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ABSTRACT. For a finite subgroup G of GL(2,C), we consider the moduli space .#y
of G-constellations. It depends on the stability parameter 6 and if 6 is generic it is
a resolution of singularities of €2/G. In this paper, we show that a resolution ¥ of
C? /G is isomorphic to .4y for some generic 6 if and only if Y is dominated by the
maximal resolution under the assumption that G is abelian or small.

1. Introduction

The moduli spaces of G-constellations (on an affine space) are introduced
in [CIO4]. It is a generalization of the Hilbert scheme of G-orbits, which is
denoted by G-Hilb. The moduli space depends on some stability parameter 6
and the moduli space of f-stable G-constellations is denoted by .#y. If G is a
subgroup of SL(n, C) acting on C" and n < 3, then .#j is a crepant resolution
of €"/G for a generic stability parameter 0. The main result of [CI04] is that
for a finite abelian subgroup G C SL(3,C) and for a projective crepant resolu-
tion ¥ — C* /G, there is a generic stability parameter 6 such that Y =~ ./,.
See [Kel4], [NdCS17], [Junl6] and [Junl8] for related results.

The purpose of this paper is to consider the case where G is a finite
subgroup of GL(2,C). In this case, G-Hilb(C?) is the minimal resolution of
€’ /G by [Ish02] but ., is a resolution which may not be minimal for generic 0
(as we see in this paper). Then what is the condition for a resolution ¥ — €2
to be isomorphic to some .#;? One important observation is that there is a
fully faithful functor (see Theorem 3)

D?(coh ) — D’(coh® €?)

between the derived categories. According to the DK hypothesis [Kaw18], the
inclusion of derived categories should be related with inequalities of canonical
divisors. Then it is natural to ask if the following is true: Y is isomorphic
to .y for some @ if and only if Y is between the minimal and the maximal
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resolutions (see Conjecture 4), where the maximal resolution means the unique
maximal one satisfying the inequality as in [KSB88]. The main result of this
paper is the following. Recall that G is said to be small if it contains no
pseudo reflection.

THEOREM | (= Theorem 7). Let G C GL(2,C) be a finite small subgroup
and let X = € /G be the quotient singularity. Then a resolution of singularities
Y — X is isomorphic to My for some 0 if and only if Y is dominated by the
maximal resolution.

Conjecture 4 is a conjecture for general (not necessarily small) finite sub-
groups where the maximal resolution is defined for the pair of the quotient
variety €2/G and the associated boundary divisor. The “only if” part of
the conjecture is proved in Proposition 1 by using the embedding of G into
SL(3,C) and the fact that the moduli space of G-constellations for G C
SL(3,C) is a crepant resolution of €*/G. We can show that the conjecture is
true if G is abelian (Theorem 5) by using the result of [CI04]. The idea in the
non-abelian case of Theorem 1 is to use iterated construction of moduli spaces
as in [IINdC13] and reduce the problem to the abelian group case. Namely,
let N be the cyclic group generated by —/, which is a normal subgroup of
every non-abelian finite small subgroup. We consider G/N-constellations on
the moduli space of N-constellations in §7. In order to do such iterated con-
structions, we define G-constellations on a general variety and consider their
stability parameters in §6. A key to the proof of Theorem 1 is the descrip-
tion of the space of stability parameters for G/N-constellations on the moduli
space of N-constellations, which is done in §8.1. The proof of Theorem 1 is
completed in §8.2.
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2. G-constellations on C”"
2.1. Definitions. Let V' =C" be an affine space and G C GL(V) a finite
subgroup.

DEerFINITION 1. A G-constellation on V is a G-equivariant coherent sheaf
E on V such that H°(E) is isomorphic to the regular representation of G as a
C[G]-module.
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Let R(G) = @/}elrr(G) Zp be the representation ring of G, where Irr(G)
denotes the set of irreducible representations of G. The parameter space of
stability conditions of G-constellations is the @-vector space

0 = {0 € Homz(R(G), @) | 0(C[G)) = 0},

where C[G] is regarded as the regular representation of G. The definition of
the stability is based on the stability of quiver representations [Kin94]:

DeriNITION 2. A G-constellation E is O-stable (or 0-semistable) if every
proper G-equivariant coherent subsheaf 0 C F C E satisfies 0(H°(F)) > 0 (or
O(H°(F)) = 0). Here the representation space H’(F) of G is regarded as an
element of R(G).

By virtue of King [Kin94], there is a fine moduli scheme .#y = .4y(V') of
O-stable G-constellations on V.

DeriNITION 3. We say that a parameter 0 € O is generic if a f-semistable
G-constellation is always 6-stable.

There is a morphism 7 : .#y(V) — V /G which sends a G-constellation to
its support. It is a projective morphism if § is generic (see [CI04, Proposition
2.2)).

2.2. Results of [CI04]. In this subsection, we recall results from [CI04]. Sup-
pose ¥V =€ and let G C SL(V) be a finite abelian subgroup. For a generic
parameter 6 € ©, the morphism

Ty — C)G
is a projective crepant resolution and we have a Fourier-Mukai transform
@y : D’ (coh .#y) = D (coh®(C?)).

Here for a variety Y, coh Y denotes the category of coherent sheaves on Y
and if Y is acted on by a finite group G, cth(Y) denotes the category of
G-equivariant coherent sheaves on Y. The subset of @ consisting of generic
parameters is divided into chambers; the moduli space .#; and the equiv-
alence @y depend only on the chamber to which 0 belongs. Thus we write
Mc and @ instead of .#y and @y where C is the chamber that contains 6.
We write

Qc - K(COh() ﬂc) — K(COhg(C3))

for the induced isomorphism of the Grothendieck groups of the full sub-
categories cohg .#, and cohOG (C?) consisting of sheaves supported on the sub-
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sets 7'(0) and on {0} respectively. Since K(coh{'(€?)) has a basis consisting
of skyscraper sheaves () ® p with p e Irr(G), it is naturally identified with
R(G).

