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In this paper, we show that if a set A of reals contains a translated copy of every finite

set then for any (additive) proper subgroup F of R, A \ F contains a translated copy of

every finite set. This implies that the real line is not the finite union of proper subgroups

of R. It is interesting to note that no group is the union of two proper subgroups but there

is a group, namely {1, 3, 5, 7} under addition modulo 8, which is the union of three proper

subgroups. Existence of small sets of reals (in the sense of category and measure) containing

a translated copy of every countable set is proved in [3].

Throughout this paper, R denotes the set of all real numbers, N is the set of all positive

integers and R∗ denotes the set of all nonzero reals.

Proposition 1. If F is a proper subgroup of R, then |R : F |, the index of F in R is

infinite.

Proof. Suppose |R : F | is finite. Then R is a finite union of left cosets F+xi, 1 ≤ i ≤ m.

Since {nxi : n ∈ N} is infinite for each i, for infinitely many n, nxi belongs to the same

coset, say F + xj . Hence there exists a smallest positive integer Yi such that Yixi ∈ F ,

because n1xi and n2xi ∈ F + xj for some n1, n2 imply that (n1 − n2)xi ∈ F . Let ℓ be the

least common multiple of Yi for 1 ≤ i ≤ m. Then ℓxi ∈ F for every i ≤ m. For any r ∈ R,

r = f + xi for some f ∈ F and some i ≤ m. Hence ℓr ∈ F for all r ∈ R, and consequently

ℓ
(

r
ℓ

)

= r ∈ F for all r ∈ R, which contradicts that F is a proper subgroup of R.

Corollary 1. R is not the direct sum of a cyclic subgroup and a proper subgroup of R.

Proof. If R =< g > +F , then g
2

= ng + f for some n ∈ Z and f ∈ F . Then

(2n − 1)g ∈ F and consequently R is a finite union of left cosets of F in G, contradicting

Proposition 1.

Remark 1. It can be easily seen from the proof of Proposition 1 that if G is any additive

subgroup of R such that g
n
∈ G for all g ∈ G and n ∈ N or G is the multiplicative subgroup

of R∗ such that g
1

n ∈ G for all g ∈ G and n ∈ N , then G contains no proper subgroup of

finite index. For example, the set of all rationals under addition or the set of all positive

real numbers under multiplication contains no proper subgroup of finite index.
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Proposition 2. If a subset of A of R contains a translated copy of every finite set, then

for any proper subgroup F of R, A \ F contains a translated copy of every finite set.

Proof. Let H be a finite set of n elements. Since |R : F | is infinite, R ⊇ F + ri for

every i ∈ N , where ri − rj /∈ F whenever i 6= j and i, j ∈ N . Since H + {ri : 1 ≤ i ≤ n+1}

is finite, H + {ri : 1 ≤ i ≤ n + 1} + r ⊆ A for some r ∈ R. It suffices to prove that

H + ri + r ∩ F = ∅ for some i ≤ n + 1. Suppose H + ri + r ∩ F 6= ∅ for every i ≤ n + 1.

Then for each i ≤ n+ 1, there exists hi ∈ H such that hi + ri + r ∈ F . Since |H | = n and

there are n+ 1 values for i, hj = hℓ for some j 6= ℓ and 1 ≤ j, ℓ ≤ n+ 1. Hence

hj + rj + r − (hℓ + rℓ + r) = rj − rℓ ∈ F ,

which contradicts the fact rj − rℓ /∈ F .

Corollary 2. R is not the finite union of proper subgroups of R.

Proof. Suppose

R =
⋃

Fi ,

where Fi is a proper subgroup of R and 1 ≤ i ≤ n. Then by Proposition 2, R \ F1 contains

a translated copy of every finite set. By continuing in this fashion,

R \
⋃

1≤i≤n

Fi = ∅

contains a translated copy of every finite set. This is impossible.

Definition. The algebraic difference of a set A of reals, denoted by D(A), is defined to

be {x− y : x, y ∈ A}.

A classical result of Piccard [4] states that if A is a Baire set and is of second category,

then D(A) = A−A contains an interval.

The following lemma (stated without proof in [2]) is slightly stronger than Piccard’s

theorem.

Lemma 1. If Q is a set of the first Baire category and a < b, then

D((a, b) \Q) = D(a, b) = (a− b, b− a).

First we shall prove a lemma, which is slightly stronger than the above lemma, to prove

a proposition.
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Lemma 2. Let (a, b) be an interval and x a fixed element in (a, b). If a set A contains

a translated copy of {x, y} for every y ∈ (a, b), then D(A) ⊇ (a− x, b− x).

Proof. If not, find an element i in (a − x, b − x) \D(A). Then {x, x + i}+ r ⊆ A for

some r in R, and consequently i ∈ A−A = D(A), which contradicts the choice of i.

Proposition 3. Let a < b. If Q is a set of the first Baire category, or Q is a subgroup

of R of uncountable index, then D((a, b) \Q) = (a− b, b− a).

Proof. Let x be a fixed element in (a, b). Suppose Q is a set of the first Baire category.

Then for every y in (a, b), {x, y} + r ⊆ (a, b) for all r ∈ (0, b − max{x, y}) = I (say). If

{x, y} + r ∩ Q 6= ∅ for every r ∈ I, then there exists a second category subset J of I such

that for all r ∈ J , x + r ∈ Q or y + r ∈ Q for all r ∈ J . This contradicts that Q is of first

category. Thus (a, b)\Q satisfies the hypothesis of Lemma 2. Now, suppose Q is a subgroup

of R of uncountable index. If {x, y}+ r∩Q 6= ∅ for all r ∈ I, then I ⊆ (Q−x)∪ (Q−y). By

using the fact that any open interval of length |I| is a translated copy of I, it can be easily

seen that R is contained in a countable union of sets of the form Q− x, which contradicts

that |R : Q| is uncountable. Thus (a, b) \ Q contains a translated copy of {x, y} for every

y ∈ (a, b).

In both cases, by Lemma 2, D((a, b) \ Q) ⊇ (a − x, b − x) for every x ∈ (a, b) and

consequently D((a, b) \ Q) ⊇ (a − b, b − a). Trivially D((a, b) \ Q) ⊆ (a − b, b − a). This

completes the proof.
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