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In a first course on basic group theory, one of the standard problems is to show that

if G = {x1, x2, · · · , xn} is an abelian group and n is odd then the product x1x2 · · ·xn = e,

where e is the identity element G. In this short note, we give a counter example to show

that the above result is not true if we drop the ‘abelianness’ of the group. In looking for

an example, we do not need to consider a group of order 3, 5, 7, 11, 13, 17, 19, because

these are primes and any group of prime order is cyclic and hence abelian. Also n = 9

does not work, because it is the square of a prime and hence the group is abelian. Also

by fairly standard arguments, one can see that group of order 15 is abelian. Therefore

the first possible candidate for a counter example is a group of order 21. Apart from the

cyclic group of order 21, there is a unique non-abelian group of order 21 (refer to p. 112,

problem 11(b) of [1]). We show that this unique non-abelian group G of order 21 works as a

counter example. As a matter of fact, we find an arrangement x1, x2, · · · , x20 of non-identity

elements of G such that the product x1x2 · · ·x20 is non-identity. Let a, bǫG such that order

of a and b be 3 and 7 respectively and e be the identity element of G. Let

G = {e, a, a2, bi, abi, a2bi : 1 ≤ i ≤ 6}.

Since a−1 = a2, and {e, bi, 1 ≤ i ≤ 6} is a normal subgroup of G (by Sylow Theorem), and

since ab 6= ba, there exists an i, 2 ≤ i ≤ 6, such that aba2 = bi.

Now we let,

x1 = ab2, x5 = ab4, x9 = ab6, x13 = a, x17 = b3,

x2 = a2b2, x6 = a2b4, x10 = a2b6, x14 = a2b, x18 = b4,

x3 = ab3, x7 = ab5, x11 = a2, x15 = b, x19 = b5,

x4 = a2b3, x8 = a2b5, x12 = ab, x16 = b2, x20 = b6.
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Since aba2 = bi, the product

x1x2 · · ·x10 = b2i+2b3i+3 · · · b6i+6

= bi(2+3+···+6)+(2+3+···+6)

= b20i+20 = b20(i+1).

Also since a3 = e and b7 = e, the product x11x12 · · ·x20 = b2. Hence the product

x1x2 · · ·x20 = b20(i+1)+2. Since 7 does not divide 20(i + 1) + 2 for 2 ≤ i ≤ 6, the product

x1x2 · · ·x20 6= e.

Remark. By Proposition 6.1, p. 97 [2], it can be seen that the value of i in the above

argument can only be either 2 or 4 but not both. But this is not relevant in the above.
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