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Although a major portion of this article is devoted to the development of a trigonomet-

ric series that fails to converge absolutely on [0, 2π] but nevertheless is the Fourier Series

of a continuous function, for the benefit of those readers who might have lost touch with

Fourier Series, I will provide some definitions and various facts related to convergence of

Fourier Series without going into proofs. The study of Fourier Series is an area that often

remains completely unfamiliar to many of our undergraduates unless they are in a program

that requires courses such as PDE or applied mathematical analysis/advanced engineering

mathematics, in order to graduate. It is my understanding that a large number of this pub-

lication’s readers are students and instructors of undergraduate mathematics. Even though

I am focusing on one aspect of the convergence of Fourier Series in this article, this project

gave me the opportunity to learn many things about Fourier Series that I had not known

or had forgotten. I hope the readers will benefit from the small exposure to Fourier Series

which this article provides and the subsequent interest in learning more about Fourier Series

which this might possibly evoke. Some definitions and related results:
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(1) A trigonometric series is of the form

∞
∑

n=−∞

Cne
inx

where Cn = an + ibn (n = 0,±1, . . .) are complex numbers. This also can be written in the

form

A0 +

∞
∑

n=1

(An cos (nx) + Bn sin (nx)) ,

where
A0 = 2C0, An = (an + a−n) + i(bn + b−n),

Bn = (b−n − bn) + i(an − a−n) .

If C0 is real and C−n = Cn for n = 1, 2, . . . , then A0, An and Bn will all be real.

The series (1) is said to converge on [0, 2π] if the sequence of partial sums {Sn(x)}

converges on [0, 2π], where

Sn(x) =

n
∑

m=−n

Cmeimx , n = 1, 2, . . . .

The trigonometric series (1) is said to be the Fourier Series of an integrable function f

on [0, 2π], with period 2π, if, for each n,

Cn =
1

2π

∫ 2π

0

f(t)e−intdt .

Many questions concerning a trigonometric series arise – questions about when a

trigonometric series is the Fourier Series of a function, when does the Fourier Series of
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a function converge, when does it converge to the function itself, and the various types

of convergence of a trigonometric series such as pointwise convergence, absolute conver-

gence, and uniform convergence. A great number of these questions have been dealt with

in research articles that have been published over the years.

As I had indicated earlier, I am focusing on the development, by Rudin and Shapiro

(see [1], section 6), of an interesting trigonometric series that fails to converge absolutely

on [0, 2π] but nevertheless is the Fourier Series of a continuous function. Amazingly, the

justification of many of the facts about this trigonometric series involves simple techniques

such as ‘Mathematical Induction’ and well-known results about uniform convergence of

series of functions, such as the ‘Weierstrass M -test.’ (see [3], Chapter 11, section 11-4)

The trigonometric series (1) is said to be absolutely convergent if the series

∞
∑

n=−∞

|Cn|

converges.

I will now state a result (see [2], Chapter I, Section 12) which will play an important role

later in the discussion: “If a trigonometric series has a subsequence of partial sums that

converges uniformly to function f on [0, 2π], then the trigonometric series is the Fourier

Series of this continuous function f .”
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The construction of a trigonometric series of the form

∞
∑

n=1

Cne
int (C−n = 0 for n ≥ 0)

that is the Fourier Series of a continuous function f on [0, 2π] although

∞
∑

n=1

|Cn|

fails to converge is done in several steps, as follows:

Define trigonometric polynomials {Pm(t)}∞
m=0 and {Qm(t)}∞

m=0 on [0, 2π], inductively

by letting

P0(t) = 1 = Q0(t) and for m ≥ 0 ,

Pm+1(t) = Pm(t) + ei2
m

tQm(t) and

Qm+1(t) = Pm(t)− ei2
m

tQm(t) .

We make the following observations (A) through (D) about the trigonometric polynomials

Pm(t) and Qm(t):

(A) Claim. Pm(t) and Qm(t) are continuous on [0, 2π] with

|Pm(t)| ≤ 2(
m+1

2
) and |Qm(t)| ≤ 2(

m+1

2
) .
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Proof. Clearly Pm(t) and Qm(t) are continuous. Note

|Pm(t)|2 + |Qm(t)|2 = Pm(t)Pm(t) +Qm(t)Qm(t)

(where ( ) is the complex conjugate of ( ).)

= (Pm−1 + ei2
m−1

tQm−1)(Pm−1 + e−i2m−1
tQm−1)

+ (Pm−1 − ei2
m−1

tQm− 1)(Pm−1 − e−i2m−1
tQm−1)

= 2(|1Pm−1|
2 + |Qm−1|

2)

= 22(|Pm−2|
2 + |Qm−2|

2)

= · · · = 2m(|P0|
2 + |Q0|

2) = 2m+1 .

Therefore, |Pm(t)|2 ≤ 2(
m+1

2
) and |Qm(t)|2 ≤ 2(

m+1

2
) .

