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ABSTRACT. This paper is concerned with the selection of explanatory variables in
multivariate linear regression. The Akaike’s information criterion and the C, cri-
terion cannot perform in high-dimensional situations such that the dimension of a vector
stacked with response variables exceeds the sample size. To overcome this, we con-
sider two variable selection criteria based on an L, squared distance with a weighted
matrix, namely the scalar-type generalized C, criterion and the ridge-type generalized
C, criterion. We clarify conditions for their consistency under a hybrid-ultra-high-
dimensional asymptotic framework such that the sample size always goes to infinity but
the number of response variables may not go to infinity. Numerical experiments show
that the probabilities of selecting the true subset by criteria satisfying consistency
conditions are high even when the dimension is larger than the sample size. Finally, we
illuminate the practical utility of these criteria using empirical data.

1. Introduction

Multivariate linear regression is an important and very widely used infer-
ential statistical methodology. It is the cornerstone of many theoretical and
applied statistics textbooks (see, e.g., Srivastava, 2002, chap 9; Timm, 2002,
chap 4) and it has widespread applications in many fields. Let ¥ = ( Yy
y(n))' be an n x p observation matrix stacking individual p response variables,
and X = (x(l),...,x<,1))' be an n x k observation matrix stacking individual
non-stochastic k& explanatory variables, where n is the sample size. Note that
X may include the intercept term that the column vector is 1,, where 1, is an
n-dimensional vector of ones. Assume that rank(X) =k <n to ensure the
existence of variable selection criteria used in this paper. We consider linear
regression for n samples of a vector of individual p response variables and
k explanatory variables on {( ygi),x(’i))'|i =1,...,n}. Then, the multivariate
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linear regression is written as
Y=X0+¢&,

where @ is a k x p unknown matrix of regression coefficients, and each row of
the n x p error matrix & is identically distributed with a mean vector 0,, which
is a p-dimensional vector of zeros, and a covariance matrix X.

In actual data analysis contexts, it is important to specify salient explan-
atory variables affecting response variables. In multivariate linear regression,
this is regarded as the problem of selecting the best subset of explanatory
variables. Variable selection criteria are widely used in empirical contexts to
choose the best subset of explanatory variables. The Akaike’s information
criterion (AIC) (Akaike, 1973; 1974) and the C, criterion (Sparks et al., 1983)
which is a multivariate version of Mallows’ C, criterion (Mallows, 1973; 1995)
are well-known examples in this respect. The AIC and C, criterion are
estimators of risk functions corresponding to the Kullback-Leibler loss function
and the mean squared prediction error standardized by the true covariance
matrix, respectively. Further, as extensions of the AIC and C, criterion, the
generalized information criterion (GIC) and the generalized C, (GC,) criterion
were proposed by Nishii e al (1988) and Nagai et al (2012), respectively.
The GIC and GC, criterion were generalized from the AIC and C, criterion
by replacing “2” (the penalty term for model complexity) with any positive
number. Note that the GIC includes the AIC, the Bayesian information
criterion (BIC) proposed by Schwarz (1978), a consistent AIC (CAIC) proposed
by Bozdogan (1987), and the Hannan-Quinn information criterion (HQC)
proposed by Hannan and Quinn (1979). Further, the GC, criterion includes
the C, criterion and the modified C, (MC,) criterion proposed by Fujikoshi
and Satoh (1997).

Importantly, there are increasing demands in recent years vis-a-vis ana-
lyzing high-dimensional data such that p exceeds n (for an example, see Wille
et al,, 2004). For high-dimensional cases, we need a variable selection cri-
terion which can be operationalized even when p > n. However, note that the
GIC consists of the logarithm of the determinant of the sample covariance
matrix, and the GC, criterion consists of the inverse matrix of the sample
covariance matrix. Therefore, since the sample covariance matrix becomes
singular when p is larger than n, more precisely n — k < p, the GIC always
gives —oo and the GC, criterion cannot be defined when p >n. However,
criteria proposed by Fujikoshi e al (2011), Yamamura er al (2010), and
Kubokawa and Srivastava (2012) are calculable even when p > n. Fujikoshi
et al. (2011) proposed the prediction error (PE) criterion based on the mean
squared prediction error. Yamamura et al (2010) and Kubokawa and
Srivastava (2012) proposed criteria using a ridge-type sample covariance matrix
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as an estimator of the true covariance matrix. Moreover, their criteria are
exact or asymptotically unbiased estimators of risk functions under some
conditions.

In this paper, we consider consistency as one of the asymptotic properties
of variable selection criteria. In a given variable selection context, the desired
outcome is to specify explanatory variables which substantively affect the
response variable according to the nature and extent of available empirical
data. In other words, it is hoped that the true subset of variables is identified
as the best subset by variable selection. Since we do not know the true subset,
we use a variable selection criterion to maximize the probability of selecting
the true subset. When the probability that the subset chosen by the variable
selection criterion is the true subset approaches 1, we say a variable selection
criterion is consistent, i.e., the following equation holds:

where j is the best subset according to the variable selection criterion and j,
is the true subset. It is expected that a consistent variable selection criterion
has a high probability of selecting the true subset when the amount of data
is sufficient. Therefore, consistency is an important property of a variable
selection criterion. In the context of n > p, assuming that the true distribu-
tion of the error vector is the multivariate normal distribution, Fujikoshi
et al. (2014) and Yanagihara et al (2015) obtained the consistency properties
of criteria such as the AIC and C, criterion. They used a moderate-high-
dimensional asymptotic framework such that both n and p go to co but p does
not exceed n. Moreover, Yanagihara er al. (2015) also used an asymptotic
framework defined by adding k/n — 0 to the moderate-high-dimensional
asymptotic framework. Relaxing the normality assumption, Yanagihara (2015)
dealt with conditions for consistency of the GIC under the moderate-high-
dimensional asymptotic framework. Under the normality assumption, Yana-
gihara (2016) obtained conditions for consistency of the GC, criterion under
a hybrid-moderate-high-dimensional asymptotic framework such that n goes
to oo and p may go to oo but p/n converges to some positive constant included
in [0,1). Relaxing the normality assumption, Yanagihara (2019) focused on
conditions for consistency of the GIC and GC, criterion under the hybrid-
moderate-high-dimensional asymptotic framework. As such, therein, p does
not exceed n. On the other hand, in the context where p > n, Katayama
and Imori (2014) considered variable selection criteria based on a lasso-type
estimation for the inverse of the covariance matrix. Under the normality
assumption, they showed that the criteria are consistent in a restricted-ultra-
high-dimensional asymptotic framework such that both n and p go to infinity
but p may exceed n and log p/n — 0 while k/n — 0.
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The aim of this paper is to obtain conditions for consistency of variable
selection criteria (which are introduced in subsection 2.1) under non-normality
and a high-dimensional asymptotic framework such that n goes to infinity but
p may exceed n. To obtain conditions for consistency, the following hybrid-
ultra-high-dimensional (HUHD) asymptotic framework is mainly used:

HUHD : n — 0, p/n— c €0, 0], k: fixed,

where ¢ = oo means that p/n goes to co. The HUHD asymptotic framework
has two key characteristics. First, the divergence speed of p is not restricted,
hence this asymptotic framework incorporates an asymptotic framework such
that both n and p go to oo but p may be larger than n, namely the ultra-high-
dimensional (UHD) asymptotic framework, which is written as

UHD : (n, p) — (o0, ©0), p/n— c€ 0, 0], k: fixed.

Second, the HUHD asymptotic framework also includes the large-sample
asymptotic framework such that only n tends to co. From this, it is expected
that consistent variable selection criteria under the HUHD asymptotic frame-
work select the true subset with high probability regardless of the size of p.

The remainder of the paper is organized as follows. In section 2, we
present the necessary notations and assumptions to clarify conditions for con-
sistency. In section 3, we obtain conditions for consistency. In section 4, for
the purposes of verification, we conduct numerical experiments and illuminate
the practical utility of consistent criteria by using real data examples. Tech-
nical details are provided in the Appendix.

2. Preliminaries

2.1. Models and criteria. Suppose that j denotes a subset of w = {1,...,k}
containing k; elements, and X; denotes an n x k; matrix consisting of columns
of X indexed by elements of j, where k4 is the number of elements in a set 4
denoted by k4 = #(A). For example, if j = {1,2,4}, then X, consists of the
first, second, and fourth column vectors of X. Then, the candidate model M;
with k; explanatory variables from subset j is expressed as follows:

M;: Y =X,0,+6&, (1)

where @; is a k; x p unknown matrix of regression coefficients, and each row
of &; is identically distributed with a mean vector 0, and a covariance matrix
Z;. Let j, (Cw) be the true subset, and assume that the data are generated
from the following true model M; with k; true explanatory variables:

Alj* . Y:X,*@* +(5D*7
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where @, is a k;, x p unknown matrix of the true regression coefficients and
&. = (e1,...,8,) is an n x p true error matrix. Assume that &,...,¢, are
identically distributed according to a distribution of ¢ with

Elg] =0,  Covle] =X.,  E[|e]|"] < oo,

where |g|>=¢c and X, is a px p true unknown covariance matrix.
Although it is typical to assume independence of ¢j,...,&,, here we assume
a moment condition which relaxes independence; specifically, we assume that
for any i # j, €,...,¢&, are satisfied with the following moment condition:

Elsief) = Ele)Elef),  Ellled’lleil1*) = Ellleil*)Elle; %],

Eleiefee]) = Eleef| Ele].

Note that the above moment condition is similar to assuming independence.
Without loss of generality, we sort column vectors of X as X = (X, Xj.),
where set 4¢ denotes the compliment of a set 4. Moreover, for expository
purposes, we represent X, , X, k;, and k., as X., X, k., and k, respectively.

