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Some years ago a problem was proposed in the American Mathematical Monthly [1] for
which the editors received no correct solutions before the deadline. Although eventually
a solution was published (under the title “One Tough Area Problem” [2]), it is relatively
involved. I would like to present a quite different, simpler solution.

The problem is to find the area of the convex planar region
R={P:PA+ PB+ PC < 2a},

where ABC' is an equilateral triangle of perimeter 3a.

For convenience we take a = 1. We start by imposing a rectangular coordinate system
in which the coordinates of A, B, C are (—1/2,0), (1/2,0), and (0,v/3/2) respectively. As
mentioned in [2], the convexity of R is relatively easy to show using the triangle inequality.
Let OR denote the boundary of R. Clearly A, B and C' are on OR. We may deduce that the
portion of R in quadrant I is a convex curve connecting C' and B. A parameterization of
this curve may be obtained by constructing a circle of radius 7, 0 < r < 1, with center C; and
an ellipse with foci A and B, and major axis of length 2 —r. If P is the point of intersection
in quadrant I, then PC' = r and PA+ PB =2 —r, so that PA+ PB + PC = 2. See the
figure below. As r goes from 0 to 1, P travels along OR from C to B. The coordinates
(x,y) of P can be found by solving the system

) o+ (= V32 =1
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Multiplying (1) by (257')72 and subtracting the result from (2) we eliminate 22, and find
(after a bit of algebra) that y = (1 —r)v/3 —7(2 — §\/3 — 7). Setting

(3) s=v3—r
we obtain
(4) y = s(s* —2) (2 - \fs)

From (1) we get 22 = r2 — (y — V/3/2)? = (r —y + v/3/2)(r +y — V/3/2). Therefore by (3)
and (4) 22 equals

(5)  |(s* =3)—s(s? 2)(2 ?g) + \ﬂ {(52 —3) + s(s? 2)<2 ‘fs> — ‘ﬂ

We may make use of the system (1)—(2) to factor (5) completely. From equation (1)
we see that 7 = 0 (and hence s = \/3) implies that z = 0. We find that V/3 is a root of both
factors in (5). In our search for other roots we note that by (2) » = 2 (and hence s = 1)
also implies that © = 0. We verify that 1 is a double root of the first factor in (5). Next we
observe that in (4) s = 1 gives y = —2 ++/3/2. But, when r = 2, from (1) y = 2 + /3/2
is also a possibility. This value may be obtained in (4) by setting s = —1. We verify that

s = —1 is a double root of the second factor in (5). From this we may factor (5):

Setting 2t = s — v/3/3, and simplifying we arrive at the following parameterization for
the portion of OR in the first quadrant:

(6) x(t) = (—8\/§t3 +4V/3t — g) V1-—1t2
(7) y(t) = —8v/3t4 +8v/3¢> — %t _ %
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where r € [0,1] = s € [vV2,V3] = t € [(vV2—-3/3)/2,/3/3].

From calculus,

V3/3
o := area of R in quadrant I = / z(t)y'(t) dt.
(VI-/3/3)/2

Once we determine the value of a the computation of area(R) follows. We may decompose

R into the equilateral triangle ABC, and three regions each congruent to the region of R
in quadrant I outside of the segment C'B. This latter region has area oo — /3 /8 and hence

(8) area(R) = area(AABC) + 3(a — V/3/8) = 3a — V/3/8.

From (6) and (7) we obtain
10 5
(9) a(t)y'(t) = 16 (48t6 — 48t + ‘fﬁ +12¢2 — it + 9> V1-t2.
The integrals I,, := [t"v1 —t>dt; n =0,1,2,3,4,6; are standard and are given by

1 1
Iozit 1—t2+§sin_1t

1
11:5(71+t2) 1—12
1/ 1
12_4<—2t+t3> 1—#2+ —sin ¢
1 2 2 44\, /
1/ 3
14_6<8t t3+t5> 1—124 —sin 't
1/ 5 5 1
Ig=-——t— =3P+t |V1-t24+ — Ly
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Multiplying each of the I,, by the appropriate coefficient from (9) and combining terms

we obtain

V3/3

3 23 7V3, 15, 2V3 31

o= [16{ (\[—t—\ft2+t3+\[t4—9t5+6t7) 1 —t2+sin_1tH .
9 T2 9 4 3 72 (VI-/3/3)/2

By some tedious but straightforward computations we may evaluate this last expression,

and using (8), we find that the desired area is
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