(B) For each m ≥ 0,

P̂m+1(n) = P̂m(n) for 0 ≤ n < 2m

where for any trigonometric polynomial

Sm(t) =

m
∑

n=−m

Cne
int ,

Ŝm(n) = Cn =
1

2π

∫ 2π

0

Sm(t)e−intdt , −m ≤ n ≤ m .
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To prove this, first note that by the way Pm and Qm are defined P̂m(n) = 0 = Q̂m(n) for

n < 0. Now,

P̂m+1(n) =
1

2π

∫ 2π

0

Pm(t)e−intdt+
1

2π

∫ 2π

0

Qm(t)e−i(n−2m)tdt = P̂m(n) + 0

since n− 2m < 0 ⇒ Qm(n− 2m) = 0 by the preceding remark.

(C) Defining the degree of the trigonometric polynomial

Sm(t) =
m
∑

n=−m

Cne
int

as the largest non-negative integer n for which |Cn|+ |C−n| 6= 0, we claim that the degree of

this Pm(t) and of Qm(t) is 2m−1, for each m ≥ 0. This can be proved using ‘Mathematical

Induction’ as follows:

Clearly, when m = 0, P0(t) = Q0(t) = 1 so degree P0 = 0 = degree Q0. Suppose, for

some m > 0, degree Pm = 2m − 1 = degree Qm, so that,

Pm(t) =

2m−1
∑

n=0

αne
int , Qm(t) =

2m−1
∑

n=0

βne
int .
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Then, since,

Pm+1(t) = Pm(t) + ei2
m

tQm(t) =

(2m−1
∑

n=0

αne
int

)

+ ei2
m

t

(2m−1
∑

n=0

βne
int

)

=

2m−1
∑

n=0

αne
int +

2m−1
∑

n=0

βne
i(n+2m)t

=

2m−1
∑

n=0

αne
int +

2m+1
−1

∑

k=2m

(βk−2m)eikt

and similarly,

Qm+1(t) =
2m−1
∑

n=0

αne
int +

2m+1
−1

∑

k=2m

(

βk−2m
)

eikt ,

it follows that degree Pm+1 = 2m+1 − 1 = degree Qm+1.

(D) It now follows, from (B), (C) and the definition of Pm and Qm, that there exists

a sequence {an}
∞

n=0 where an = ±1 for each n ≥ 0, such that

Pm(t) =
2m−1
∑

n=0

ane
int

for all m ≥ 0.

(E) We now define a sequence of trigonometric polynomials

{Tm(t)}∞
m=1 as Tm(t) = Pm(t)− Pm−1(t) .
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Note that Tm(t) can be written as Tm(t) = ei2
m−1

tQm−1(t) and also as

Tm(t) =
2m−1
∑

n=2m−1

ane
int .

Clearly, the degree of Tm(t) is 2m − 1.

(F) Claim. The sum of the absolute values of the terms of

Tm(t) is 2m−1 and |Tm(t)| = |Qm−1(t)| ≤ 2
m

2 .

Proof. Since

T (t) =

2m−1
∑

n=2m−1

ane
int

where an = ±1, it is clear that

2m−1
∑

n=2m−1

|ane
int| = 2m − 1− 2m−1 + 1

= 2m−1 .

Also

Tm(t) = ei2
m−1

tQm−1(t) ⇒ |Tm(t)| = |Qm−1(t)| ≤ 2
m

2 ,

by A. We now define a trigonometric series as follows: Consider:

∞
∑

n=1

2−nTn(t) (∗) .
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Substituting

2n−1
∑

k=2n−1

ake
ikt

in (∗), we obtain a trigonometric series

∞
∑

n=1

Cne
int , (∗∗)

where for each n ≥ 1, Cn = 2−kan, k being the integer satisfying 2k−1 ≤ n ≤ 2k − 1.

(G) It can be easily verified that the sequence of partial sums of (∗) is simply the

subsequence {S2n−1(t)}
∞

n=1 of the sequence of partial sums of the trigonometric series (∗∗).

(H) Claim. (∗) converges uniformly to a function f(t) on [0, 2π].

Proof.
|2−nTn(t)| ≤ 2−n2

n

2 (by F)

= 2−
n

2 .

Since the geometric series

∞
∑

n=1

2−
n

2

converges, Weierstrass’s M-test now yields the conclusion. Clearly f is continuous on [0, 2π].

(I) By (G) and a result stated earlier in this article, we now conclude that (∗∗) is the

Fourier Series of this function f(t) in (H).

(J) Claim. For the Fourier Series (∗∗),

∞
∑

n=1

|Cn|
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diverges.

Proof.

∞
∑

n=1

|Cn| =

∞
∑

n=1

2−k(2k − 2k−1) (by the definition of (∗∗))

=

∞
∑

n=1

1

2
.

In conclusion, I would like to say that the slick argument that is required in justifying

the claims and conclusions in steps (G) through (J) is one reason why I feel this article is

worth sharing with other mathematicians, although I am concentrating on one aspect of

Fourier Series rather than a general discussion of Fourier Series.
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