We consider two variable selection criteria based on the following weighted
L, squared distance:

d(4,B|G) = tr{(A — B)G (4 - B)'},

where G is a positive definite matrix. Let S; be an estimator of X; in the
candidate model M;, which is given by
1

=0Tk Y'(I, - P)Y,

where I, is the n x n identity matrix, and P; is the projection matrix to the
subspace spanned by the columns of Xj, ie., P; = X,»(X;X,)_IX]{. Then, the
minimum value of d(Y,X;0;|G) with respect to @; is expressed as

min d(Y, X;6,|G) = w{Y'(1, - P)YG '} = (n—k) u(S5;,G7").  (2)

The minimum value in (2) expresses a measurement about the goodness of fit
for model M;. Using (2) in the candidate model M;, the following class of
variable selection criteria is considered:

L (jlo, G) = (n— ky) tr(S;G™") + apk;, 3)

where o is a positive constant which expresses the complexity of the model
M;. 1t is straightforward that (3) with « =2 and G =S, is the C, criterion
proposed by Sparks ef al. (1983) when n > p. Moreover, (3) with G = §,, is
the GC, criterion proposed by Nagai et al. (2012). However, the GC, criterion
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cannot be defined when p > n. Therefore, we consider two criteria obtained
by substituting one of two specific weighted matrices instead of S, into G
in (3). By substituting the scalar matrix p~! tr(S,)I, into G, we define the
scalar-type generalized C, (SGC,) criterion as follows:

tr(S))

SGG ) = p™' Ll ™ (Su)ly) = (1= k) S

+ ok;. 4)
Note that the SGC,(j|a) criterion is obtained by dividing % (j|o, p~! tr(S,)1,)
by p because the divided p is redundant for variable selection. The SGC,
criterion with o = 2 is essentially the same as the PE criterion proposed by
Fujikoshi et al. (2011). Moreover, the value tr(S;)/tr(S,,) in (4) corresponds
to the MANOVA test statistic in Fujikoshi etz al (2004). They applied the
Dempster trace criterion when p > n for tests about one and two sample mean
vectors in Dempster (1958; 1960). Note that there is no inverse of the sample
covariance matrix in the SGC, criterion. Thus, this criterion is calculable
even when p >n. Let S, be the ridge-type sample covariance matrix, which
is defined by
S}. = S(u + tr(}iw)lpz

where A is a positive ridge parameter. Then, by substituting §; into G, we
define the ridge-type generalized C, (RGC,) criterion as follows:

RGCy(jlo, 2) = L (jlo, 87) = (n — ky) (8,87 ") + aph;. (5)

The first term in (5) is similar to that of the ridge-type C, criterion used
by Kubokawa and Srivastava (2012). If S, is invertible and A = oo, then (5)
coincides with the GC, criterion. However, S, is singular when p >n. The
scalar matrix A~ tr(S,,)I, keeps S invertible even in such case. The best
subsets are given by minimizing the SGC, criterion and RGC, criterion, i.e.,
they are defined by

Jjs = arg min SGG, (j]2), Jjg = arg min RGC(jlex 2), (6)
JE, je st

where # is a family of subsets of w denoted by # = {ji,..., jx} and K is the
number of candidate subsets.

2.2. Assumptions for consistency. We prepare assumptions for consistency.
To describe several classes of j that express the column indexes of X in the
candidate model (1), we separate ¢ into two sets, one is the family of over-
specified subsets that includes the true subset, ie., 7, = {j€ #]|j. Cj}, and
the other is the family of underspecified subsets that are not overspecified



Consistent variable selection criteria in multivariate linear regression even when p >n 345

subsets, ie., # = # N _#. Let a px p non-centrality matrix and parameter
be expressed by

4;=0.X/(I,- P)X.0., 5 =tr(4)). (7)

It should be noted that 4, = O, , and (5]-2 = 0 hold from properties of projection
matrices if and only if je #,, where O, , is the p X p zero matrix. Then, we
prepare the following assumptions for consistency:

Al. The true subset j. is included in ¢, ie., j. € 7.

A2. limsup % tr(Z,) < 0.

p—0

A3, limsup —=— < oo, where 14 = E[[lg]|*] — tr(£.)? — 2 tr(Z?).
p—o tr(E*)

A4. For every je ¢ , there exists /€ j, N j¢ such that

lim inf lx}(l,, —P,)x, >0,  liminf 1 16,]1> > 0,
n—owo N p—© P

where w, = {/}°, and x, and 6, are the /-th column vectors of X,

and @/, respectively.
Assumption Al is needed to consider consistency. From the definition of
J., the true subset j. can be regarded as the smallest overspecified subset.
Assumption A2 is a regularity assumption for the true covariance matrix X,.
If the number of response variables whose variances are O(p) is finite and
the variances of the other response variables are O(1), assumption A2 holds.
Assumption A3 is the restriction for the fourth moment of &. From properties
of the multivariate normal distribution (e.g., Magnus and Neudecker, 1979;
Himeno and Yamada, 2014), x4 =0 when ¢ is distributed according to the
multivariate normal distribution. Moreover, some specific multivariate distri-
butions such as the multivariate z-distribution or the multivariate contaminated
normal distribution are satisfied with assumption A3. Assumption A4 con-
cerns explanatory variables and true regression coefficients. In terms of explan-
atory variables, this means that a sample covariance of residuals in the linear
regression of x, with the remaining X,, does not converge to 0. It is straight-
forward to show that this is weaker than assuming liminf, ., 7~ Ay (X'X) >
0, where Apmin(A4) is the minimum eigenvalue of a symmetric matrix 4. The
assumption for the true regression coefficients is essentially used in Katayama
and Imori (2014). For example, when all the elements of each 6, are non-
zero constants not converging to 0, the assumption for the true regression
coefficients holds. Moreover, even when half of the elements of 8, are zeros
and the remaining half are non-zero constants not converging to 0, the as-
sumption is satisfied. Hence, the assumption for the true regression coefficients
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will not be unrealistic. Further, if p diverges as fast as n, i.e., ¢€[0,00) in
the HUHD asymptotic framework, the assumption for true regression coef-
ficients can become weaker such as liminf, .., ¢, 10,]]* > 0 for some qp — ©
(p — ). Note that assumption A4 is not always required for every ¢ € j,.
For example, if # is a set of nested subsets, i.e., # = {{1},...,{1,...,k}},
then assumption A4 needs to hold only for / =k, If assumption A4 is
supported, for every je #_, the following inequality holds (the proof is given
in Appendix A):

1
inf  — Anax(4;) > 0, 8
n>k,p=1 npﬂm‘“( /) ®)
where Amax(A4) is the maximum eigenvalue of a symmetric matrix A.
Furthermore, we consider the following assumption that is regarded as a

special case of assumption A3:
2

A3’.  lim
= tr(X))
Assumption A3’ is used under the UHD asymptotic framework, and this
assumption is stronger than assumption A3. For example, assumption A3’ is

satisfied if the following conditions hold:

=0, where &% = max{xy, tr(2?)}.

2

2
lim Lz*)z:O, 822,1/214, u:(ul,...7up)/,
= tr(X,)
9
Elu,] =0, Eul] <r, (a=1,...,p), ©)
E>ui] =1 (a#b), Eluupucug) =0 (a #b,c,d),

where r, is a positive constant not dependent on p. When & = X!%u, ry is
calculated as follows:

P
Ky = {(Z0),0 ) (Eluf] = 3) < | = 3| w(ZD),
a=1

where (A),, expresses the (a,b)-th element of a matrix A. The condition
about the true covariance matrix lim, ., tr(X2)/tr(X .)? =0 is called the spher-
icity condition, and it is often used for p > n setting (e.g., Aoshima et al,
2018).

3. Main results

3.1. Conditions for consistency of the SGC, criterion. We obtain conditions
for consistency of the SGC, criterion (4). Recall that the best subset chosen
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by minimizing the SGC, criterion is defined by (6). Then, the SGC, criterion
is consistent if P(jy = j.) — 1. The probability P(js = j.) can be expressed
as

P(js=j.) = P(mje/m{_/;}“{SGCp(j|O‘> > SGCp(j*|“)})'

We separate # N{j.}° into #, N{j.}° and #_ because the non-centrality
matrix 4; in (7) behaves differently for each case of je #, N{j.}“and je 7 .
From this and the subadditivity of a measure, a lower bound of P(js = j,) is
written as

P(js = j.) =1 Ps— P,
where Ps and Pg are defined by
Ps = P(Ujc 5, {SGGC,(jlo) < SGC,(ji|)}), (10)
Ps = P(Uje s {SGC,(jlo) < SGCp(jilo)}).- (11)

To obtain conditions for consistency of the SGC, criterion, we consider
conditions such that Pg and Pg converge to 0. First, we prepare the results
about the orders of several probabilities. For subsets j,i C w, let W, U;, and
V; » be random matrices defined by

W =6, P)s., U=0X(I,~P)s, V=8P -P)b. (12)

Then, we derive the following lemma about the orders of the tail probabilities
for functions of (12) (the proof is given in Appendix B).

Lemma 1. Let W, U;, and V; ), be given by (12), and let ry >0, r» >0,
r3 <0, 1r4>0,1r5>0, and r¢ > 0. Then, under the HUHD asymptotic frame-
work, the following results hold:

(1) If r >te(Zy) and ry < tr(X,), then we have

P((n—k) " (W) > 1) = O(En{r — tr(2.)} ),
P((n— k)" w(W) < ) = 00 {un(2.) — 2} ),

where & is given in assumption A3’
(ii) For j 2 j., we have

Ptr(U;) < r3) = O(tr(Z.4;)|r3] %),

where A; is defined by (7).
(i) For j2 h, if ra > tr(Z,), then we have

P(te(Vy.h) = (ky — kn)ra) = O(E {rs — te(£2)} 7).
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(iv) For j2h, if r¢/rs — 0, then we have
P(tr(Vn) = (k; — ki) tr(Z.) 4 r5 < re) = O(E7r57).

By using Lemma 1, we give the orders of Pg and Pg (the proof is given in
Appendix C).

LEMMA 2. Suppose that assumptions Al, A2, and A4 hold, and for some
constants ts satisfying 0 < s < 1, the followings hold:
lim oz > 1, lim  »n'a=0, (13)
n—o0,p/n—c n—o0,p/n—c

under the HUHD asymptotic framework. Then, the orders of Ps and Pg defined
in (10) and (11) are given by

Ps = 0(2 tr(2,) "2 max{(azs — 1) 2 n~ (1 — 75) 7)),
Ps = 0(gZ2 ‘ur(E*)*2 max{(ors — 1)72,7171(1 - 73)72})
+ O(max{&*n 2 p 2,2 tr(Z) n" dman (Z )0 p7 1Y),
where &% is defined in assumption A3'.