The dual of ¢ is regarded as the map

¢ : K(coh®(C?)) — K(coh .p)

between the Grothendieck groups of the categories of sheaves without restric-
tions on the supports. Then K(coh®(C?)) is identified with Hom(R(G),Z)
and ¢/ induces an isomorphism

@ = F'K(coh .y) g,

where F'K(coh .#y) is the subgroup consisting of the classes of objects whose
supports are at least of codimension i.

On ./ there are tautological bundles %, for irreducible representations
p such that (—Bp R, ¢ p has a structure of the universal G-constellation. For
OeC,

Ze(0) = @) (det 2,)27")
P

is the (fractional) ample line bundle on .#, obtained by the GIT construction.
It coincides with the class

[0 (0)] € F'K(coh 4c)q/F?K(coh .4c)q = Pic(AMc)g (2.1)

as in [CI04, §5.1]. Hence [p5(0)] € Amp(.4c) where Amp(.#c) is the ample
cone considered in Pic(.#c)g. The main theorem of [CI04] and the argument
in [CI04, §8] show the following:

TurOREM 2 ([CI04]).  For any projective crepant resolution Y — C°/G and
a class 1 € Amp(Y), there exist a chamber C with Y = M¢ and a parameter
0 € C satisfying | = [p&(0)).

Proor. The existence of a chamber C such that Y = .#. is [Cl04,
Theorem 1.1]. Moreover, [CI04, Proposition 8.2] ensures that we can find
a chamber C and a parameter 0 e C with /= [py(0)]. Suppose 0e C\C.
We have to see we can perturb ¢ in the fiber of po ¢ so that 0 is in some
chamber, where

p: F'K(coh .#¢)q — Pic(tlc)q

is the projection. Here recall that a wall of the chamber C is either the pre-
image of a wall of the ample cone by p o ¢& (type I or III) or does not contain
a fiber of po ¢} (type 0); see [CI04, Theorem 5.9]. In our case, po ¢, (0) =1
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is ample and therefore 0 is on walls of type 0. Since the images of adjacent
chambers in F'K(coh Ac)q are related as in [CI04, (8.2) or (8.3)], we can
perturb 0 in the fiber of po g/ and go out of walls.

2.3. G-constellations on C>. Let G be a finite subgroup of GL(2,0).

THEOREM 3. If 0 is generic, then the moduli space My is a resolution of
singularities of C* /G.  Moreover, the universal family of G-constellations defines
a fully faithful functor

@y : D’(coh .#y) — D’(coh® €?).

Proor. This is essentially Theorem 1.3 in the first arXiv version of
[BKRO1]. We have the inequality

dim Ay x g2 ) My < dim €

which is sharper than the assumption in [BKRO1]. This allows us to apply the
argument of [BKROI] (without using the triviality of the Serre functors) to
show that @y is fully faithful and that .4 is smooth and connected (see [Ish02,
Theorem 6.2]).

The problem we consider is to characterize the resolutions Y such that
Y =~ .y for some generic 0.

3. The maximal resolution

Let G be a finite subgroup of GL(2, C), which is not necessarily small, i.e.,
the action may not be free on €*\{0}. Then the quotient variety X = €*/G is
equipped with a boundary divisor B determined by the equality n*(Ky + B) =
Kg2. More precisely, B is expressed as

o le—l
B_Z m; Bj)
J

where B; C X is the image of a one-dimensional linear subspace whose point-
wise stabilizer subgroup G; C G is cyclic of order m;. Note that G is small
if and only if B=0. Let 7: Y — X be a resolution of singularities and
write

Ky +1,'B=1"(Ky + B)+ Y _ak;, (3.1)

where E; are the exceptional divisors and ¢; € Q. Recall that (X, B) is a KLT
pair ([KM98, Proposition 5.20]), which implies @; > —1 for all . Then among
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the resolutions Y which satisfy a; < 0 for all 7, there is a unique maximal one,
as in [KSBS88] (see also [Kawl8, Theorem 17]). It is called the maximal
resolution of (X, B) and we denote it by Y.

Notice that the system of inequalities ¢; <0 is an inequality between
canonical divisors. According to the DK-hypothesis [Kaw18], the inequality
should correspond to the embedding of derived categories in Theorem 3 with
Y = #y. Thus we make the following conjecture:

CONIECTURE 4. Let G C GL(2,C) be a finite subgroup and consider the
quotient X = (Ez/G with the boundary divisor B. For any resolution of singu-
larities Y — X, there is a generic 0 € @ with Y = My if and only if there is a
morphism Yyax — Y over X.  Here Yoy is the maximal resolution of (X, B).

4. “Only if” part
In this section, we show the ‘“‘only if” part of Conjecture 4. Embed

A 0
GL(2,C) into SL(3,C) by sending a matrix 4 € GL(2,C) to (O det(A)1>'

Then for fe®, we can consider the moduli space .#,(C?) of O-stable
G-constellations on €* with respect to the action of G on C>.

LEMMA 1. For any 0 € O, there is a closed embedding My — My(C*) which
fits into the commutative diagram

My —— gﬂo((]?)
C’/G =—— /6.

Moreover, if 0 is generic for G-constellations on C°, then the vertical arrows are
projective and hence are resolutions of singularities.

ProOF. Recall that the universal family of G-constellations on € is given
by the tautological bundles {%p}pelrrG and the G-equivariant morphism

P

@%p®cp_>c3®<@%®cp>. (4.1)
p

If p,,, denotes the representation given by G C GL(2,C), then €° above is
Poat @ det pr. Taking the third coordinate of €* in (4.1) we obtain a
morphism

Y 1)
Zp + Ty = Rpdet pyy,
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for each p. It is straightforward that the scheme theoretic intersection of the
zero loci of z,’s is isomorphic to .#,. Hence .#y is a closed subscheme of
AMp(C?). Moreover, we can see that the composite .#y — .#y(C?) — C*/G
factors through € /G. If 0 is generic for G-constellations on €3, then it is
also generic for G-constellations on €2, from which the projectivities of the
vertical arrows follow.

Now let us prove the “only if” part.

