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be the nth Harmonic number. Although there is no closed form expression forHn in terms of
common mathematical functions, it is known that Hn can be expressed in terms of Stirling
numbers. Specifically,
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[
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where
[

n
k

]

denotes the Stirling Cycle number (Stirling number of the first kind) which is
equal to the number of permutations of n objects that have exactly k cycles ([4], p. 261).

In the early 1980’s, I became interested in the related expression,
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also written as
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n

which is a simple finite continued fraction with n terms. Specifically, I wanted to know if
there is a closed form expression for Sn, and if not, can Sn be expressed in terms of Hn?
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The sequence Sn begins:
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It is not hard to show that the numerators and the denominators both satisfy the
recurrence:

(1) un = nun−1 + un−2, n ≥ 3

(see [5], p. 130) and all the fractions are in lowest terms. The sequence Sn represents the
convergents of the corresponding infinite continued fraction. Let pn be the sequence of
numerators and qn the sequence of denominators. We have the obvious initial conditions:
p1 = 1, p2 = 2 and q1 = 1, q2 = 3. We can also define p0 = 0 and q0 = 1 and still satisfy
the recurrence.

I was unable to solve this recurrence, so in 1984 I posted the recurrence (1) in the
“Math Notes Conference”, a computer bulletin board at Digital Equipment Corporation,
and asked for help.

Almost immediately, Peter Gilbert (at DEC) responded by showing how to form a
corresponding differential equation. This turns out to be a standard method for solving
such recurrences known as the method of generating functions (see chapter 7 of [4]), which
we describe below.

Let us consider only the sequence of denominators, qi (the numerators are similar). We
define the function f(x) by the formal power series

(2) f(x) = q0 + q1x+ q2x
2 + q3x

3 + · · ·+ qnx
n + · · ·

and then by a sequence of manipulations we use the recurrence to give us a difference
equation or a differential equation for f(x). We then solve this equation for f(x) and upon
expanding f(x) out as a Taylor series, we then wind up with the sought-for coefficients qi.
(This technique frequently works even when the formal power series does not converge.) In
this case, we proceed as follows. Start by taking the formal derivative of f .

f ′(x) = q1 + 2q2x+ 3q3x
2 + 4q4x

3 + · · ·+ nqnx
n−1 + · · · .

Then multiply by the appropriate powers of x to get the coefficients of xn to be the terms
of our recurrence.
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xf(x) = q0x+ q1x
2 + q2x

3 + q3x
4 + q4x

5 + · · ·+ qn−1x
n + · · ·

x2f(x) = q0x
2 + q1x

3 + q2x
4 + q3x

5 + · · ·+ qn−2x
n + · · ·

x2f ′(x) = q1x
2 + 2q2x

3 + 3q3x
4 + 4q4x

5 + · · ·+ (n−1)qn−1x
n + · · ·

Adding these three equations and then comparing with equation (2) gives

xf(x) + x2f(x) + x2f ′(x) = f(x)− 1

or letting y = f(x), we get the differential equation

x2y′ + y(x2 + x− 1) = −1.

Now the way I was taught to solve a non-homogeneous differential equation such as this is
by first solving the corresponding homogeneous differential equation

x2y′ + y(x2 + x− 1) = 0.

We used Vaxima, running on a VAX, to solve this differential equation. We found that
the solution is

(3) y =
c

xex+1/x
.

If I try to expand out the right-hand side of equation (3) in a power series, both Vaxima
and Mathematica fail, claiming that the function has an essential singularity at the origin.
Basil Rennie (personal correspondence) informed us that the solution to the first differential
equation is

y = −
1

x
exp(−x−

1

x
)

∫ x 1

t
exp(t+

1

t
) dt

and that all solutions have an essential singularity at x = 0. What does this mean in terms
of solving our recurrence equation? Does it mean that the recurrence has no closed form or
merely that its solution has no generating function of the form (2)? Perhaps this approach
is incorrect and a totally different approach should be used.
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In 1988, in response to a request from Joe Keane (at Carnegie Mellon University) for
interesting recurrences, I posted the recurrence (1) in the sci.math USENET newsgroup (an
international computer bulletin board shared by various UNIX systems).

This elicited a reply from David desJardins (at UC Berkeley) who showed (with help
from Macsyma) that

(4) qn =

⌊n/2⌋
∑

k=0

(

n− k

k

)2

(n− 2k)!

and

pn = qn −

⌊n/2⌋−1
∑

k=0

(

n− k

k + 2

)(

n− k − 2

k

)

(n− 2k − 2)! .