Next, we obtain conditions for consistency of the SGC, criterion (4).
Note that the results in Lemma 2 are derived without assumptions A3 and
A3’. We use assumption A3 or A3’ to obtain consistency conditions, although
the UHD asymptotic framework is used when assumption A3’ is supported.
It is straightforward that limsup,_,,, & tr(E*)f1 < oo holds under assumption
A3, but lim,_, ¢ tr(E*)f1 =0 holds under assumption A3’. By using this
fact and Lemma 2, we obtain consistency conditions about o (the proof is given
in Appendix D).

THEOREM 1. Suppose that assumptions Al, A2, A3, and A4 hold. Then,
the SGC, criterion is consistent under the HUHD asymptotic framework if the
following conditions are satisfied:

lim o= oo, lim Z=0. (14)
n—oo,p/n—c n—oo,p/n—c N
Furthermore, when replacing assumption A3 with assumption A3', the SGC, cri-
terion is consistent under the UHD asymptotic framework if the following condi-
tions are satisfied:
. . o
lim o> 1, lim -=0. (15)

(n,p)— (00, %0),p/n—c (n,p)—(00,0),p/n—c N
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From Theorem 1, if assumption A3’ is supported, the SGC, criterion is
consistent under the UHD asymptotic framework even when o is a constant
not dependent on n and p such as & =2. When assumption A3’ is not sup-
ported but assumption A3 is, « should diverge to render the SGC, criterion
consistent. Moreover, if (14) holds, then (15) holds. It is difficult to verify
whether assumption A3’ holds using empirical data. Hence, we recommend
that (14) be used to render the SGC, criterion consistent by deciding . On
the other hand, we also obtain conditions for inconsistency (the proof is given
in Appendix E).

THEOREM 2. Suppose that assumptions Al, A2, A3, and A4 hold. Let
conditions of o under the HUHD asymptotic framework be as follows:
Cl. lim, .o pjuc @ <1 and there exists je ¢, N{j.} such that

K4I(K4 > O) +2 tr(Ef)
nopine (1 — o) tr(X,)>

<kj*k*, (16)

where I(ics > 0) is an indicator function, Le., if 14 > 0 then (x4 > 0)
=1, otherwise (s > 0)=0.
C2. There exists j C j. such that

im 2 tr(Z)

> (ke — k)7
n—oo,p/n—c 5]2 ( ])

Then, if either of the conditions Cl or C2 is satisfied, the SGC, criterion is
inconsistent, i.e., lim, ., ,/u . P(js = j.) < 1 holds under the HUHD asymptotic
framework.  Furthermore, when replacing assumption A3 with assumption A3’,
(16) and Tim, ). (0, o0, p/nse P(js = j.) = 0 always hold under the UHD asymp-

totic framework if i, p) (o0, o0), p/n—sec & < L.

We observe that the SGC, criterion is inconsistent when « is too small
from condition C1 or too large from condition C2. Although we cannot cover
all the consistency or inconsistency conditions of o from only Theorems 1 and
2, these theorems nevertheless provide much information about the consistency
or inconsistency of the SGC, criterion.

3.2. Conditions for consistency of the RGC, criterion. We obtain conditions
for consistency of the RGC, criterion (5). In the same way as subsection 3.1, a

lower bound of P(jr = j,) is written as
P(fR:j*) Zl_FR—fm

where Pr and Py are given by
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Pr = P(Ujc .n(jy ARGC,(jlo, ) < RGCy(jilo, A)}), (17)
Pr = P(Uje s {RGC,(jlot, 4) < RGCy(jilo, 2)}). (18)

First, we obtain the orders of Pr and Pz. Then, we examine the orders by
using moments of a statistic. It is difficult to calculate the moments of 'S} 'a
because of the existence of the inverse matrix of S, where a is a p-dimensional
vector. Therefore, we do not evaluate a’S;la directly, but evaluate the
following lower and upper bounds:

lal|*/min(S7") < @'S; '@ < [|a]]* Amax (S; ") (19)

A

By using (19) and Lemma 1, we give the orders of Pr and Py (the proof is
given in Appendix F).

LemMmA 3. Suppose that assumptions Al, A2, and A4 hold, and for some
constants tr satisfying 0 < tgr <1 the followings hold:

lim 2 'porg > 1, lim 27142 pa=0,

n—oo,p/n—c n—oo,p/n—c

under the HUHD asymptotic framework. —Then, the orders of Pr and Py defined
in (17) and (18) are given by

Pr= 0 tr(Z,) 7 max{(2 'putg — 1) 7,n7 (1 — 7)),
Pr =0 tr(Z,) * max{(A 'purg — )% 07 (1 —7p)7%})
+ O0(max{&n2p2, 2 t(Z.) " dmax (Z )0 p7 1Y),
where & is defined in assumption A3'.

By using Lemma 3, we obtain consistency conditions of the RGC,
criterion. Since the RGC, criterion has the two parameters o and /A, the
conditions are connected with o and 4.

THEOREM 3. Suppose that assumptions Al, A2, A3, and A4 hold. Then,
the RGC, criterion is consistent under the HUHD asymptotic framework if the
following conditions are satisfied:

. . 1427
lim % = 0, lim SR =0. (20)

n—oo,p/n—c n—oo,p/n—c n

Furthermore, when replacing assumption A3 with assumption A3', the RGC,
criterion is consistent under the UHD asymptotic framework if the following



Consistent variable selection criteria in multivariate linear regression even when p >n 351

conditions are satisfied:

-1
lim Pro g lim U+ )pa

=0. (21
(n.p)— (0, 0),p/n—c A (n,p)—(o0, ). p/n—c n

The proof of Theorem 3 is omitted because the theorem can be proved in
the same way as Theorem 1. From Theorem 3, if we set A=1 and o =a/p
(& > 0), conditions (20) and (21) are the same as (14) and (15), respectively.
Note that conditions (20) and (21) may be strong because they are derived
using inequality (19). From Theorem 3, we observe that the larger A be-
comes, the larger o should be, to satisfy conditions (20) and (21). Further-
more, we also obtain conditions for inconsistency (the proof is given in
Appendix G).

THEOREM 4. Suppose that assumptions Al, A2, A3, and A4 hold. Let
conditions of o under the HUHD asymptotic framework be as follows:
C3. limy, o pyn—e(l + 2 Npu< 1 and there exists je ¢, N{j.}¢ such
that

. Kal (154 > 0) +2 tr(22)
lim — 3 3
n—=oo,p/n—e {1 — (1 + A7) pa}” tr(X,)

C4. There exists j C j, such that

N tr(Z,)

> (k. — k)~
n—oo,p/n—c )ﬁjz ( j)

Then, if either of the conditions C3 or C4 is satisfied, the RGC, criterion is
inconsistent, i.e., lim,_, . /. P(fR = j.) < 1 holds under the HUHD asymptotic
framework.  Furthermore, when replacing assumption A3 with assumption A3’,

(22) and lim, p) (0, 0), p/n—se P(jr = Jj») = 0 always hold under the UHD asymp-
totic framework if 1im, ). (w0, o0), p/n—e(1 + }fl)poc <1

From Theorem 4, we observe that /4 should be large in order not to satisfy
conditions C3 and C4. However, if 2 is large, pai~" in (20) and (21) is small
and then the condition of « to have consistency becomes restricted.

4. Numerical experiments

4.1. Criteria for numerical experiments. To conduct numerical experiments,
we use the following six criteria:

Criterion 1: the SGC, criterion with o = 2.

Criterion 2: the SGC, criterion with « =logn.

Criterion 3: the SGC, criterion with a = (log n/log log p)l/ 2,
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Table 1. Assumptions and asymptotic behaviors of
n and p to ensure consistency of six criteria.

Criterion Assumptions Asymptotic behavior
1 Al, A2, A3, A4 p— ©
2 Al, A2, A3, A4 free
3 Al, A2, A3, A4 log log p/logn — 0
4 Al, A2, A3, A4 p— ©
5 Al, A2, A3, A4 free
6 Al, A2, A3, A4 log log p/logn — 0

Criterion 4: the RGC, criterion with o« =2p~! and 1 =1.

Criterion 5: the RGC, criterion with o = p~'logn and 1 =1.

Criterion 6: the RGC, criterion with o= p~!(nlogn/log log p)l/2 and

J=n'2

Table 1 shows the assumptions and asymptotic behaviors of n and p to ensure
the consistency of the above six criteria. We observe that to ensure consis-
tency, p has to diverge for criteria 1 and 4, but p does not have to diverge
for criteria 2, 3, 5, and 6. Further, criteria 3 and 6 are consistent when
log log p/logn — 0. Since this slightly restricts the behavior of p, it may
not be suitable where p increases dramatically. However, such a case is un-
realistic, so this behavior is reasonable for empirical contexts. Note that the
penalty terms kjo or kjpo in criteria 1, 2, 4, and 5 do not include p, but those
in criteria 3 and 6 do.

For comparison, we also consider criteria in Katayama and Imori (2014)
given by

HGIC(j) = p +1og|(1 — k;/n)Ds,| + fipk;,

where Ds, = diag{(S)),,, ..., (S)),,} and diag{(4),,,...,(4),,} is the diagonal
matrix with diagonal elements corresponding to those of a p x p matrix A.
Especially, we use the following three HGICs from their paper:

Criterion 7: the HGIC with g = n~!(log p)(log log p)l/z.

Criterion 8: the HGIC with g =n"!(log p)(log log p).

Criterion 9: the HGIC with g = n~!(log p)(log log p)3/2.
From Katayama and Imori (2014), criteria 7, 8, and 9 are consistent under
several assumptions such as normality when p — oo and log p/n — 0 for our
numerical studies.

