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1. Introduction. The object of this paper is to study the effect of the repeated ap-

plications of a particular process P, when it is performed on an arbitrary (convex) quadri-

lateral. The process is described below.

Process P. Given a quadrilateral ABCD, we construct squares on the sides AB, BC,

CD, and DA [Fig. 1]. All four squares are constructed on the outside of ABCD. Let

P1, Q1, R1, and S1 denote the centers of the squares on the sides AB, BC, CD, and

DA, respectively. By joining the centers of the squares a new quadrilateral P1Q1R1S1 is

obtained. The process of obtaining quadrilateral P1Q1R1S1 from quadrilateral ABCD is

defined as the process P.

We will denote P1Q1R1S1 by P[ABCD] and also by Π1. In general PnQnRnSn and

Πn will denote the quadrilateral obtained by applying the process n times. In Proposition

1 we will prove that the quadrilateral P1Q1R1S1 has the following properties:

(i) P1R1 = Q1S1, i.e. the diagonals are equal, and

(ii) P1R1 is perpendicular to Q1S1, i.e. the diagonals are perpendicular.

We note that properties (i) and (ii) are not sufficient to make P1Q1R1S1 a square. For our

purpose we may define a square as follows. A quadrilateral PQRS is a square if it has the

following three properties:

(i) PR = QS,

(ii) PR is perpendicular to QS,

(iii) the diagonals PR and QS bisect each other.

We have seen that just one application of process P transforms an arbitrary quadri-

lateral into one which satisfies two of the three properties for a square. One wonders what

effect repeated applications of P would have on ABCD. Since Π1 satisfies (i) and (ii), it

is obvious that every quadrilateral Πn will also satisfy (i) and (ii). Let Mn and Nn denote
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the midpoints of the diagonals PnRn and QnSn respectively, and let sn denote the distance

MnNn. Since every Πn satisfies (i) and (ii), Πn will be a square if and only if the diagonals

bisect each other, i.e. if and only if sn = 0.

We also note that with each application of process P the quadrilateral increases in size.

Let dn denote the length of the diagonals (both diagonals have the same length) of Πn, and

let s′n = sn
dn

. To measure the effect of P on Πn, we should compare quadrilaterals of the

same size. This means that we should not compare sn with sn+1, but we should compare

s′n with s′n+1. We would like to know if the quadrilaterals Πn obtained by n applications

of P would ‘approach a square’ i.e. whether s′n goes to 0 as n tends to infinity. We will

explore this question and also study other effects of P.

2. We now give an analytic proof of Proposition 1. For a proof using rotations of

triangles, see [1].

Proposition 1. Let ABCD be an arbitrary polygon and P1Q1R1S1 be the polygon

obtained by applying process P. Then the diagonals P1R1 and Q1S1 are equal and perpen-

dicular.

Proof. Choosing the axes as shown in Fig. 2, let the coordinates of the vertices be

given by A = (0, 0), B = (a, b), C = (c, d), and D = (e, 0). Without loss of generality

assume b > d. Also c > a (convexity). We construct square BCB′C ′ on the outside of

BC and denote its center by Q1. Let CN and C ′N ′ be perpendiculars on the vertical

line through B(a, b). The right triangles BCN and C ′BN ′ are congruent (BC = BC ′,

also angles CBN and C ′BN ′ are complementary, making angles BCN and C ′BN ′ equal).

Then CN = BN ′ = c− a, and BN = C ′N ′ = b− d. This gives C ′ = (a+ b− d,−a+ b+ c),

and the midpoint of CC ′,

Q1 =

(
a + b + c− d

2
,
−a + b + c + d

2

)
.

11



Using the same method we find the centers of the other squares,

P1 =

(
a− b

2
,
a + b

2

)
,

R1 =

(
c + d + e

2
,
−c + d + e

2

)

S1 =

(
e

2
,
−e
2

)
.

The lengths and the slopes of the diagonals are as follows:

P1R1 =
1

2

√
(a− b− c− d− e)2 + (a + b + c− d− e)2 = Q1S1.

The slope of P1R1 is

a + b + c− d− e

a− b− c− d− e

and the slope of Q1S1 is

−a + b + c + d + e

a + b + c− d− e
.

This shows that the diagonals P1R1 and Q1S1 are equal and perpendicular, which completes

the proof.

From Proposition 1, we note that M1, N1, the midpoints of P1R1 and Q1S1 are given

by

M1 =
1

4
(a− b + c + d + e, a + b− c + d + e)

and

N1 =
1

4
(a + b + c− d + e,−a + b + c + d− e),
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and the distance s1 = M1N1 is given by

s21 =

(
−b + d

2

)2

+

(
a− c + e

2

)2

.

If the original quadrilateral ABCD was a parallelogram, then b = d, and c − e = a. This

would make s1 = 0, and P1Q1R1S1 would be a square.