ProposITION 1. If 0 is generic, then there is a morphism Yma.x — My
over X.

ProoF. Putting Y = .4, we show that ¢; <0 for all 7 in (3.1). Embed
G into SL(3,€) and consider U := .#,(C?), the moduli space of 0-stable
G-constellations on €°. Here, we may assume that ¢ is generic for G-
constellations on €* by slightly perturbing @ if necessary. Then U is a
crepant resolution of ©°/G containing ¥ by Lemma 1 and therefore we
have

Let z be the coordinate function of € such that €*> ¢ €* is defined by z = 0.
Then z” is invariant under the action of G where n is the order of G. We
claim that the principal divisor (z”) on U is of the form

=nY + Z B’ + Z di Dy, (4.3)

where B’ ,Dj C U are prime divisors such that B’ Ny = T*IB and D;NY is
contamed in the exceptional locus of ¥ — €?/ G (or empty). This is saying
that there exists an exceptional prime divisor B; of U — C’ /G lying over B;
with BiNY = t7!B; and that its coefficient in (z") is M. We may check
this over the complete local ring (9(D /G p at a point Pe B]\{O} Since Gj is

the stabilizer subgroup of a point of €* lying over P, there is an isomorphism
of complete local rings:

0, 3/GP; ¢3/G’H'

Let B be a line in €* mapped to B; and take a Gj-invariant linear subspace
B of @* such that

(]:3 = Ej X B/L
Then G, = Z/m;Z is a subgroup of {1} x SL(B/-l) and therefore we have
C’/G; = B, x (B /G)),
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where 1~3jL /Gj is a rational double point of type 4,, 1. Thus we can see that
on the crepant resolution

U X(c3/6) Spec @C3/G,P — Spec @¢3/G,P =~ Spec @C3/G,~,[0]7

there is a prime divisor l?; with desired properties such that the coefficient of
B’]f in the divisor (z”) is m; — 1. Since m; divides n, this proves (4.3).
From (4.2) and (4.3), we obtain

d
Ky+1'B= —ng(ka Y).

Here, note that z” is a regular function and therefore the coefficients in (4.3) are
all non-negative. Especially, we have dj > 0 for all k. This proves the asser-
tion since Ky + BePic(X) ® @ =0 in (3.1).

5. Abelian group case

Let G C GL(2,C) be a finite abelian subgroup of order n. As in the
previous section, we embed G C GL(2,C) into SL(3,C).

THEOREM 5. Conjecture 4 is true if G is abelian.

Proor. It is sufficient to prove the “if” part by Proposition 1. Let
Y - X =C? /G be a resolution which is dominated by Ymax. By Proposition
2 below, there is a projective crepant resolution U — €*/G such that ¥ C U.
Then [CI04] ensures that there is a generic parameter 0 such that U =~ .#,(C?).
Then .#,(C?) is isomorphic to ¥ by Lemma 1.

Before stating the proposition, we need some notation. We diagonalize
G and write

g = diag((;, £)
for g € G where {, is a primitive n-th root of unity. Put

1
Ny := ZZ‘FZZ'E(agvbg)a
ge@G

1
Ny =17+ ZZ;(ag,bg, —ay — by)
ge@G

which are the lattices of one-parameter subgroups for the toric varieties €*/G
and @©°/G respectively. The junior simplex A C (N3)g is the triangle with
vertices ey, ey, e3 where {ej,e;, e3} is the basis of Z* with ej,e; € Z2. A



G-constellations and the maximal resolution of a quotient surface singularity 383

crepant resolution U corresponds to a basic triangulation of 4. For a basic
triangulation X of A4, let Uy be the corresponding crepant resolution.
Consider the natural projection

p12: N3 — N>

and put 4’ := pip(4) = 4. Let e} € (Rsg)e; N N, be the primitive vector and
write ¢; = mye] for i=1,2. If B; C C?/G denote the divisor corresponding to
e/, then

- m; — 1 ny — 1

B:= B, + B
mq ny

is the boundary divisor for the quotient C?> /G. A resolution Y of C? /G is

given by choosing primitive vectors uvg,vy,...,0s of (Zzo)zﬂNz such that
vg =ej, vy=e} and {v;_1,v;} is a basis of N, for i=1,...,s. If E; denotes
the exceptional divisor corresponding to v; for i=1,... s — 1, then the dis-

crepancy «; of E; for the pair (X, B) is o; + ff; — | where v; = (o, ;). There-
fore, Y is dominated by the maximal resolution Yya.x of (X, B) if and only if all
of vy,...,v,_1 are in A4’

Let G(1,0) C G be the stabilizer subgroup of (1,0) € C*=C*x {0} c .
Then G(;) acts on {1} x €C? =~ € as a subgroup of SL(2) and the quotient
({1} x (Ez)/G(LO) is a closed subvariety of €*/G. Let

W — ({1} x €*)/G,

be the minimal resolution. Notice that W is contained in any crepant res-
olution U of €*/G since ({1} x (]32)/G(1,0) C €*/G is transversal to the one-
dimensional stratum (C* x {(0,0)})/G. Now we prove the following proposi-
tion. The surjectivity of the ample cones will be used in the proof of the main
theorem.

PROPOSITION 2. Let Y — C? /G be a resolution dominated by Yp.x. Then
there is a projective crepant resolution U = Uy — C° /G containing Y such that
the restriction map Amp(U) — Amp(W) of the ample cones is surjective.

ProoF. Since Y is dominated by Y.y, it is defined by primitive vectors
Vo, V1,...,0s€ A’ N N;. Let w;e 4N N3 be the unique lift of v;. For a basic
triangulation X of 4, U = Us contains Y if and only if the points connected
to e3 in X are exactly wy,...,wy.

We prove the assertion by the induction on the order |G| of G. If |G| =1,
then there is nothing to prove. We consider the number

vi=#({wo,...,ws_1}\{e1}) = 0.
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If v=0, then s must be 1 and wy = e; is a primitive vector. Especially,
{e1,v1} is a basis of N,. In this case, 4 has a unique basic triangulation X
and Us @ W x C. Hence the restriction map Amp(Us) — Amp(W) is an
isomorphism.