4.2. Simulations. We verify the foregoing exposition by simulations. The
probabilities of selecting the true subset j, were evaluated by Monte Carlo
simulations with 10,000 iterations. Ten subsets j, ={l,...,m} (m=1,...,
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10), with several different values of n and p, were prepared for these simu-
lations. We generated the explanatory matrix X as follows. We independ-
ently generated si,...,s, from U(—1,1), where U(a,b) denotes a uniform
distribution on the range (a,b). Using si,...,s,, we constructed an n x k
matrix of explanatory variables X, where the (a,b)-th element is defined by s/~
(a=1,...;n;b=1,... k). The true subset was determined by j. = {1,2,3,
4,5}. The true coefficient matrix @, adhered to the following structure:

(a(_l)aillip/zj’ol/—p/ﬂ)/ (a : odd)

0*:(01,...,0/(*)/, 06{{ o ,
(0[17/2J7a(_1) llfl,m)' (a: even)

where |-| and [-] are the floor and ceiling functions, respectively. For these

numerical simulations, we expressed &, as Z*Ej/ 2, where Z, = (zi,. .. ,Z,)" and
Z1,...,2 are independent and identically distributed from z = (zy, ... ,zp)' with
mean 0, and covariance matrix I,. Let v= (vi,...,v,)", {=({1,...,() ~

ii.d. Ny(0,,1,), and v ~ x*(10) be mutually independent random vectors and
variable. Then, z is generated from the following four distributions:
(D1) multivariate normal distribution: z=v.
(D2) multivariate ¢-distribution with 10 degrees of freedom: z=
(8/7)' .
(D3) independent skew-normal distribution with shape parameter 10:

= (122 - L+77|C|—\ﬁ77 (@a=1,...,p)
T m a b i ? I

where 7 = 10/v/1 + 102

(D4) independent log-normal distribution:

Za:—exp(va)—\/é (a=1,...,p).
e(e—1)
Note that distributions (D1)—(D4) are satisfied with x4 = O(tr(Z?)). The true
covariance matrix X, was set as the following two structures:
(S1) exchangeable structure with correlation 0.8:

X, =(1-08)1,+081,1).

(S2) autoregressive structure with correlation 0.8: (2.), = (0.8,
Note that assumption A3’ is not satisfied when the true covariance matrix X, is
(S1), but assumption A3’ is satisfied when the true covariance matrix X, is (S2)
under distributions (D1)-(D4). Under these settings, we used the 8 combina-
tions of the four distributions and the two true covariance matrices (S1) and
(S2). Tables 2-9 show the probabilities of selecting the true subset j. using
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Table 2. True subset selection probabilities (%) for distribution (D1) and covariance matrix (S1).

Criterion

n p 1 2 3 4 5 6 7 8 9
20 10 21.63 14.98 22.55 17.16 8.08 8.47 20.61 20.16 19.07
50 10 60.36  40.23 59.66  66.62 2493 33.85 59.03 58.01 55.66
100 10 76.52 77.66 82.75 93.46  66.19 92.64 75.95 71.39  66.84
300 10 76.85  98.84 87.04  94.07  99.94 100.00 78.37  74.04  69.62
500 10 77.93 99.29 89.00  94.35 99.98 100.00 79.48 75.35 70.58
20 10 21.63 14.98 22.55 17.16 8.08 8.47 20.61 20.16 19.07

50 25 61.12 3826  60.76  67.77 2235 59.33 45.61 41.91 37.58
100 50 76.81 80.63  72.85 9373  70.28 99.84 81.69  71.91 59.54
300 150  78.03 9897 7524  94.07  99.95 100.00 99.32  99.86  99.71
500 250 79.15 9932 76.87 9472 99.98 100.00 99.65  99.92  99.99

20 20 2229 1553 23.61 17.72 8.98 13.70 17.20 16.54 15.47

50 50 6223 40.07  61.01 69.52  24.00 71.87 33.67 2471 17.24
100 100 7729 7920 70.82  93.73  69.63 99.93 65.98  49.18 32.14
300 300  78.08  99.12  73.07 9435 9991 100.00 99.71 99.75  95.57
500 500  77.61 99.51 74.10 9449  99.98 100.00 99.92 9998  99.99

20 200  22.34 1555  23.73 17.92 8.65 22.15 1.93 0.45 0.05

50 500 6246  39.86  56.29  69.84  24.57 86.62 5.75 1.10 0.11
100 1000 7829  79.10  64.59  94.62  69.38 100.00 23.71 6.37 0.71
300 3000  77.91 99.11 68.65 9440  99.95 100.00 98.79 7791 27.54
500 5000 7815  99.37  70.10 9478  99.96 100.00 100.00  99.97  88.23

each of the nine criteria. In each table, the probabilities of selecting the true
subset j. were evaluated for distributions (D1)—(D4) and the two covariance
matrices (S1) and (S2). When the true covariance matrix X, has an exchange-
able structure, i.e., in Tables 2, 4, 6, and 8, it appears that criteria 2, 5, and
6 are consistent for both cases where only 7 is large and where n and p are
large, but criteria 1 and 4 are not consistent. This is because assumption A3
is satisfied for the cases of (S1) and distributions (D1)—(D4), but assumption
A3’ is not satisfied for such cases. Moreover, although criterion 3 is consistent
from Table 1, it looks inconsistent in Tables 2, 4, 6, and 8. This is because the
penalty term in criterion 3 is smaller than that in criterion 1 for our numerical
simulations. On the other hand, when the true covariance matrix X, has an
autoregressive structure, i.e., in Tables 3, 5, 7, and 9, we observe that criteria 1
and 4 also are consistent except for the case that only 7 is large because (S2) is
satisfied with lim,_, tr(Z?) /tr(Z.)* = 0, so assumption A3’ is satisfied for the
cases of (S2) and distributions (D1)—(D4). This result accords with Theorem 1
and Theorem 3. In Tables 2-9, criteria 7, 8, and 9 are consistent when n and
p are large, but they are not consistent when only #n is large. Further, we
observe that the probabilities by criteria 7, 8, and 9 are low when p/n =10
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Table 3. True subset selection probabilities (%) for distribution (D1) and covariance matrix (S2).

Criterion

n P 1 2 3 4 5 6 7 8 9

20 10 30.50 14.80 32.68 28.33 10.36 22.29 30.09 28.72 25.72
50 10 82.05 52.56 83.80 91.24 45.42 89.56 78.53 73.66 67.77
100 10 83.71 98.18 89.67 94.43 98.45 99.99 83.28 78.35 72.95
300 10 84.68 99.73 93.09 94.52 99.96  100.00 85.88 82.02 76.97
500 10 84.49 99.85 94.33 95.03  100.00  100.00 86.26 82.18 77.18
20 10 30.50 14.80 32.68 28.33 10.36 22.29 30.09 28.72 25.72
50 25 90.56 52.56 87.53 94.82 47.00 98.20 75.27 65.29 53.06
100 50 97.02 99.78 95.13 98.42 99.74 99.98 99.86 98.53 91.47
300 150 99.84  100.00 99.71 99.88  100.00  100.00  100.00  100.00  100.00
500 250 99.99  100.00 99.96 100.00  100.00  100.00  100.00  100.00  100.00
20 20 36.12 11.95 43.92 32.64 8.51 39.09 19.76 16.49 13.49
50 50 96.34 60.40 91.27 97.75 56.98 99.25 37.88 11.56 1.64
100 100 99.44 99.81 97.78 99.74 99.80 99.98 97.21 74.30 14.13
300 300 99.99  100.00 99.98 99.99  100.00  100.00  100.00  100.00  100.00
500 500  100.00 100.00 100.00 100.00  100.00  100.00  100.00  100.00  100.00
20 200 42.48 2.60 78.26 41.12 2.31 79.96 0.00 0.00 0.00
50 500 99.80 63.28 99.88 99.79 62.75 99.95 0.00 0.00 0.00
100 1000  100.00 99.87  100.00  100.00 99.87  100.00 0.77 0.00 0.00
300 3000 100.00  100.00  100.00  100.00  100.00  100.00  100.00 99.91 1.98
500 5000 100.00 100.00 100.00  100.00  100.00  100.00  100.00  100.00 99.99

and 7 < 100. In sum, the probabilities by criterion 6 are the highest across
Tables 2-9.

4.3. Empirical examples. First, we verify the probabilities of selecting the
true subsets by using real data. The dataset pertains to 8 groups (¢ =1,...,8)
of black cotton fibers dyed by Indigo and its derivative dyes. Each cotton
fiber has 55 samples, and each sample has 541 variables, which are the absor-
bances for wavelengths from 240 nm to 780 nm in steps of 1 nm. Let the
explanatory matrix be denoted as X = (T, 19) ® 1,5, where T = (ey,...,es) and
e, (a=1,...,8) is a 9-dimensional vector such that the a-th element is one
and the other elements are zeros, and the symbol ® denotes the Kronecker
product (see, e.g., Harville, 1997). Here, the 9-th column vector of X expresses
the intercept term. Moreover, let the family of candidate subsets be all of the
subsets included in the intercept term, ie., ¢ = {je B{L,...,9})|;N{9} #
&}, where B(A) is the power set of a set A. Then, for each group b=1,...,

8, we carried out the following two steps:
Step 1. Let U, (g=1,...,8) be the 25 x 541 response matrices by ran-
dom sampling without replacement from group g. Further, let
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Table 4. True subset selection probabilities (%) for distribution (D2) and covariance matrix (S1).

