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Some years ago a problem was proposed in the American Mathematical Monthly [1] for

which the editors received no correct solutions before the deadline. Although eventually

a solution was published (under the title “One Tough Area Problem” [2]), it is relatively

involved. I would like to present a quite different, simpler solution.

The problem is to find the area of the convex planar region

R = {P : PA+ PB + PC ≤ 2a},

where ABC is an equilateral triangle of perimeter 3a.

For convenience we take a = 1. We start by imposing a rectangular coordinate system

in which the coordinates of A, B, C are (−1/2, 0), (1/2, 0), and (0,
√

3/2) respectively. As

mentioned in [2], the convexity of R is relatively easy to show using the triangle inequality.

Let ∂R denote the boundary of R. Clearly A, B and C are on ∂R. We may deduce that the

portion of ∂R in quadrant I is a convex curve connecting C and B. A parameterization of

this curve may be obtained by constructing a circle of radius r, 0 ≤ r ≤ 1, with center C; and

an ellipse with foci A and B, and major axis of length 2−r. If P is the point of intersection

in quadrant I, then PC = r and PA + PB = 2 − r, so that PA + PB + PC = 2. See the

figure below. As r goes from 0 to 1, P travels along ∂R from C to B. The coordinates

(x, y) of P can be found by solving the system

(1) x2 + (y −
√

3/2)2 = r2

(2)
x2(

2−r
2

)2 +
y2(

2−r
2

)2 − ( 12)2 = 1.
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Multiplying (1) by
(
2−r
2

)−2
and subtracting the result from (2) we eliminate x2, and find

(after a bit of algebra) that y = (1− r)
√

3− r(2−
√
3
2

√
3− r). Setting

(3) s =
√

3− r

we obtain

(4) y = s(s2 − 2)

(
2−
√

3

2
s

)
.

From (1) we get x2 = r2 − (y −
√

3/2)2 = (r − y +
√

3/2)(r + y −
√

3/2). Therefore by (3)

and (4) x2 equals

(5)

[
(s2 − 3)− s(s2 − 2)

(
2−
√

3

2
s

)
+

√
3

2

][
(s2 − 3) + s(s2 − 2)

(
2−
√

3

2
s

)
−
√

3

2

]
.

We may make use of the system (1)–(2) to factor (5) completely. From equation (1)

we see that r = 0 (and hence s =
√

3) implies that x = 0. We find that
√

3 is a root of both

factors in (5). In our search for other roots we note that by (2) r = 2 (and hence s = 1)

also implies that x = 0. We verify that 1 is a double root of the first factor in (5). Next we

observe that in (4) s = 1 gives y = −2 +
√

3/2. But, when r = 2, from (1) y = 2 +
√

3/2

is also a possibility. This value may be obtained in (4) by setting s = −1. We verify that

s = −1 is a double root of the second factor in (5). From this we may factor (5):

x2 =
3

4
(s−

√
3)2(s− 1)2(s+ 1)2

[
4−

(
s−
√

3

3

)2]
.

Setting 2t = s−
√

3/3, and simplifying we arrive at the following parameterization for

the portion of ∂R in the first quadrant:

x(t) =

(
−8
√

3t3 + 4
√

3t− 4

3

)√
1− t2(6)

y(t) = −8
√

3t4 + 8
√

3t2 − 4

3
t− 5

√
3

6
(7)
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where r ∈ [0, 1] =⇒ s ∈ [
√

2,
√

3] =⇒ t ∈ [(
√

2−
√

3/3)/2,
√

3/3].

From calculus,

α := area of R in quadrant I =

∫ √3/3

(
√
2−
√
3/3)/2

x(t)y′(t) dt.

Once we determine the value of α the computation of area(R) follows. We may decompose

R into the equilateral triangle ABC, and three regions each congruent to the region of R

in quadrant I outside of the segment CB. This latter region has area α−
√

3/8 and hence

(8) area(R) = area(4ABC) + 3(α−
√

3/8) = 3α−
√

3/8.

From (6) and (7) we obtain

(9) x(t)y′(t) = 16

(
48t6 − 48t4 +

10
√

3

3
t3 + 12t2 − 5

√
3

3
t+

1

9

)√
1− t2.

The integrals In :=
∫
tn
√

1− t2 dt; n = 0, 1, 2, 3, 4, 6; are standard and are given by

I0 =
1

2
t
√

1− t2 +
1

2
sin−1 t

I1 =
1

3
(−1 + t2)

√
1− t2

I2 =
1

4

(
−1

2
t+ t3

)√
1− t2 +

1

8
sin−1 t

I3 =
1

5

(
−2

3
− 1

3
t2 + t4

)√
1− t2

I4 =
1

6

(
−3

8
t− 1

4
t3 + t5

)√
1− t2 +

1

16
sin−1 t

I6 =
1

8

(
− 5

16
t− 5

24
t3 − 1

6
t5 + t7

)√
1− t2 +

5

128
sin−1 t.
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Multiplying each of the In by the appropriate coefficient from (9) and combining terms

we obtain

α =

[
16

{(√
3

9
− 23

72
t− 7
√

3

9
t2+

15

4
t3+

2
√

3

3
t4−9t5+6t7

)√
1− t2+

31

72
sin−1 t

}]√3/3

(
√
2−
√
3/3)/2

.

By some tedious but straightforward computations we may evaluate this last expression,

and using (8), we find that the desired area is

−10
√

2

9
+

(
187

72
− 89

√
6

72

)√
5 +
√

24 +
62

3

[
sin−1

(√
3

3

)
− sin−1

(√
2−
√

3/3

2

)]
−
√

3

8
.
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