Suppose v > 0. Let we {wy,...,w,_1}\{e1} be a point such that the co-
efficient of e3 in w is the smallest. Then w determines a star subdivision of
A:4 :U?:1 A; where Ay, 45, A3z are the triangles weye;, weje;, wejer re-
spectively. Note that either 4, or A3 may be degenerate, in which case we
simply ignore the degenerate one in the sequel. This subdivision of 4, which
is denoted by Xy, determines a projective crepant birational morphism Uy, —
C?/G where Us, is a toric variety with at most Gorenstein quotient singu-
larities. The choice of w implies that wy,...,w, are in 4; U 4,. Hence by
the induction hypothesis, there are basic triangulations 2| and X, of 4; and
A, respectively, which satisfy the following conditions: in X} UZX,, the ver-
tices connected to e3 are exactly wy,...,ws, the map Amp(Usz,) — Amp(W) is
surjective and Amp(Us,) is non-empty. We choose an arbitrary basic trian-
gulation X3 of 43 with non-empty Amp(Uy,). Combining the triangulations
2y, 2, and X3 together, we obtain a basic triangulation of A such that
Us D Y. Since 4= Ule 4; is a star subdivision, we see that Uy — Us, is
a projective morphism and the map Amp(Us) — Amp(Us,) is surjective.
Therefore, the morphism Us — €°/G is also projective and Amp(Us) —
Amp(W) is surjective.

6. G-constellations on a variety

In the case of G-constellations for non-abelian G C GL(2,C), we shall
use the iterated construction of moduli spaces for a normal subgroup of G as
in [IINdC13]. In order to do so, we have to consider G-constellations on a
variety, rather than an affine space. Especially, the space of stability param-
eters will be larger than the affine case in general.

Suppose U is a quasi projective variety of finite type over € and G is
a finite group acting on U. Let coh®(U) be the abelian category of G-
equivariant coherent sheaves on U and cohgﬁ(U ) its subcategory consisting of
sheaves whose supports are proper over €. The corresponding Grothendieck
groups are denoted by K(coh®(U)) and K (cothpt(U)) respectively. We also
consider the perfect derived category Perf”(U) of G-equivariant perfect com-
plexes and its Grothendieck group K(Perf®(U)). For o e K(Perf®(U)) and

pe K(cohgt(U)), we write

2(o,) = (=1)" dim Ext{ (. )°. (6.1)

1
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Let cohf; (U) be the subcategory of cohCGpt(U) consisting of sheaves
with O-dimensional support. We define the stability condition of objects in

G
cohy’ g (U).

DerINITION 4. Fix a class ¢ e K(Perf“(U)). An object E e cohfy, (U)
is said to be &-stable (or &-semistable) if y(&, E) = 0 and if for every non-trivial
G-equivariant subsheaf F of E, y(&,[F]) > 0 (or x(&,[F]) = 0).

In the case where U = C" is an affine space with a linear G-action,
K(Perf%(U)) = K(coh®(U)) is isomorphic to (the dual of) the representation
ring R(G) and the definition coincides with the (Z-valued) one in §2.1.

We have a well-defined function rank : K(Perf®(U)) — Z which extends
the rank of a locally free sheaf. Put

K(Perf¢(U))? := {¢ € K(Perf ©(U)) | rank & = 0}.

DerFINITION 5. A G-constellation on U is a G-equivariant coherent sheaf
E on U with finite support such that H°(E) is isomorphic to the regular
representation of G as a representation of G and y(&, E) =0 for any &€
K (Perf¢(U))°.

For any ¢e K(Perf®(U))’, we can discuss the &-(semi)stabilities of
G-constellations on U according to Definition 4. Since the multiplication
by a positive integer does not change the stability condition, we may replace
K(Perf?(U))° by K(Perf(U))g,

REMARK 1. In general, there may exist an object E supported on
several fixed points such that H°(E) = R(G) but y(¢,E) #0 for some e
K (Perf®(U))°.  Definition 5 excludes such cases.

REMARK 2. If U is smooth, then K(Perf®(U)) coincides with K(coh(U))
and we write K(coh®(U))" instead of K(Perf®(U))".

Now we define the moduli functors of G-constellations:

DEFINITION 6. Fix a class & e K(Perf (U ))2). Then the moduli functor
for the &-stable G-constellations on U is defined to be the functor

S — {flat families of &-stable G-constellations parameterized by S}/~

for a locally noetherian scheme S over C where Eg ~ Fs for flat families Eg
and Fg means that there is a line bundle L on S such that Eg ~ Fg ® L.

REMARK 3. We show the existence of the moduli scheme in a very special
case in Theorem 6. We do not discuss the existence problem in a general case
in this paper.
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7. [Iterated construction of moduli spaces

In this section, let ¥ denote either €> or €> and consider a finite sub-
group G C GL(V) with a normal subgroup N of G such that N C SL(V).
Let

0N :R(N) - Z

be a generic stability parameter for N-constellations on V', which is fixed by
the conjugate action of G on R(N). Put Yy = .#,v(V) and G= G/N. Since
N C SL(V) and dim V' < 3, there is an equivalence

@ : D" (coh®(Yy)) = DP(coh (7)) (7.1)
as in [IU15, Theorem 4.1] defined by
®(—) =R(py).((py,) (=) @ %)

where pyp, py, are the projections of Yy x V' and % is the universal family
of N-constellations.

LemMA 2. Let & be a G-equivariant coherent sheaf on Yy with finite
support. Then & is a G-constellation on Yy if and only if ®(&) is a
G-constellation on V. In this case, ®(&) is 0" -semistable.