Criterion

n p 1 2 3 4 5 6 7 8 9
20 10 2229 1596  22.52 18.23 9.30 1022 20.60  20.22 19.13

50 10 61.48 4040 60.74  67.76  24.75 34.53 60.41 58.71 56.19
100 10 77.39 78.92 83.05 93.94  66.97 9239  76.78 72.65 67.66
300 10 77.70 99.01 87.88 94.55 99.95 100.00 79.01 74.94 70.17
500 10 77.41 99.21 88.80  94.35 99.98 100.00  79.13 75.02 70.73
20 10 22.29 15.96 22.52 18.23 9.30 10.22 20.60 20.22 19.13

50 25 61.17 3843  60.62  68.15  23.01 59.65  46.28 4245 38.38
100 50  78.41 7898 7438  94.00  69.74 99.83  80.51 71.61 59.57
300 150 7817  99.06  75.18  94.21 99.96 100.00  99.40  99.88 99.60
500 250 7843  99.23 7629 9437  99.97 100.00  99.61 99.94 99.99

20 20 22.07 1590  23.70 18.16 9.62 14.41 17.21 16.40 15.53

50 50  62.04 40.12  60.64  69.32  25.68 71.64 3399  26.04 18.39
100 100 7757 7897  71.01 93.83  69.61 99.92 6647  49.38 31.81
300 300  78.03  99.05  73.13 9444  99.95 100.00  99.75  99.74 95.35
500 500 7796 9943 7418 9453  99.98 100.00  99.89  99.99 100.00

20 200 2295 1590  24.15 18.60 9.56 22.99 2.07 0.55 0.12

50 500  61.84  40.02 5649  69.89 2487 85.74 6.26 1.12 0.09
100 1000  78.47  79.00 64.86 9429  69.99 99.97 2441 6.80 0.67
300 3000 7829  99.01 69.30 9441 99.96 100.00  98.81 78.31 28.53
500 5000 7813  99.35  70.35 9428  99.95 100.00  99.99  99.89 87.79

Uy, be the 25 x 541 response matrices by random sampling with-
out replacement from the remaining samples in group b. Then,
the response matrix is constructed as Y, = (Uj,..., U, Us,) .
Step 2. Let the coefficient matrix @, given by @, = (8, ;, ... ,03_,1,,097;,)/.
Then, apply multivariate linear regression with X and @, to the
response matrix Yp, and choose the best subset by performing
variable selection from the explanatory variables excepting the
intercept, i.e., from the elements of #.
From steps 1 and 2, we have n =225, p =541, and kK =9 in this example.
Note that @y, should be 0, and the remainder should not be 0,, because
Uy is extracted from the same group as U,. Hence, we know that the
true subset is j., = {l,...,9} N{b}“ when Y} is used as the response matrix.
Moreover, to increase calculation speed, instead of a variable selection method
such as (6), we used the best subset j by the following method:

j={/ew|SC(w,) > SC(w)}, (23)

where SC(j) expresses the value of a variable selection criterion (SC) for model
M;, and wy is defined in assumption A4. The selection method as per (23) was
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Table 5. True subset selection probabilities (%) for distribution (D2) and covariance matrix (S2).

Criterion

n P 1 2 3 4 5 6 7 8 9

20 10 30.11 15.39 31.54 28.33 10.83 23.41 29.59 28.25 26.02
50 10 81.60 52.82 83.98 91.25 45.54 88.72 78.12 73.27 67.12
100 10 83.97 97.60 90.35 94.57 98.05  100.00 83.64 79.17 73.61
300 10 84.61 99.66 93.46 95.28 99.98  100.00 86.06 81.78 77.19
500 10 84.91 99.84 94.50 9522 100.00  100.00 86.49 82.24 77.50
20 10 30.11 15.39 31.54 28.33 10.83 23.41 29.59 28.25 26.02
50 25 89.73 52.59 86.55 93.67 47.28 97.34 75.13 65.57 53.62
100 50 96.64 99.66 94.42 98.42 99.62 99.97 99.74 98.30 90.77
300 150 99.83  100.00 99.68 99.90  100.00  100.00  100.00  100.00  100.00
500 250 99.99  100.00 99.96 99.99  100.00  100.00  100.00  100.00  100.00
20 20 34.99 12.91 42.79 32.77 9.68 38.90 20.75 17.61 14.52
50 50 95.85 58.85 90.59 97.68 55.56 99.28 40.15 14.80 2.26
100 100 99.14 99.77 97.23 99.53 99.73 99.95 97.24 74.44 18.24
300 300  100.00  100.00 99.96 100.00  100.00  100.00  100.00  100.00  100.00
500 500  100.00 100.00 100.00 100.00  100.00  100.00  100.00  100.00  100.00
20 200 43.38 4.80 69.97 41.56 4.42 73.24 0.00 0.00 0.00
50 500 99.67 62.22 98.37 99.66 61.48 99.37 0.00 0.00 0.00
100 1000  100.00 99.78 99.77  100.00 99.78 99.87 2.37 0.00 0.00
300 3000 100.00  100.00  100.00  100.00  100.00  100.00  100.00 99.76 3.27
500 5000 100.00 100.00 100.00  100.00  100.00  100.00  100.00  100.00 99.99

proposed by Zhao et al. (1986). From Nishii ef al. (1988), it is known that
when k£ is fixed, a criterion under (23) is consistent if the criterion under the
selection method such as (6) is consistent. For these settings, we iterated
steps 1 and 2 10,000 times for each group b =1,...,8. Table 10 shows the
probabilities of selecting the true subset by the nine criteria for each group
b=1,...,8. We observe that the probabilities by criterion 6 are highest
except where b = 5,6. However, all nine criteria have very low probabilities
where b =5,6. This is because groups 5 and 6 are very similar. Actually,
letting y, be the sample mean vector of group g, we have |ys — y|| = 0.46
but ||y, — ¥4ll = 1.60 for the cases of g,h # 5,6 (9 # h). Hence, groups 5 and
6 will be very similar on average. Moreover, criterion 6 selected {1,...,9} N
{5,6}° as the best subset for many iterations when b = 5,6.

Next, we provide an example of variable selection using empirical data
from Wille er al. (2004) as well as Yamamura et al (2010). There are 795
genes which may exhibit associations with 39 genes from two biosynthesis
pathways in Arabidopsis thaliana. All variables were logarithmically trans-
formed. We configured the former 795 genes to response variables (p = 795)
with the latter 39 genes and an intercept as explanatory variables (k = 40).
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Table 6. True subset selection probabilities (%) for distribution (D3) and covariance matrix (S1).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 21.90 15.89  22.29 17.83 9.05 9.33 21.26  20.80 19.72
50 10 59.15 39.59 58.61 66.40 23.76 33.31 57.89 56.95 54.66
100 10 76.84  79.04 83.15 93.42 67.42 9236  76.28 71.56  66.69
300 10 78.27 99.16 88.31 94.67 99.95 100.00 79.67 75.24 70.73
500 10 78.11 99.27 89.12  94.63 100.00 100.00  79.95 75.28 70.45
20 10 21.90 15.89 22.29 17.83 9.05 9.33 21.26 20.80 19.72

50 25 6047 3759 6024  66.81 22.21 57.71 4478  41.00  36.97
100 50 7758 7889  73.17  93.82 69.48 99.93 80.24 7042  58.81
300 150 7813  99.02  75.21 94.14 99.95 100.00 9942  99.76  99.73
500 250 78.48  99.29  76.27  94.25 99.98 100.00  99.70  99.88  99.98

20 20 2279 1579 24.12 18.15 9.16 13.64 17.69 16.80 15.85

50 50  61.81 39.58  60.21 68.69 24.81 7149  33.74 2524 17.51
100 100 76.79  79.34  69.97  93.52 69.42 99.98  65.84  49.07  31.76
300 300 7834  99.08  73.58  94.53 99.98 100.00  99.84  99.85  95.62
500 500 7819  99.26 7454  94.53 99.96 100.00  99.83  99.97  99.99

20 200  21.35 1530 23.11 17.62 8.74 21.52 1.90 0.37 0.05

50 500  62.10  39.74  56.75  69.79 24.51 86.52 5.73 0.94 0.10
100 1000 77.68  79.05  64.83  93.55 69.59 99.98  23.94 6.41 0.62
300 3000  79.06  99.06  69.29  94.59 99.99 100.00  98.83  77.64  27.51
500 5000 7827 9933  70.53  94.64 99.97 100.00 9998  99.94  88.55

The sample size is n = 118. We searched for the best subset of these models
by using the selection method (23). Table 11 shows the explanatory variables
selected by each criterion and the number of elements of the best subsets.
From Table 11, we observe that criteria 7, 8, and 9 selected zero explanatory
variables, and criteria 2 and 5 selected few variables. On the other hand,
criteria 3 and 6 selected about half of the variables.

5. Conclusions and discussions

We obtained the conditions for consistency of the SGC, criterion and
RGC, criterion under the HUHD and UHD asymptotic frameworks. Impor-
tantly, consistency is established under non-normality and does not rely on the
divergence speed of the dimension of the vector stacked with response vari-
ables p. Numerical studies suggest that criterion 6 has the highest probabilities
of selecting the true subset, although consistency of criterion 6 holds when
log log p/logn — 0.

Herein, the scalar matrix p~!tr(S,)I, and the ridge-type sample cova-
riance matrix §; were used as G in the weighted L, squared distance
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Table 7. True subset selection probabilities (%) for distribution (D3) and covariance matrix (S2).