An amazing result, but still not what I wanted.
Keane then posted the formula

(5) u(n) = (−1)n
∞
∑

k=0

1

k!(k + n+ 1)!

stating that u(n) solved the recurrence (1), but he gave no explanation.
Gaston Gonnet (at University of Waterloo) then posted an asymptotic expansion (de-

rived using Maple). Subsequently, Gonnet and Gerald A. Edgar (at The Ohio State Uni-
versity) noted that

(6) inJn(2i)

satisfies the recurrence (1) where Jn(z) is the Bessel function (of the first kind) of order n.
This was getting close, but not quite right, since this solution did not satisfy the initial

conditions for either pn or qn.
I then tried an exponential generating function. Letting

f(x) = q0 + q1
x

1!
+ q2

x2

2!
+ q3

x3

3!
+ · · ·+ qn

xn

n!
+ · · ·
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I was able to obtain the differential equation

(x− 1)y′′ + 2y′ + y = 0.

However, this differential equation also does not seem to have a solution in terms of ele-
mentary functions.

This was getting me nowhere.
So at this point, I sent the problem of expressing Sn in terms of Hn to the American

Mathematical Monthly problem column, hoping that some reader would come up with a
solution. However, the Monthly problem column editors revised the problem and wound
up printing it as a request for finding asymptotic estimates for pn and qn [8]. Furthermore,
they omitted all mention of Hn.

Fortunately, the Monthly solvers lived up to their reputation and gave more than was
asked for. Gerald Edgar and Klaus Zacharias noted [2] that if Kn and In denote the usual
modified Bessel functions (see [10], pp. 79–80, or chapter 9 of [1]), which can be defined
(for positive integral n and complex z) by the series

(7) In(z) =
(z

2

)n ∞
∑

k=0

(z2/4)k

k!(n+ k)!

and

Kn(z) =
1

2

(z

2

)−n n−1
∑

k=0

(n− k − 1)!

k!

(

−z2/4
)k

+ (−1)n+1 ln
(z

2

)

In(z)

+(−1)n
1

2

(z

2

)n ∞
∑

k=0

{ψ(k + 1) + ψ(n+ k + 1)}
(z2/4)k

k!(n+ k)!

where
ψ(n) = −γ +Hn−1,

then we have the following recurrences:

Kn+1(x) =
2n

x
Kn(x) +Kn−1(x)

In+1(x) =
−2n

x
In(x) + In−1(x).
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Thus, Kn+1(2) and (−1)n+1In+1(2) both satisfy the recurrence (1). This agrees with
(6) since it is known that

In(z) = i−nJn(iz).

It also shows why equation (5) holds, since the series in (5) is a special case of equation (7)
and represents (−1)n+1In+1(2).

Since any linear combination of the solutions Kn+1(2) and (−1)n+1In+1(2) is also a
solution to the recurrence, we can find multipliers to get the initial conditions correct. Using

Kn+1(x)In(x) +Kn(x)In+1(x) =
1

x

we thus find that
pn = 2(−1)n+1K1(2)In+1(2) + 2I1(2)Kn+1(2)

and
qn = 2(−1)nK0(2)In+1(2) + 2I0(2)Kn+1(2).

This is an explicit solution to my original problem, however, I did not have Bessel
functions in mind as a “closed form” for Sn.

It is interesting to note (see [1]) that generating functions for In(z) and Jn(z) are given
by

e
1

2
z(t+1/t) =

∞
∑

n=−∞

tnIn(z) and e
1

2
z(t−1/t) =

∞
∑

n=−∞

tnJn(z), (t 6= 0).

At about the same time, D. H. Fowler [3] asked in The Mathematical Intelligencer for
the exact value of the infinite continued fraction

S =
1

1+

1

2+

1

3+
· · · = [1, 2, 3, . . .] .

In the published solution, M. S. Klamkin stated that the result

(8) [n, n+ d, n+ 2d, n+ 3d, . . .] =
In

d
−1

(

2
d

)

In

d

(

2
d

)
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follows easily from the material in [6]. In particular, we have

[n, n+ 1, n+ 2, n+ 3, . . .] =
In−1(2)

In(2)
.

This generalizes AMM problem 4631 (see [7]), where it was shown that [1, 2, 3, . . .] =
I0(2)/I1(2).

From equation (8) we see that the continued fraction [k, 3k, 5k, . . .] can be put in the
closed form

[k, 3k, 5k, . . .] =
I−1/2(1/k)

I1/2(1/k)
.

Amazingly, this can be simplified by using the identities

I−1/2(x) =

√

2

πx
coshx and I1/2(x) =

√

2

πx
sinhx

from [1] to yield

[k, 3k, 5k, . . .] = coth
1

k

which is a well-known continued-fraction expansion for coth.
Does the fact that this result can be expressed in terms of hyperbolic trigonometric

functions give any hope to our being able to express related results in terms of trigonometric
expressions?

Open Questions.

Getting back to Sn, we leave the reader with the following open questions:

1. Is there a simple closed form for Sn not involving Bessel functions or Hypergeometric
functions?

2. Can Sn, pn, or qn be expressed in terms of Harmonic numbers? (how about Stirling
numbers?)

3. Is there a polynomial g(x, y, z), such that g(Hn, Sn, n) = 0 for all positive integers n?
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