ProOF. By the definition of @, we can see that @(&) is a 0-dimensional
sheaf. Since @ is an equivalence, we have y(¢,&) = x(@(&), @(&)). More-
over, we can see rank & = rank @(&) for any & e K(coh®(Yy)). Therefore, if
& is a G-constellation, (¢, @(&)) =0 for any & € K(coh®(V))®.  This implies
that H°(&(&)) is a multiple of the regular representation C[G]. If we regard
& as an object of coh(Yy), it is an Artinian sheaf of length |G| and therefore
@(&) as an object of coh™ (V) has a filtration of length |G| whose factors are
0" -stable N-constellations. Therefore, ®(&) is 0" -semistable and H°(d(&))
as a representation of N is the direct sum of |G| copies of the regular repre-
sentation of N. This implies that H°(®(&)) = C[G] and therefore @(&) is a

G-constellation. The converse is proved in the same way.
The following lemma follows from the arguments in [BKRO1, §8]:

LemMmA 3. Let E be an N-equivariant coherent sheaf on V with finite sup-
port such that H'(E) is isomorphic to ©[N|®* for some integer s > 0 as a C[N]-
module. If E is O -stable, then we have s =1, i.e., E is an N-constellation.

We compose 0" with the restriction map R(G) — R(N) and regard it as a
stability parameter for G-constellations as in [IINdC13, §2.2].
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LemMA 4. Let E be a G-equivariant coherent sheaf on V with finite support
such that H(E) = Z|G)®* for some s. If E is 0" -semistable in coh®(V), then
it is also O"-semistable in coh™ (V).

ProOF. Let #7: R(N) — Z be a group homomorphism such that #(p) > 0
for any irreducible representation p of N. We further suppose # is invariant
under the conjugate action of G. Then,

Z(E) := 0N (H(E)) + V—-1y(H (E))

defines a G-invariant Bridgeland stability condition [Bri07, Example 5.5] (see
also [BCZ17, Lemma 7.1.3]) on coh™(V),, the category of N-equivariant co-
herent sheaves on V' with 0-dimensional support. As in [BCZ17, Lemma
7.1.5], the equality 0" (H°(E)) = 0 implies that E is 0" -semistable if and only
if it is semistable with respect to Z. Assume E is not 0" -semistable and let
F C E be the first step of the Harder-Narasimhan filtration of E in coh™(E)
with respect to Z. Then the uniqueness of the HN filtration and the
G-invariance of Z imply that F is invariant under the G-action. This means
that F is a subsheaf of E in coh®(¥), which contradicts the 6" -semistability
of E in coh(V).

ProrosITION 3. The functor @ induces a bijection from the set of
G-constellations on Yy to the set of 0~ -semistable G-constellations on V.

Proor. If & is a G-constellation on Yy, then &(&) is a 0"-semistable
G-constellation by Lemma 2. Conversely, suppose E is a 0%-semistable
G-constellation on V. By Lemma 2, it suffices to show that @ !(E) lies in
cth(YN) and has a 0-dimensional support. For this purpose, we may regard
@ as an equivalence D’(coh Yy) = D’(coh”™(V)). By Lemma 4, E is 0"-
semistable as a sheaf in coh™ (V) and therefore has a filtration whose factors
are 0" -stable N-constellations by Lemma 3. Then, @~ !(E) as an object in
D’(coh(Yy)) is a sheaf with a filtration whose factors are skyscraper sheaves.
This is what we needed.

Let
¢ : K(coh®(Yy))g > K(coh%(V))g = ©

be the isomorphism induced by @. The following theorem generalizes
[IINdC13, Theorem 2.6].

TurorREM 6. Let 0" : R(N) — Z be a generic stability condition for
N-constellations fixed by the conjugate action of G and & e K(coh®(Yy))" be
a stability parameter for G-constellations on Yy.
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(1) There exists a scheme M:(Yy) representing the moduli functor for
E-stable G-constellations on Yy.
(2) If we put

0 := mO" + ¢(¢)

SJor m >0, then My(V) is isomorphic to the moduli space M:(Yy) of
E-stable G-constellations on Yy.

ProOF. What we prove is that .#,(V) in (2) represents the moduli functor
in (1). We choose m so that

m > Z p)| dim p.

pelr(G)

Then for any subsheaf F of a G-constellation, we have |(p(&))(F)| < m.

Let & be a ¢-stable G-constellation on Yy. Then ®(&) is a 0" -semistable
G-constellation by Proposition 3. Therefore, a subsheaf F of @(&) satisfies
ON(F)>0. If 0Y(F) >0, then we have O(F) >0 by our choice of m. If
ON(F) =0, then there is a subsheaf # of & such that F=&(F) as in
[IINdC13, Lemma 2.6]. Then we obtain 6(F) = y(&, %) > 0 by the E-stability
of &. Thus &(&) is O-stable.

Conversely, suppose E is a 0-stable G-constellation on V. Then it is 0% -
semistable by our choice of m and therefore & := @~ !(E) is a G-constellation
by Proposition 3. For a subsheaf # C &, F:= @(%) has a filtration as
an object of coh” (V) whose factors are N-constellations. Therefore F sat-
isfies 0" (F) =0 and hence we obtain y(¢& %) = O(F) > 0, which proves the
E-stability of .

Thus we have a bijection between &-stable G-constellations and O-stable
G-constellations. To establish an isomorphism .#y(V) = .#:(Yy), we show
that for any locally noetherian scheme S over C, this bijection can be extended
to a bijection between flat families of ¢-stable G-constellations and flat fam-
ilies of f-stable G-constellations parameterized by S. Let % be the universal
N-constellation on Yy x V' and %s be the pull back of % to Yy x V x S.
Then we can define a functor

®g : D’ (coh® Yy x S) — D?(coh® V x S)
by
Ds(—) = R(prxs).(Us @ py,.s(—))
whose quasi-inverse is given by

-1 _ VT2 L * N
Pg (=) = (pryxs).(%s[dim V] ® pys(=))"-
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Suppose &5 is a flat family of £-stable G-constellations on Yy parameterized

by S. Then, for any geometric point s of S, we have @gs(&s) (]>L§ O = D(&)
as in [Bri99, Lemma 4.1], which is a 0-stable G-constellation on V. Hence
the argument in [Bri99, Proposition 4.2] implies that @s(&s) is actually a flat
family of G-constellations on V. Conversely, if Eg is a flat family of f-stable
G-constellations, the same argument shows that @g'(Es) is a flat family of
&-stable N-constellations on Y.