Criterion

n P 1 2 3 4 5 6 7 8 9

20 10 30.45 14.76 32.27 28.07 10.16 23.14 30.34 29.17 26.12
50 10 81.52 52.70 83.44 90.82 45.01 90.16 78.40 73.37 67.27
100 10 84.10 98.11 90.46 94.78 98.23  100.00 83.70 78.96 73.43
300 10 84.42 99.71 93.04 94.73 99.99  100.00 85.64 81.46 76.40
500 10 84.96 99.88 94.16 95.04  100.00  100.00 86.56 82.52 77.86
20 10 30.45 14.76 32.27 28.07 10.16 23.14 30.34 29.17 26.12
50 25 91.01 52.23 87.82 95.06 46.94 98.17 76.08 65.60 53.29
100 50 96.60 99.71 94.45 98.18 99.68 99.99 99.79 98.55 91.70
300 150 99.89  100.00 99.69 99.92  100.00  100.00  100.00  100.00  100.00
500 250 100.00  100.00 99.99  100.00  100.00  100.00  100.00  100.00  100.00
20 20 34.51 11.45 42.51 31.57 7.84 37.78 19.87 16.62 13.61
50 50 95.68 60.97 91.13 97.35 57.68 99.19 39.87 12.94 2.02
100 100 99.37 99.71 97.79 99.63 99.69 99.96 97.49 75.85 14.72
300 300 99.99  100.00 99.97 99.99  100.00  100.00  100.00  100.00  100.00
500 500  100.00 100.00 100.00 100.00  100.00  100.00  100.00  100.00  100.00
20 200 42.35 2.47 78.67 40.77 2.29 79.88 0.00 0.00 0.00
50 500 99.78 63.15 99.81 99.77 62.60 99.93 0.00 0.00 0.00
100 1000  100.00 99.84  100.00  100.00 99.84  100.00 0.97 0.00 0.00
300 3000 100.00  100.00  100.00  100.00  100.00  100.00  100.00 99.90 1.69
500 5000 100.00 100.00 100.00  100.00  100.00  100.00  100.00  100.00 99.99

d(4,B|G). The SGC, criterion and RGC, criterion are invariant under trans-
formations by a scalar times orthogonal matrices of Y, ie., Y:Y — aYF,
where F satisfies FF' = F'F = I, and a e R. However, they are not invariant
under transformations by nonsingular matrices of Y, so their consistency is
affected by the elements of X, even for overspecified subsets. This is often
the case in high-dimensional contexts such that p >n. On the other hand,
using diag{(So)yy;- .-+ (Sw),,} or Su + 27! diag{(Sw)y,- -, (Sw),,} as G may
eradicate the influence of the diagonal elements of 2,. Hence, it is also
important to examine consistency in such cases. To do so would require
assuming normality of the error vector and this represents fruitful terrain for
future research.

Finally, we consider the influence of increasing p on consistency. To do
so, another expression of multivariate linear regression is given by

vec(Y) = (I, ® X) vec(0O) + vec(&),

where vec(A) is the np-dimensional vector consisting of the columns of an
nx p matrix 4 = (aj,...,a,) and is defined by vec(4) = (af,...,a’)" (see, e.g.,
Harville, 1997). From the above expression, multivariate linear regression is
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Table 8. True subset selection probabilities (%) for distribution (D4) and covariance matrix (S1).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 2434 18.28 2492 21.26 12.14 14.48 23.71 22.97 21.98

50 10 60.32  43.80 60.30 6720  30.36 4329  60.05 58.69 55.96
100 10 75.85 77.48 81.35 92.46  67.97 88.79 7524  71.37 66.70
300 10 78.01 98.91 87.99 9437  99.80 100.00  79.23 74.98 70.45
500 10 77.40  99.47 89.01 94.43 99.95 100.00  79.05 75.17 70.67

20 10 24.34 18.28 24.92 21.26 12.14 14.48 23.71 22.97 21.98

50 25 59.68  40.15 58.88  67.84  26.31 61.64  50.03  46.20 42.21
100 50 76.63 7870  73.07 93.02  69.83 99.55  81.24  73.02 61.75
300 150  79.18 9899  76.09 9454  99.97 100.00  99.32  99.82 99.72
500 250 7887 9947  76.67 9477  99.97 100.00  99.71 99.95 99.98

20 20 23.65 17.89 2485  20.57 11.35 17.57  20.81 19.84 19.00

50 50  61.52 4095  60.03  69.55  26.75 71.89  36.77  28.51 20.89
100 100 7785 7794  71.18 9393  68.29 99.85  67.17  51.20 33.10
300 300 7872 9895  74.09 9434  99.99 100.00  99.64  99.82 95.78
500 500 7795  99.16  74.17 9437  99.97 100.00  99.82  99.99 100.00

20 200 21.99 16.18  23.77 18.22 9.37 22.62 2.48 0.52 0.09

50 500 6230 3945 57.04  69.65 2420 85.51 6.97 1.42 0.10
100 1000 77.91 7946  64.73  94.00  70.21 99.98  25.04 6.58 0.55
300 3000 7844  99.15  68.10 9453  99.94 100.00  98.87  79.62 29.35
500 5000  79.02 9936 7049 9482  99.96 100.00  99.99  99.91 88.51

regarded as univariate linear regression with the np-dimensional response vector
vec(Y) and the explanatory matrix I, ® X formally. From this, at first glance
it seems that the dimension p has a role in increasing the sample size. How-
ever, from the results in Lemma 2 and Lemma 3, the probabilities of selecting
J« by the consistent criteria in this paper always approach 1 by diverging n,
but do not always approach 1 by diverging only p. Moreover, increasing p
leads to fast convergence of the probability of selecting the true subset under
assumption A3’, but this is not always the case under assumption A3. This
difference depends on the assumption about X, and r since & tr(X,) ™" = o(1)
holds under assumption A3’ not A3. This may also be verified from our
simulations. Hence, to ensure fast convergence of the probability of selecting
the true subset, a small sample size may be sufficient under assumption A3’
when p is large. As per subsection 2.2, assumption A3’ holds when (9) is
supported. Since the sphericity condition lim,_, tr(Z?) /tr(Z,)* = 0 is equiv-
alent to lim,_., Amax(Z%)/tr(2,) =0, note that this condition implies that the
maximum eigenvalue of X', is not particularly large in the sense that Ap..(2)
= o(p) under assumption A2. However, in general An,x(2) tends to be very
large for high-dimensional cases. Thus, it may not be suitable to assume
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Table 9. True subset selection probabilities (%) for distribution (D4) and covariance matrix (S2).

Criterion

n P 1 2 3 4 5 6 7 8 9

20 10 32.63 20.03 33.69 32.97 16.82 30.72 34.48 32.00 28.36
50 10 77.75 57.62 79.44 87.20 52.67 85.82 76.31 71.51 65.27
100 10 83.87 94.52 89.47 94.32 93.98 99.53 83.45 78.79 73.54
300 10 84.60 99.66 92.98 94.95 99.98  100.00 85.69 81.74 76.93
500 10 83.69 99.82 93.65 94.73  100.00  100.00 85.08 81.05 76.19
20 10 32.63 20.03 33.69 32.97 16.82 30.72 34.48 32.00 28.36
50 25 87.57 55.58 85.15 92.23 51.24 95.57 84.33 78.54 70.73
100 50 96.08 99.33 93.67 97.82 99.18 99.89 99.92 99.33 95.79
300 150 99.77  100.00 99.58 99.88  100.00  100.00  100.00  100.00  100.00
500 250 99.98  100.00 99.98 99.99  100.00  100.00  100.00  100.00  100.00
20 20 35.49 16.77 39.99 34.43 13.66 40.56 33.45 30.82 27.57
50 50 94.34 60.21 88.51 96.00 57.19 98.38 64.54 38.32 15.21
100 100 98.78 99.60 96.46 99.32 99.56 99.89 99.13 89.61 46.20
300 300 99.98  100.00 99.95 99.99  100.00  100.00  100.00  100.00  100.00
500 500  100.00 100.00 100.00 100.00  100.00  100.00  100.00  100.00  100.00
20 200 43.46 4.89 69.53 41.61 4.55 73.07 0.00 0.00 0.00
50 500 99.67 62.63 99.05 99.69 62.00 99.67 0.00 0.00 0.00
100 1000  100.00 99.90 99.97  100.00 99.90 99.98 14.76 0.00 0.00
300 3000 100.00  100.00  100.00  100.00  100.00  100.00  100.00 99.98 14.35
500 5000 100.00 100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00

Table 10. True subset selection probabilities (%) for each group »=1,...,8 in the black
cotton fibers dataset

Criterion

b 1 2 3 4 5 6 7 8 9

1 79.96 97.09 76.19 90.82 99.55 99.98 56.07 4.63 0.04
2 84.12 98.33 80.43 94.15 99.84 100.00 99.88 99.96 99.29
3 97.94 100.00 96.79 99.80 100.00 100.00 92.85 16.50 0.47
4 86.62 98.75 83.16 95.37 99.86 100.00 32.92 3.48 0.03
5 5.65 0.11 8.41 1.66 0.00 0.00 0.00 0.00 0.00
6 12.14 0.42 16.45 431 0.01 0.00 0.00 0.00 0.00
7 72.52 92.94 68.48 85.56 91.70 98.86 90.40 60.48 21.15
8 99.57 100.00 98.98 99.96 100.00 100.00 100.00 100.00 100.00

the sphericity condition for high-dimensional cases. Aoshima and Yata (2018;
2019) considered methods to translate statistics under the strongly spiked model
liminf, .. Amax(Z.)?/tr(£?) >0 into those under the non-strongly spiked
model lim,_ ., Amax(Z .)?/tr(£2) = 0. By applying their idea to criteria for
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Selected explanatory variables based on the Arabidopsis thaliana dataset

Table 11.

Criterion

Name

Intercept
AACTI
AACT2
CMK

DPPSI

DPPS2
DPPS3
DXPSI

DXPS2(clal)

DXPS3
DXR

FPPS1
FPPS2

GGPPSImt
GGPPS2
GGPPS3

GGPPS4
GGPPS5
GGPPS6
GGPPS8

GGPPS9

GGPPS10

GGPPS11

GGPPS12
GPPS

HDR
HDS

HMGRI

HMGR2

HMGS
IPPI1

IPPI2
MCT

MECPS
MK

MPDC1
MPDC2
PPDSI1

PPDS2mt
UPPSI1

17

13

23

13

(1: selected variable, 0: non-selected variable.)
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multivariate linear regression used in this paper, fast convergence of the
probability of selecting the true subset can be ensured even under assumption
A3, and, again, this should be explored in future research.

Appendix

A. Proof of equation (8). Let je _# . From properties of projection ma-
trices, for any /€ j, N j¢ we have the following equation:

=0, (4ej.n{/})

(In — Pw,)xy { #0, (hejn{})’

Using the above equation, @.X' (I, — P,,)X.0. can be expressed as follows:

@guh_mﬁ&@:<zymouf4@(2)m0

= ‘el
=0,x,(I, — P,,)x,0,
— x}(ln — Pw()XKH/0;~

Since we have

X{(In = P)X, = X[(I — Po,)X. = X (P, — P))X.,

*

and X(P,, — P;)X,. is positive-semidefinite, the following equation can be
derived:

Amax(4;) = Amax (@O.X. (I, — P, )X, 0,) = x,(I, — P,,,)x,0,0,.