We now set the stage to study the process P and the properties of the quadrilateral

Πn. Since the diagonals of Π1 are perpendicular, they will be chosen as the coordinate

axes [Fig. 3]. As mentioned earlier, P2Q2R2S2 will denote the quadrilateral obtained by

applying P to P1Q1R1S1. Let M2, N2 denote the midpoints of the diagonals P2R2 and

Q2S2 respectively, and dn denote the length (both diagonals have the same length) of the

diagonals of the quadrilateral Πn.

Proposition 2.

(i) The diagonals of Π2 make a 45◦ angle with the diagonals of Π1, and both sets of

diagonals intersect at the same point,

(ii) The line segments M1N1, M2N2 are equal and bisect each other,

(iii) d2 =
√

2d1.

Proof. Let the coordinates of P1, Q1, R1, and S1 be given by P1 = (0, y1), Q1 = (x1, 0),

R1 = (0, y1−d1), S1 = (x1−d1, 0) (see Fig. 3). Then M1 = (0, y1− 1
2d1), N1 = (x1− 1

2d1, 0).

Using the same method as in Proposition 1, the vertices of Π2 are obtained as:

P2 =

(
x1 + y1

2
,
x1 + y1

2

)
, Q2 =

(
x1 − y1 + d1

2
,
−x1 + y1 − d1

2

)
,

R2 =

(
x1 + y1

2
− d1,

x1 + y1
2

− d1

)
, S2 =

(
x1 − y1 − d1

2
,
−x1 + y1 + d1

2

)
.

Then

M2 =

(
x1 + y1 − d1

2
,
x1 + y1 − d1

2

)
, N2 =

(
x1 − y1

2
,
−x1 + y1

2

)
.
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We note that the points P2 and R2 satisfy the equation y = x, whereas the points Q2 and S2

satisfy the equation y = −x. In other words, the diagonals of Π2 lie along the lines y = ±x.

Thus they intersect at (0, 0) and make a 45◦ angle with the previous set of diagonals. Using

distance formula,

M1N
2
1 =

(
x1 −

1

2
d1

)2

+

(
y1 −

1

2
d1

)2

,

and

M2N
2
2 =

(
y1 −

1

2
d1

)2

+

(
x1 −

1

2
d1

)2

.

Thus, M1N1 = M2N2. Also, M1N1 and M2N2 have the same midpoint

G =

(
2x1 − d1

4
,

2y1 − d1
4

)
.

Lastly,

d22 = P2R
2
2

=
1

4

((
x1 + y1 − (x1 + y1 − 2d1)

)2

+

(
(x1 + y1)− (x1 + y1 − 2d1)

)2)

=
1

4

(
4d21 + 4d21

)
= 2d21.

Hence, d2 =
√

2d1. This completes the proof.

3. We come back to the question of whether the quadrilaterals Πn ‘approach a square.’

Here is our main theorem.

Theorem. With repeated applications of the process P the quadrilaterals Πn ‘approach

a square,’ i.e. s′n approaches 0, as n goes to infinity.
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Proof. From Proposition 2 we have M1N1 = M2N2, i.e. s1 = s2. This means that

sn = s1 for all n. Also, d2 =
√

2d1 implies dn = (
√

2)n−1d1. Hence,

s′n =
sn
dn

=
s1

(
√

2)n−1d1
.

The quantity s′n goes to 0 as n tends to infinity. In other words, the quadrilaterals Πn

approach a square with repeated applications of the process P.

4. We now turn our attention to other effects of the process P. The following obser-

vations are based on the information provided by Propositions 1 and 2.

1. The diagonals of every quadrilateral Πn intersect at the same point.

2. The diagonals of every quadrilateral Πn make a 45◦ angle with the diagonals of the

previous one.

3. The centroid of every quadrilateral Πn is the same point. We know that if the vertices

of a quadrilateral are given by (xi, yi) for i = 1 to 4, then its centroid G is given by,

G =

(
x1 + x2 + x3 + x4

4
,
y1 + y2 + y3 + y4

4

)
.

The centroid of a quadrilateral is also the midpoint of the line segment joining the

midpoints of the diagonals, i.e. G is the midpoint of M1N1. But from Proposition 2,

we learn that M1N1 and M2N2 have the same midpoint, hence, the quadrilaterals Π1

and Π2 have the same centroid. It follows that every quadrilateral Πn has the same

centroid.

5. To summarize: With each application of the process P, the diagonals rotate by

45◦, and their lengths decrease by a factor of
√

2. But the diagonals of every quadrilateral

intersect at the same point. Moreover while the quadrilaterals increase in size, their growth

in each direction is such that the centroid remains the same. Thus, each application of

process P leaves two points fixed, the point where the diagonals intersect and the centroid

G. Lastly, the quadrilateral Πn never becomes a square, only its “non-squareness” as

measured by s′n tends to 0.
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Figure 1.
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Figure 2.
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Figure 3.
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