8. The case G> -1

In this section, put ¥ = €* and assume that G C GL(V) contains —1I,
where I is the identity matrix. We put N :={(—I)» C G and G := G/N. Let
0N be any generic stability parameter for N-constellations (which is auto-
matically fixed by the conjugate action of G since N is central) and let Yy =
Myv (V) be the moduli space of N-constellations on ¥, on which G acts
naturally. Since Yy is a crepant resolution of the A; singularity V/N, the
maximal resolution of (Yy/G,By) coincides with the maximal resolution of
(X, B), where By is the boundary divisor on Yy determined by the ramification
of Yy — Yy/G.

Let C be the exceptional curve of Yy — V/N. Then the equivalence (7.1)
restricts to the equivalence

@ : D*(coh%(Yy)) = D’(cohf(V)) (8.1)

of full subcategories consisting of objects supported by the subsets C C Yy and
{0} C V respectively. Consider the Grothendieck groups of (8.1):

K(coh%(Yy)) = K(coh% (1)), (8.2)

where K(cohJ(¥)) is isomorphic to the representation ring R(G) of G. Recall
that there is a perfect pairing

% : K(coh®(V)) x K(cohd(V)) — Z
defined by (6.1), which is isomorphic to
71 K(coh%(Yy)) x K(cohl(Yy)) — Z
by @. Let
F:K(coh%(Yy)) C K(coh(Yy))

be the subgroup generated by the classes of objects whose supports are at
most i-dimensional. Then the classes of G-constellations on Yy lie in
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K (cohg(YN)) and for a stability parameter

e K(COhé(YN))Q = K(COh(g(YN));)’

*

the actual stability condition depends only on its image in FOK(coh(G;(YN))Q.

In the next subsection, we investigate the structure of FyK(coh&(Yy)).

8.1. Structure of FyK (cohg(YN)). In this subsection, we assume that G is not
abelian. Notice that G acts on the exceptional curve C = IP(V') through the
homomorphism

G — GL(V) — PGL(V)

and let Z C G be the kernel of G — PGL(V). It is the subgroup consisting
of scalar matrices in G.

Since G is non-abelian, G/Z C PGL(V) is a polyhedral (or dihedral) group
acting on IP(V) which we regard as a (real) 2-sphere. There are three non-
free G/Z-orbits in C: the projections of the vertices, edges and faces of the
regular polyhedron to the sphere. These orbits are denoted by Oy, O, and O;
respectively. B

For a G-orbit O C C, let coh§(Yy) denote the category of G-equivariant
coherent sheaves supported on O. Then we have an equivalence

cohg(YN) ~ cohg”( Yy) (8.3)

where Gp is the stabilizer subgroup of a point Pe O and cohgp (Yy) is the
category of Gp-equivariant coherent sheaves supported on P. Taking the
Grothendieck groups of the both sides, we obtain

K(coh$(Yy)) = R(Gp) (8.4)

where R(Gp) is the representation ring of Gp regarded as an additive group.

Let Gy C G be the stabilizer subgroup of a point in O, which is an
abelian group since Z := Z/N C Gy is central and G;/Z is cyclic. We con-
sider the pushforward maps

K(coh$, (Yy)) — FoK(cohl(Yy)) (8.5)
for k=1,2,3. By (8.4) for O = O, these maps are regarded as maps
Bi : R(Gy) — FoK(coh%(Yy)).
Since Z is a subgroup of G;, we have the induction maps

oy - R(Z) e R(Gk)
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Define a map «: R(Z)®? — R(G,) @ R(G,) ® R(G3) by

a(a,b) = (a1(a), —oa(a) + az(b), —as(b)).
The purpose of this subsection is to prove the following.

PROPOSITION 4.  Let Gy, By, o be as above. Then the following is an exact
sequence of additive groups:

0 — R(Z)®> % R(Gy) @ R(G,) ® R(G3) L FoK(cohl(Yy)) — 0

where 8= (B, 5, B3).

The proof of the proposition is divided into three steps below. We first
show that f is surjective:

SteEP 1. The additive group FyK (cohg(YN)) is generated by sheaves sup-
ported on O U Oy U Os.

PrOOF. It is obvious that FyK(coh%(Yy)) is generated by simple objects
(objects having no non-trivial subobjects). Moreover, a simple object is sup-
ported on a single orbit O and is determined by an irreducible representation
of the stabilizer subgroup Gp of a point Pe O by (8.3). Therefore, it is suf-
ficient to show that the class in K(coh%(Yy)) of a simple object & supported
on a free G/Z-orbit Oy coincides with the class of some object .# supported
on O;U O, U 0;. Actually, we prove that for any k € {1,2,3} we can choose
such an object # supported on O. Simple objects supported on the orbit Oy
are determined by irreducible representations of the stabilizer subgroup Z C G
by (8.3). To describe them, notice that C = IP(V) carries a G-equivariant line
bundle ¥ = O¢(1) on which an element Al € Z acts as the fiber-wise scalar
multiplication by 2. On %2, the G-action is reduced to a G-action and the
induced actions of Z on the fibers of #°, #2. ..., >V are the irreducible
representations of the cyclic group Z, where [ is the order of Z. Therefore, the
simple objects supported on O, are

$0|0/7$2|O/u..,7‘$2(!71)‘0f7 (86)

where we regard Oy as a reduced subscheme. Now consider the exact
sequences

O N gZi ® 6C(_0f) N ag)Zi N 321"0/» N O
and

0— L% ® Oc(—mOp) — L% — L%, 5, — 0
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for any k € {1,2,3} where ny is the order of Gi/Z. 1f we show Oc(—Oy) =
Oc(—n; Oy) in cth(YN), then we obtain
[$2i|0,] = [$2i|nk0k] (8~7)

in K(coh&(Yy)) for any k as desired.

