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It is well known ([1] for example) that the closed unit interval is the continuous image

of the Cantor Set. The usual proof proceeds as follows.

The standard Cantor middle thirds set can be realized as the set

C =

{ ∞
∑

n=1

tn

3n
: tn = 0 or tn = 2

}

.

One may then construct a map f : C → I by

f :

∞
∑

n=1

tn

3n
7→

∞
∑

n=1

φ(tn)

2n
,

where φ(0) = 0 and φ(2) = 1. One then checks that f is continuous and surjective.

This is an elegant proof that cannot be improved upon.

That which follows is an alternate proof of the same result. The main virtue of this

approach is that it introduces the reader to some classical results of general topology and to

the concept of the code space which is very useful in the growing area of dynamical systems.

1. The Code Space. In the sequel, we will let S denote the set of all functions

from N (the set of natural numbers 1, 2, 3, . . . ) to the set Z2 (the integers (mod 2) which

contains two elements denoted by 0 and 1). We will topologize S by describing a basis. For

every x ∈ S let N(x, 0) = S. For every x ∈ S and n ∈ N, let

N(x, n) = {y ∈ S : y(i) = x(i), 1 ≤ i ≤ n}.
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It is clear that {N(x, n) : x ∈ S, n = 0, 1, 2, . . .} is a base for a topology on S. We will

always understand S to be equipped with this topology. The space S is often referred to as

the code space on the symbols 0 and 1 .

It turns out that S is a metric space in this topology. A function d : S × S → [0,∞)

can be defined as follows. Let d(x, y) = sup{ 1

m
: y ∈ N(x,m − 1),m ∈ N}. It is left as an

exercise for the reader that d is a metric that induces the given topology on S.

It is also useful to note that S is homeomorphic to the product space Z2×Z2×Z2× . . .

with the product topology where Z2 is understood to have the discrete topology. It now

follows by the Tychonoff Theorem that S is compact.

A topological space X is said to be perfect if every point in X is a limit point of X .

A space X is said to be totally disconnected if none of its connected subset contains more

than one point.

We now state a classical theorem of general topology whose proof may be found in [1].

Theorem 1. If X is a compact, perfect, totally disconnected metric space, then X is

homeomorphic to the Cantor Set.

We may now prove the following.

Corollary 2. S is homeomorphic to the Cantor Set.

Proof. As we have already stated, S is a compact metric space. It is easy to check that

S is perfect. It suffices to show that S is totally disconnected.

Now suppose that T is a subset of S that contains points x 6= y. We wish to construct

a separation of T . Let k ∈ N be such that x(k) 6= y(k). Of course N(x, k) is open in S; we

claim that S −N(x, k) is open in S. Suppose that z ∈ S −N(x, k). Let w ∈ N(z, k). Note

that there is a 1 ≤ i ≤ k such that z(i) 6= x(i). Hence, w(i) 6= x(i). It now follows that

N(z, k) ⊂ S −N(x, k). Therefore S −N(x, k) is open.

Let U = N(x, k) ∩ T and let V = (S −N(x, k)) ∩ T . Since x ∈ U and y ∈ V it follows

that (U, V ) is a separation for T .

Observe that any subset of a totally disconnected space is totally disconnected and any

subset of a metric space is metric. Therefore we have the following.

Corollary 3. A closed, perfect subset of a set homeomorphic to the Cantor Set is

homeomorphic to the Cantor Set.

2. Special Subsets of S. Let x ∈ S. If x(n) = x(n + 1) = · · · = x(n + k − 1) for

some n, k ∈ N, then we say that x has a run of length k. Define ρ(x) = sup{k : x has a run

of length k}.
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For n ∈ N, let Bn = {x ∈ S : ρ(x) ≤ n}.

Lemma 4. Bn is closed for every n ∈ N.

Proof. Let n ∈ N. Suppose that x ∈ S − Bn. Then x has a run of length n + 1.

In particular, say that x(l) = x(l + 1) = · · · = x(l + n) for some l ∈ N. Note that

N(x, l + n) ⊂ S −Bn. Therefore Bn is closed.

Lemma 5. If n ≥ 2, then Bn is perfect.

Proof. Let n ≥ 2 be given. Suppose that x ∈ Bn. We claim that x is a limit point of

Bn. Let k ∈ N. We wish to show that N(x, k) contains an element y of Bn besides x.

Let y(i) = x(i) for 1 ≤ i ≤ k. Suppose that x(k) = 0. If x(k + l) = 0 for all even l ∈ N

and x(k + l) = 1 for all odd l ∈ N, then define y(k + 1) = 1 and y(k + 2) = 1 and define

y(k+ l) = 0 for all odd l ∈ N with l ≥ 3 and y(k+ l) = 1 for all remaining l ∈ N; otherwise

define y(k + l) = 0 for all even l ∈ N and y(k + l) = 1 for all odd l ∈ N. Then y 6= x and

y ∈ Bn. In the case that x(k) = 1, we may proceed similarly.

Theorem 6. If n ≥ 2, then Bn is homeomorphic to the Cantor Set.

Proof. This follows by Corollary 3 and Lemmas 4 and 5.

3. A Special Mapping. For m,n ∈ N with m ≤ n, let [m,n] = {k ∈ N : m ≤ k ≤ n}.

Let n ∈ N and x ∈ Bn be given. Suppose that

x(m) = x(m+ 1) = · · · = x(m+ k − 1) 6= x(m+ k)

and either m = 1 or x(m− 1) 6= x(m). Then we say that [m,m+ k − 1] is a segment of x,

that is of length k.

Note that the segments of x ∈ S form a partition of N. Given x ∈ S let {[ak, bk] : k ∈ N}

be the set of segments of x with notation chosen so that a1 = 1 and ak+1 = bk + 1 for all

k ∈ N. Let δ(x, k) = bk − ak. Note that δ(x, k) + 1 is the length of [ak, bk].

Define g : B10 → I by

g(x) =
∞
∑

k=1

δ(x, k)

10k
.

Theorem 7. g is a continuous surjection.
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Proof. Let x ∈ B10 be given. Let {[ak, bk] : k ∈ N} be the set of segments of x with

notation chosen as above. Suppose that n ≥ bk and y ∈ N(x, n). Then δ(x, i) = δ(y, i) for

1 ≤ i ≤ k. So

|g(x)− g(y)| ≤

∞
∑

j=k+1

(

9

10

)j

≤

(

1

10

)k

.

It follows that g is continuous.

To show that g is a surjection, let a ∈ I. Then

a =

∞
∑

i=1

ai

10i

for some ai ∈ N and 0 ≤ ai ≤ 9. One may easily create an x ∈ B10 such that δ(x, i) = ai

for all i ∈ N.
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