′ = U ′. From this it follows that L(g, F, I) =

U(g, F, I), as the supremum and infimum here are taken over a larger class of partitions,

and so g ∈ R1(F, I).

For the second statement, consider Example 1, where g ∈ R2(F, [0, 1]) and g ∈

R2(F, [0, 2]).

4. Which is the Right Definition? Our terminology is based on [2]. It has

the unfortunate side effect of suggesting that Definition 2 is the correct one for the RS

integral. The use of ‘Riemann’ in the name of the integral is to distinguish it from the

Lebesgue-Stieltjes integral. The use of ‘Riemann’ in the notion of integrability reflects the

use of Riemann sums in the definition, as opposed to upper and lower sums. In fact, there

appears to be no consensus in the literature as to which of the two classes R1 or R2 is the

natural one.

Most contemporary authors present only one definition and use the term ‘Riemann-

Stieltjes integrable’ whether they have chosen Definition 1 (e.g. [4], [5]), or Definition 2

(e.g. [3]). It is clear from the proof of Theorem 1 that when g ∈ R2(F, I) then the value
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A in Definition 2 is the common value of L(g, F, I) and U(g, F, I) from Definition 1. Thus

the value of the integral, denoted

∫ b

a

gdF or

∫ b

a

g(x)dF (x)

is unambiguously defined whichever definition of integrability is adopted.

History is on the side of Definition 2, as this was the one considered by Stieltjes (1856-

1894) himself in 1894. He used the sort of sum which Riemann (1826-1866) considered in

his rigorous treatment of the integral in 1854, based on values g(ck) of the integrand. It was

Darboux (1842-1917) who first showed in 1875 that upper and lower sums could be used in

place of Riemann sums in the ordinary integral.

On the other hand, Definition 1 has the advantage of being simpler to use than Defi-

nition 2. As well, those who find the property of R2 in Theorem 3 to be pathological may

prefer the class R1.

Definition 1 is not free from pathology either. The case of equally-equally spaced

partitions illuminates an odd property of Definition 1.

When introducing the Riemann integral, some texts consider equally spaced partitions

only; that is, partitions where ∆xk = (b−a)/n for each k = 0, 1, . . . , n− 1. This simplifica-

tion gives rise to the same class of functions R(I), and it can be shown that the same is true

for R2(F, I) (and hence, also for R1(F, I) when F is continuous). The same simplification

does not carry over to R1(F, I) in general. Consider Example 1, with the role of the number

1 played instead by an irrational number x0 ∈ [0, 2]. Then we still have f ∈ R1(F, [0, 2]),

whereas for any equally spaced partition P , S∗(g, F,P) = 0, while S∗(g, F,P) = 1 since

x0 /∈ P .

5. Application – Probability Theory. A cumulative distribution function (CDF)

is a non-negative, non-decreasing function F defined on the entire real line R with the

properties

lim
x→−∞

F (x) = 0 and lim
x→+ lim

F (x) = 1.

F is the CDF for a random variable X if Pr(X ≤ x) = F (x).
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Undergraduate probability texts usually recognize two types of random variable: dis-

crete and continuous. A discrete random variable takes at most countably many values

x1, x2, . . . . If we let pi = Pr(X = xi) for each i, then

(1) F (x) =
∑

xi≤x

pi.

A random variable has continuous distribution if it takes all the values in some (bounded

or unbounded) interval in the real line, and Pr(X = x) = 0 for every x ∈ R. In practice, the

textbooks consider only random variables with CDFs that are differentiable (except possibly

at finitely many points). The probability density function is then defined by f(x) = F ′(x).

The expectation of a random variable g(X) is defined to be

E(g(X)) =
∑

i

g(xi)pi or E(g(X)) =

∫ ∞

−∞

g(x)f(x) dx,

respectively, for discrete or continuous random variables. Using the RS integral, we may

say that

(2) E(g(X)) =

∫ ∞

−∞

g(x)dF (x)

in either case. One must first make the obvious extension to an improper RS integral

(Stieltjes himself considered the case b = ∞ in his 1894 paper). Then for discrete random

variables, equation 2 is clearly valid. For continuous random variables, one must use the

result that if F is differentiable and f = F ′, then

∫ b

a

g(x)dF (x) =

∫ b

a

g(x)f(x) dx.

A random variable is said to have a mixed-type distribution if its range is uncountable

and yet there are points with Pr(X = x) > 0. Such random variables arise naturally, but
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are beyond the scope of most undergraduate texts. The RS integral allows such random

variables to be dealt with in the same fashion as discrete and continuous ones. In particular,

the expectation E(g(X)) is defined by equation 2 in this case as well.

Example 2. (Discrete) Suppose X = the number of heads in three tosses of a fair coin.

F is given by equation 1.

F (x) =



























0 if x < 0

1/8 if x ∈ [0, 1)

1/2 if x ∈ [1, 2)

7/8 if x ∈ [2, 3)

1 if x ≥ 3.

Example 3. (Mixed-type) Suppose a traffic light works on a one minute cycle with 24

seconds of green, 6 seconds of yellow, and 30 seconds of red. Let X = the waiting time at

the traffic light, in seconds. For cautious and reckless drivers, respectively, the CDFs are

F1 and F2, where

F1(x) =











0 if x < 0

x/60 + .4 if x ∈ [0, 36]

1 if x > 36

and

F2(x) =











0 if x < 0

x/60 + .5 if x ∈ [0, 30]

1 if x > 30.

The expected waiting times are 18 and 15 seconds, respectively.

6. Application – Numerical Integration. Let h = (b−a)/2. Simpson’s rule states

that

∫ b

a

g(x) dx ≈
h

3
[g(a) + 4g(a+ h) + g(b)]

=

∫ b

a

g(x)dF (x),
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where

F (x) =



















0 if x < a

h/3 if x ∈ [a, a+ h)

5h/3 if x ∈ [a+ h, b)

2h if x ≥ b.

Similar schemes can be given for the trapezoid rule, the midpoint rule, and any of the other

familiar numerical integration formulas.
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