Finally, we show Oc(—0Oy) = Oc(—niOy). Let C ~ P! be the quotient of
C by the action of G/Z. Then both Oc(—0Oy) and Oc(—nOy) are the pull-
backs of Oz(—1) (equipped with the trivial G-action) and hence we obtain the
isomorphism.

StEP 2. foa=0.
Proor. This is equivalent to the equality
froog = py00 = f300;.
We recall the isomorphism (8.4) for a free G/Z-orbit Oy C C:
R(Z) = K(coh§ (Yy)).
Then it is sufficient to prove that f, o o, is identified with the pushforward map
K(coh§ (Yy)) — FoK(cohl(Yy)).

Recall that K(cohgf(YN)) has a basis of the form (8.6) and that their images
in K(cohl(Yy)) satisfy (8.7). Hence the problem is reduced to showing that
the map

K(coh§, (Yy)) — K(coh§, (V)
defined by
[Z%lo,] = [£%]00,]

is identified with the induction map o. The irreducible representation p; of
Z corresponding to [$2i|0/] is defined by sending [1I] € Z to /¥ € €. On the
other hand, we have

nk—l
[321|nk0k] = Z [321(—]'0k)|0k]-
=
Here 27| o, corresponds to a representation of G\ whose restriction to Z is p;.
Moreover, Oc(—jOk)|g, (0 <j<mn —1) correspond to the irreducible repre-
sentations of the cyclic group Gy/Z. Thus the element of R(G}) correspond-
ing to [£?], ] is the sum of all the irreducible representations of G; whose

restrictions to Z are p,. Since Gy is an abelian group, this is the induced
representation of p;. Thus we obtain oo =0.

Step 3. ker f=1Im a
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Proor. Notice that coker « is torsion free, f is surjective and ffoo = 0.
Therefore it suffices to show

i 3
rank FyK(cohl(Yy)) = Z rank R(Gy) — 2 rank R(Z).
=1

This follows from the following two equalities:

rank FOK(cohg( Yy)) = rank R(G) — rank R(Z) (8.8)
23: rank R(Gy) = rank R(G) + rank R(Z). (8.9)
=1

We first consider (8.8). The isomorphism (8.2) reduces (8.8) to the equality
rank K cohg(YN))/FoK(cohg( Yy)) = rank R(Z)
and therefore it suffices to show that the classes
[Oc], [£3,...,[L2)] (8.10)
form a free basis of the quotient K (cohg(YN)) /FOK(cohg(YN)) where
[ :=rank R(Z) = |Z|.

Recall that #? =~ w;! is a G-equivariant line bundle on C = IP(V). Since Z
acts on C trivially, if we regard #? as an object of coh?(C), we have

P> 0cQ2)®p;  in coh?(C) (8.11)

where 7 =imod / and py,p;,...,p,_; are the irreducible representations of the
cyclic group Z =~ Z/IZ. This implies that (8.10) is linearly independent. To
see that (8.10) is a generator, we show that for any object & € cohl(Yy) its
class [#] is a linear combination of (8.10) modulo FyK(coh%(Yy)). We may
assume that & is a locally free sheaf on C and we use the induction on rank &.
If rank & =0, there is nothing to prove and we may suppose rank & > 0.
If we regard & as an object of coh?(C), it splits as & = @, 6 ®¢ p; with
&; € coh(C). Suppose &; #0. For any integer m we have

Homg (2%, 6 ® 2% = HO((6 ® 2>"~2)%)/7, (8.12)
Here, (8.11) shows
(6 ® 22\ ~ & ® 0(2ml — 2i) # 0
and the restriction map

HO((§®$2’”172’.)Z_) N HO((5®$2171172i)Z|0f)
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is surjective for a G/Z-free orbit Or C C if m is sufficiently large. Since
H'(6® % 2”’[+2")Z|0/) is a non-zero multiple of the regular representation of
G/Z, its G/Z-invariant part is non-zero. Therefore, (8.12) is non-zero and
hence there is a non-zero homomorphism

o L @ L.

Now the induction hypothesis shows that coker o is a linear combination of
(8.10) modulo FyK(coh%(Yy)). This shows that the class [ ® £*"] is also a
linear combination of (8.10) modulo FyK(cohl(Yy)). Since we have

(6] — [6 ® £ e FyK(cohl(Yy)),

[6] is a linear combination of (8.10) modulo FOK(cohg(YN)). Thus (8.10) is a
free basis of K(coh&(Yy))/FoK(coh&(Yy)) and therefore we have established
(8.8).

Next we prove (8.9). Let ZL(V) C GL(V) be the subgroup consisting of
the non-zero scalar matrices and consider the multiplication map

1 ZL(V) x SL(V) — GL(V).

Then the kernel of u is a group of order 2 generated by (—I,—I). We
put G=px"'(G) and let H C SL(V) be the image of G with respect to the
second projection. For any element (z,/) € G, denote by Zz(z,h) and Zg(zh)
the centralizers of (z,4) in G and zh in G respectively. Then the restriction
u:Zgs(z,h) — Zg(zh) is a surjective two-to-one map and hence the number of
conjugates of (z,h) coincides with the number of conjugates of zk. Therefore,
the number of conjugacy classes in G is twice the number of conjugacy classes
in G. Thus we obtain

rank R(G) = % rank R(G).
Moreover, since G/Z =~ H and Z is central in G, this can be written as
rank R(G) = % rank R(H) x |Z| = rank R(H) x |Z|. (8.13)
Notice that H acts on V and H := H/N =~ G/Z C PGL(V) acts on C = IP(V).

Since H is in SL(V), the McKay correspondence for the binary polyhedral
(or dihedral) group H establishes

3
> |Hy| = rank R(H) + 1 (8.14)
k=1
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where Hj C H is the stabilizer of a point in Oy (the left hand side of (8.14)
is two plus the number of the irreducible exceptional curves in the minimal
resolution of V/H, which is also the minimal resolution of Yy/H). Moreover,
the isomorphism H =~ G/Z implies

|Hy| x |Z| = |Gi| = rank R(Gy). (8.15)
Putting the equalities (8.13), (8.14) and (8.15) together, we obtain (8.9).