Hence, equation (8) can be derived from assumption A4. ]

B. Proof of Lemma 1. We need a lemma to prove Lemma 1. To derive the
upper bounds of probabilities, we use the variances of (n — k)" tr(W), tr(U i)
and tr(¥j ;). The results for the variances are as follows (the proof is given
in Appendix H):

LemMma B.1. Let A be an n xn symmetric matrix and B be a p xn
matrix. Then, the following results hold:
(i) E[tr(&/A8.)] = tr(A) tr(Z,).
(ii) E[tr(B&.)*] = tr(X.BB).
(i) E[tr(6/48.)%) = (X0 {(4), 1)y + tr(A)? tr(2.)% + 2 tr(4?) (22),
where iy = E[||e||*] — tr(Z,)? — 2 tr(2?), which is defined in assump-
tion A3.
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Let j 2 h. Since I, — P, and P; — P, are symmetric idempotent matrices,
we can identify that

Z{ u} = i(ln_Pw)ﬁ:tr(In_Pw>:”_k’

i1
D AP =P} < D (P Py = (P — Py) = k; — k.
i1 i=1
From the above equations and Lemma B.l, we can evaluate the expectations
and variances of (n— k)~ tr(W), tr(U;), and tr(V,) as follows:
E[n—k) " uW)] =t(Z,), Varn—k)" te(W)] <3(n—k) &,
E[tr(U))?) = tr(2.4)),
Elte(Vi)] = (k; — kn) e(20),  Varlte(Vip)] < 3(k; — kn)&.

Then, we obtain the results of Lemma 1 by using Chebyshev’s inequality.
First, we derive the results of (i), (ii), and (iii) as follows:

P((n—k)~" w(W) = r)

= P((n—k) " tr(W) —tr(Z,) > 1 — tr(2.))

< P(l(n—k) " (W) —t(2,)] = — tr(Z))

< Var((n— k)™ u(W)[{rn — w(Z.)} 7 = 0(&nHn - w(Z.)} 7)),
P((n—k)~" w(W) <r)

= P((n—k)"" (W) — e(Z,) < 12— r(2))

< P(|(n— k)" (W) —te(Z)| = tr(Z.) = 1)

< Var((n— k)™ u(W){r(Z,) =12} 2 = O(En Hir(Z,) =2} ),
P(tr(U;) <r3)

< P(|tr(U))] = |r3])

< E[te(U)*]|rs| > = O(te(Z.4y)|1r3] ),
P(tr(Vin) > (kj — ki)ra)

= P(tr(V;,n) — (kj — kn) tr(Z%) > (k; — ki) {ra — tr(2)})

< Var[tr(¥;1))(k; — kn) 7 {ra = t(2.)} 77 = O(Era — r(2.)} 7).
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Next, we obtain result (iv). When # is sufficiently large or both n and p
are sufficiently large, we have

—rs +16 <0, (rs—re) "' = 0(r5").
Hence, result (iii) can be derived as follows:
P(tr(Vj5) — (K — k) tr(Z%) + 15 < r6)
< P(|tr(V; n) — (kj — k) tr(Z)] = rs —rg)
< Varltr(V; p)](rs — re) 2 = O(&%r5?). O
C. Proof of Lemma 2. First, we obtain the order of Ps. For je
J. N} let W=8&/(I,—P,)é&, and V;; = &/(P; — P;,)&, defined by (12).

It is straightforward that the equation (I, — P,)X.= (P, —P;,)X. = Oy
holds. Then, we have

te{Y'(I, — P,)Y} = tr(W), tr{Y'(P, — P;,) Y} =tr(V; ;).
Using the above equations, SGC,(j|a) — SGC,(j.|o) is calculated as

w{Y'(P; - P,)Y}

SGCy(jlo) = SGCy(jiloa) = —(n — k) w() + (k; — k)
:—(n—k)%—k(kj—k*)a. (C.1)
Let Eg be an event defined by
Es={(n—k) " tr(W) > 15 tr(Z,)}. (C.2)

Then, by using (C.1) and (C.2), we have

P = P(Uje gy AtV = (0 — k)~ te(W) (ks — k. )o})
= P({Uje sngipe{tr(¥s) = (0 — k)™ w(W)(k; — k.)o}} 0 (Es U EY))
< PUje gy ite(V,,) = (k — ki) tr(Z)azs}) + P(Eg)

< Y P(Vg) = (ki — k) tr(Z.)azs) + P(ES). (C.3)
jefin{j}*

From (i) and (iii) of Lemma 1, the orders of two terms in (C.3) are as
follows:
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> PV ) = (k — k) tr(Z.)ars)
je i n{j}e
= 0(& (X)) Pars — 1)),
P(Eg) = O(& tr(X) *n' (1 - 15) 7).
From the above equations and (C.3), we have
Ps = 0(? tr(Z,) 2 max{(ars — 1) 07 (1 — 75) 2}). (C.4)
Next, we obtain the order of Ps. For je 7, let
Je=iUje  Es;={SGC,(j:]2) — SGCy(ji|2) = 0}.
Using j, and Egs ;, we have
Ps = P(Uje s {SGC,(jl0) = SGCp(ji|o) + SGCp (i |2) = SGCp(jil) < 0})
= P(Uje s {SGCy(jlo) = SGC,(ji|) + SGCy(jy]a) = SGCy(ji|o) < 0}
N(Es,;UES ;)
< P(Uje s {SGCp(j]%) = SGCp (i |o) < 0}) + P(Uje 5. Es ). (C.5)
Since j. € 7,, the order of P(Uje, Eg ;) is the same as that of (C.4):
P(Ujey E§;) = O(& tr(2.) 7 max{(ezs — 1) 2, n ' (1 —25)*}).  (C.6)
Notice that
te{Y'(P;, — P)Y} = te(V; ;) + 2 te(U)) + 67,

where 6/2 and U; = ©,X.(I, — P;)&, are defined by (7) and (12), respectively.
From this, SGC,(jlo) — SGC,(j4|o) is calculated as

SGC,(jlo) — SGC,(j %)

u{Y'(P;, — P))Y}
tr(W)

= (n—k) — (kj, — kj)a

— (n— k) (W) " [V}, ) + 2 tr(U)) + 37} — (k. — k) (C.7)
Let E; and E,; be events defined by
E| = {(n — k) r(w) < ;tr(l*)}, E, ;= {tr(U_,) > _41151'2}' (C.8)

Then, by using (C.7) and (C.8), we have
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P(Uje s {SGC,(jl2) = SGC,(j+[) < 0})
= P(Ue s (V) +20(U) + 6] < (n— k)™ w(W)(k;, — ky)a})
= Py {t(V;,,)) +20(U)) +67 < (n— k)~ w(W)(ky, — ky)or}

N (E1 U EY))

\SN OS]

< P( U {tr(mJ) +21tr(U)) +6; <

jes

(k. — k) tr(&)a}) + PE)

(k. — kj) tf(f*)“} N (£, U Eﬁ_/))

NS FON]

= P( U {tr(V,»+,,») +2tr(Uj) +6; <

jes

+ P(EY)
3

< ZP(tr(I/}+_j)+ 52 < =z (k;, — kj) tr(Z*)oc>
jer. - 2

+ P(E) + Y P(E3)). (C9)
jes

Notice that

tr(Z,) (3
nP <§o« _ 1) S0, (EA) < (25,

Hence, by using (8) and (i), (ii), and (iii) of Lemma 1, the orders of three terms
n (C.9) can be derived as follows:

,; P( +152 %(k]‘ —k;) tr(E*)oc)
= 3 2(600) - (g, — k) 2+ 58 < Uy, — k) w2 (34 1) )
Jjes
< ZPCr(VM) (lzp—k/) tr(E*)%gS (k. k])trg*) G“_ID
VA
=0(&n?p7), (C.10)
P(Ef) = O(& te(Z,) *n7 Y, (C.11)
S OPES) =) Otr(Z.4))5; ) = O(max(Z)n~"p7h), (C.12)

jes- jes-
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where ¢ is a positive constant satisfying 0 <6< min;e 4 inf,,>k_p21(np)*15j2.
From (C.5), (C.6), (C.9), (C.10), (C.11), and (C.12), we have

Py = 0(E tr(2,) 2 max{(ars — 1) 2,07 (1 —75) 2})
+ Omax{&*n2p2, &2 tr(Z.) Tn7" dman (Z )0 p71Y). (C.13)
(C.4) and (C.13) complete the proof of Lemma 2. O

D. Proof of Theorem 1. First, we obtain the consistency conditions under
assumptions Al, A2, A3, and A4. Note that under assumptions A2 and A3,
the following equations hold:

_ <_ Amax(Z)

Let us take 7g = 1/2 in Lemma 2. By using Lemma 2 and the above equa-
tions, the orders of Ps and Pg are as follows:

= o(1).

Ps = O(max{(a/2 — 1)%,n'}),
Py = O(max{(a/2— 1) 2 n""}) + 0n").

The above equations and (13) give the consistency conditions in (14).

Next, we obtain the consistency conditions under assumptions Al, A2,
A3', and A4. Let us take tg=1—n"'2 in Lemma 2. Then, using (13),
we have

-2
(s — 1) 2 = (0 — 1)2{1 —L} = 0((u— 1)),

nl(1—1g) 2 =1.
Note that under assumptions A2 and A3’, the following equations hold:

é —0 é —0 ;Lmax(z*) —0
wEy = e =), TEEER o),

Hence, the orders of Pg and P are as follows:
Ps=o((a— 1)) +o(1), Pg=o((x—1)")+o(l).