COROLLARY 1. The dual module Homz(FyK (cohg(YN)),Z) is isomorphic
to

3 —
{(01,02703) € (@ Homgz(R(Gy),Z) | 01|; = 015 = 03|z}-

k=1

8.2. Main theorem.

PROPOSITION 5. Suppose a finite subgroup G C GL(2,C) contains —I and
Y — Yy/ G is a resolution dominated by Yna.x. Then there exists a generic
stability parameter 0 € O such that My =Y. Especially, the maximal resolution
Ymax of ((Ez /G, B) is isomorphic to the moduli space of G-constellations for some
generic stability parameter 0.

ProOF. We may assume G is non-abelian by Theorem 5 so we may
apply the results of section 8.1. If we show there exists a generic parameter
4 eK(cth(YN))% such that .#:(Yy) = Y, then the assertion follows from
Theorem 6.

Let Pe C be a point. Since G acts on Yy x €= .#yw(V x C) and Z
fixes (P,0), Z acts on the Zariski tangent space T := T (p o)(¥y x C) = €’ as
a subgroup of SL(T). Note that as a representation of Z, T is independent
of the choice of the point P. Let T/ C T be the two-dimensional Z-invariant
subspace transversal to C; then Z CSL(T'). Fix a generic stability parameter
0% € R(Z)q, for Z-constellations (on T) satisfying 0 (C[Z]) =0. Then W :=
,%HZ(T’) is the minimal resolution of 7'/Z. The Fourier-Mukai transform

0, R(Z)g = K(coh”(T"))q = K(coh W),
sends 0 to an element / 7 of F 'K (coh W)q = Pic(W)q, and it lies in the ample
cone Amp(W) as in (2.1). (Notice that here dim 7’ =2 and F?K(coh W) =
0.)

Take a point Py in the orbit Oy for each ke {1,2,3}. We consider the
tangent spaces T := T(p,0)(Yn x €C) and Ty = Tp (Yy). Let Ry denote the
complete local ring of Ty /Gy at [0] which is isomorphic to the complete local
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ring of Yy/G at [P]:

RkZZ@ ;(5

Te /Gy, 0] Yn/G.[Pi]*

By this isomorphism, there is a resolution
Yi — Ti/Gr
with an isomorphism

Yi X Spec Ry = Y x Spec Ry (8.16)

(Tw/Gy) (Yy/G)
over Spec R;. Since Gy is abelian, we can apply Proposition 2 where the first
factor of T = €% is Tp,(C) (so that (1,0) lies in Tp (C) and G,0)=Z) and

obtain a projective crepant resolution
U P — Tk / Gk

such that Y, C Us, and that the restriction map Amp(Us, ) — Amp(W) is
surjective. Choose a class /; € Amp(Us,) which is mapped to / )7 € Amp(W)
for each k. Then by Theorem 2 we can find a generic stability parameter 6y
for Gj-constellations on 7T such that ﬂek(f k) = Uy, and the class of (p;k(ﬁk)
in Pic(ng)(12 coincides with /. Since [gog;k(é’k)] = [, and [, restricts to / 7> Ok
restricts to 0 on R(Z). Then Corollary 1 shows that (6;,0,,0s) determines
an element of FOK(cohg(YN))ff). Lift it to an element feK(cth(YN))Q ~
K(cohg(YN))a Since the restriction of ¢ to K(cth(Ok))(12 = R(Gr)g is bk
which is of rank 0, we have rank £ = 0 and we can consider the moduli space
Me(Yy).
We claim that there is an isomorphism

M(YN) Xy, G Spec Ri = My (Ti) X7, /G,) Spec Ry (8.17)

over Spec R;. For any locally noetherian scheme S over Spec R;, an
S-valued point of the left hand side of (8.17) is given by a flat family of
&-stable G-constellations on Y parameterized by S, which is an object of
coh®(Yy X (¥y/G) S). Similarly, an S-valued point of the right hand side
of (8.17) is given by a flat family of 0-stable Gj-constellations on T} para-
meterized by S, which is an object of coh® (T} X (70/Go) S).

Notice that

YN X(YN/G) S~ (YN X(YN/G) Spec Rk) X(Spec Ry) S
= ( H Spec @YIWQ) X (Spec Ry) S
Qe O

D Spec (ﬁyN,pk X (Spec Ry) S



G-constellations and the maximal resolution of a quotient surface singularity 397

=~ Spec @Tk,o X (Spec R) S

~ T x S

(Ti/Gr)
which induces an equivalence

cohé(YN X S) = cohék(Tk X S)

(Yn/G) (Ti/Gi)

(this is almost the same as (8.3)). This equivalence gives a bijection between
S-valued points of the both sides of (8.17) and we obtain (8.17).

Our choice of 0 implies .#p, (T;) = Y, and hence (8.16) and (8.17) yield
an isomorphism

Me(Yn) X (¥v/G) Spec R, =~ Y X(¥v/G) Spec Ry.

over Spec Ri. Since .#:(Yy) and Y are both isomorphic to Yy/G except over
the points [P;], [P2], and [P3], we obtain .#:(Yy) =Y.

Recall that we say G C GL(2, €) is small if G acts freely on €*\{0}. The
following lemma follows from the classification of small subgroups of GL(2,C)
but we give a proof for the reader’s sake.

LemmA 5. If a finite small subgroup G C GL(2,C) is non-abelian, then it
contains —I as a unique element of order 2.

Proor. If G is non-abelian, then its image G’ C PGL(2,C) is also non-
abelian and therefore it is either a dihedral or a polyhedral group. Especially,
the orders |G’| and |G| are even. Then G contains an element of order 2. If
it is not —7, then it fixes a line in €2, contradicting the smallness of G.

THEOREM 7. If G C GL(2,C) is a finite small subgroup, then Conjecture 4
is true.

Proor. The abelian case follows from Theorem 5. Otherwise, G con-
tains —/ by the above lemma. Moreover, the minimal resolution of V/G
factors through Yy/G; see [Bri68]. Then the assertion follows from Proposi-
tion 5.
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