The above equations and (13) give the consistency conditions in (15). O

E. Proof of Theorem 2. First, we show the inconsistency under condition
Cl. Let W and V;; be defined by (12) and let Ej ={n—k (W) <
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(1+n Y% tr(Z,)}. For any je 7 N{j.}°, we have

P(js = J) = P(Ohe yniy {SGCy (o) > SGC, (ji]2)})
< P(SGC,(jl) > SGC,(j.]2))
= P(r(V,;) < alky — k) (n — k)~ (W)
< P(tr(V)1) — (ky — k) tr(Z.) < (ky — ko) tr(Z){(1+ 7)o~ 1))
+ P(ES). (E.1)

Moreover, when n is sufficiently large or n and p are sufficiently large, we
have

P(tr(V,;) — (ki — k) tr(Z,) < (k — k) te(Z){(1 4+ n~ ) — 1)
< P([te(V;,1.) = (ky = k) w(Z2)| = (k; — k) te(Z){1 = (1 +n7*)a})

Varte(V;,;.)]
(kj — k)2 tr(Z) 21 — (1 +n1/4)a}?

<

< K4I(K4>O)+2U‘(Zf)
7 (ky— k) tr(Z) {1 = (140140

N D O P al (kg > 0) + 2 tr(22)
= (ki — k) (1 - <1 1_@) { ) } (E.2)

Further, by using (i) in Lemma 1, the order of P(EY§) is as follows:
P(ES) = O(E% tr(Z,) *n~ 12, (E.3)
From (E.1), (E.2), and (E.3), condition Cl gives the following inequality:

lim  P(js = Jj.)

n—oo,p/n—c

2
<(k—k)~'{  lim rallocs > 02) 2 tr(zz*) <L
’ n—o0,p/n—c (1 — O() tr(E*)

Next, we show the inconsistency under condition C2. For jCj,,
let Ey = {(n—k) " tr(W) = (1 —n"V*) tr(Z,)} and Es; = {tr(U;) < n~1/467},
where U; is defined by (12). Then, we have

P(js = J:) < P(SGC,y(jlo) > SGC,(ji|0))

= P(u(V,. ;) + 2 w(Uy) + 0] > alk, — k) (n — k)" we(W))
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< P(tr(V;. ;) > (ke — kg) tr(Z) (1= n~ e — (1 +2n717%)87)
+ P(EY) + P(Es ). (E4)
From condition (C2), it is straightforward to identify that

— e _ U8y —
Ve ) CE0 1)
n—o0,p/n—c (1 + 2)’[71/4)5_/

Hence, when n is sufficiently large or n and p are sufficiently large, we have
P(tr(V} ;) > (ke — k;) tr(Z) (1= M — (1 4+ 2n7174)57)

< Varlte(V;.1)] o (E5)
= ke~ k) w(E{(T—n 1) — 1} = (14 207072 S

Further, by using (i) and (ii) in Lemma 1, the orders of P(E{) and P(E5 ;) are
as follows:

P(E{) = O tr(2,) 7 n '), P(ES;) = O(imax(Z)p~'n7'?).  (E.6)

Equations (E.4), (E.5), and (E.6) give lim,_ /. P(js = j.)=0.
Finally, when we replace assumption A3 with assumption A3’, the results
in this case can be derived from (E.1), (E.2), and (E.3) because of & tr(X,) ™! =

o(1). O
F. Proof of Lemma 3. For je # N{j.}", using (19), we have
RGCy(jlo, 2) = RGCy(jielor, 2)
= —t{Y'(P;— P.)YS; '} + (k; — k) po
> (¥ man (871) + (ks — k)

> —A(n— k)%—&- (ki — k.) pa

= H{SGC,(jl2) = SGC,(Julo)} + (k; — k) (p = A)a, (F.1)

where V;; and W are given by (12). Moreover, for je #_, using (19), we
have

RGC,(jlo, 2) — RGCy(ji |, 2)
= tr{y/(PH - PJ)YS}TI} - (kj+ - kj)pa
> Jnin (S; 1) te{Y'(Py. — P)Y} = (kj, — k;)p

> (L4277 = k) u (W)™ wl{Y'(P. = P)Y} = (kj, — k) per
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_1\—1 . .
= (1427 SGC, () — SGCy(js]2))

+ (ky, = k{1 + 277" = pla (F.2)

where j, = jUj,. From (F.1) and (F.2), we can replace RGC,(jlo,A) —
RGC,(j.|e, ) and RGC,(jla, ) — RGCy(j.|a, 2) with SGC,(jlx) — SGC,(j,|ax)
and SGC,(jla) — SGC,(j|x), respectively. Therefore, in the same way as the
proof of Lemma 2, the results of Lemma 3 can be derived. O

G. Proof of Theorem 4. For je #, N{j.}", using (19), we have
RGC,(jlo, 2) — RGCy(ji|or, A)
< —tr(V;, ) Amin(S; ') + (k; — ki) po
<—(1+27Y7 = k) w(W) " (V) + (k; — k.) po
= (1+47)7{SGC,(jln) = SGCy(jul)}
+ (k= k){p = (1+27) o (G.1)
For j C j., using (19), we have
RGC,(jlo, ) — RGCy(ji|ar, 1)
< 2max(8; 1) te{Y'(P;, — P))Y} — (k. — k;) p
< in— k) w(W)" w{Y'(P;, = P)Y} = (k. — k;)po
— I{SGC,(jl) — SGC |0}y — (ke —k)(h— ). (G2)

By using (G.1) and (G.2), in the same way as the proof of Theorem 2, the
results of Theorem 4 can be derived. O

H. Proof of Lemma B.1. First, we calculate the expectation E[tr(&/A&,)] to
prove (i). It is straightforward that

n n

E[tr(8/48.)] = Y (A);Elsi5)) = Y () Elelei] = tr(A) (£.),
i i=1
where the summation 3 7 is defined by 7, 377",

Next, we calculate the expectation E[tr(B&,)%] in (ii). Let b; be the i-th
column vector of B. Then, we have

E[tr(B&,) ZbEe, b_ZbEs, ; = tr(Z,BB).
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Finally, we calculate the expectation E[tr(&’A&,)%] in (ii). The expecta-
tion E[tr(&'A&,)?] can be expressed as follows:

n

Elir(6146,)7) = i‘;/,(A)i,.(A)k/E[(eze,—)(e,zsm
—i{( FElG +; El(e) (&5
+2;{ i} El(el)’]
(Z{ ) el + @(A),,.(A)ﬁ) r(z,)?
+2<Z{ > tr(2?),

where the summation } 7, is defined by >7", >/ ;. Hence, given that

S ), = 0 = S DA =) = D),

i#] i=1 i#]

we can calculate E[tr(&/A&,)%] as follows:

E[tr(8'A&.) <Z{ )m +tr(A)? (2,2 +2tw(4?) w(Z2). O

Acknowledgement

I wish to express my deepest gratitude to Prof. Hirokazu Yanagihara at
Hiroshima University for his valuable advice and encouragement and introduc-
ing me to various fields of mathematical statistics during the academic years
2014-2020. 1 also got a lot of advices about not only the personal manners
as a researcher but also my private life from him, so I could not have come
this far without his helps. In addition, I would like to thank Prof. Yasunori
Fujikoshi at Hiroshima University for many helpful comments and suggestions
about new research themes, Prof. Hirofumi Wakaki at Hiroshima University for
his advice and help and Dr. Mariko Yamamura at Radiation Effects Research
Foundation for her encouragement. Also, I thank to Dr. Shinpei Imori, Dr.
Shintaro Hashimoto and Dr. Heewon Park at Hiroshima University for their



Consistent variable selection criteria in multivariate linear regression even when p >n 373

encouragements, especially, Dr. Shinpei Imori for his valuable comments for
numerical studies in this paper. Moreover, I am also grateful to Dr. Hiromi
Itamiya at National Research Institute of Police Science, for providing me
with the black cotton fiber dataset used in one of the empirical examples. 1
thank to my colleagues, seniors and juniors for their helps. I would also like
to thank the referee for valuable comments.

References

[1] Aoshima, M., Shen, D., Shen, H., Yata, K., Zhou, Y. H. & Marron, J. (2018). A survey of
high dimension low sample size asymptotics. Aust. Nz. J. Stat., 60, 4-19.

[2] Aoshima, M. & Yata, K. (2018). Two-sample tests for high-dimension, strongly spiked
eigenvalue models. Stat. Sinica, 28, 43-62.

[3] Aoshima, M. & Yata, K. (2019). Distance-based classifier by data transformation for high-
dimension, strongly spiked eigenvalue models. Ann. I. Stat. Math., 71, 473-503.

[4] Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. In 2nd International Symposium on Information Theory (eds. B. N. Petrov &
F. Csaki), pp. 995-1010. Akadémiai Kiado, Budapest.

[5] Akaike, H. (1974). A new look at the statistical model identification. Institute of Electrical
and Electronics Engineers. Transactions on Automatic Control AC—19, 716-723.

[6] Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): the general
theory and its analytical extensions. Psychometrika, 52, 345-370.

[7] Dempster, A. P. (1958). A high dimensional two sample significance test. Ann. Math.
Statist., 29, 995-1010.

[8] Dempster, A. P. (1960). A significance test for the separation of two highly multivariate
small samples. Biometrics, 16, 41-50.

[9] Fujikoshi, Y., Kan, T., Takahashi, S. & Sakurai, T. (2011). Prediction error criterion for
selecting variables in a linear regression model. Ann. I. Stat. Math., 63, 387-403.

(10] Fujikoshi, Y., Himeno, T. & Wakaki, H. (2004). Asymptotic results of a high dimensional
MANOVA test and power comparison when the dimension is large compared to the sample
size. J. Japan Statist. Soc., 34, 19-26.

(11] Fujikoshi, Y., Sakurai, T. & Yanagihara, H. (2014). Consistency of high-dimensional AIC-
type and C,-type criteria in multivariate linear regression. J. Multivariate Anal., 123, 184—
200.

(12] Fujikoshi, Y. & Satoh, K. (1997). Modified AIC and C, in multivariate linear regression.
Biometrika, 84, 707-716.

(13] Hannan, E. J. & Quinn, B. G. (1979). The determination of the order of an autoregres-
sion. J. Roy. Statist. Soc. Ser. B, 26, 270-273.

(14] Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective. Springer-Verlag,
New York.

(15] Himeno, T. & Yamada, T. (2014). Estimations for some functions of covariance matrix in
high dimension under non-normality and its applications. J. Multivariate Anal., 130, 27-44.

[16] Katayama, S. & Imori, S. (2014). Lasso penalized model selection criteria for high-
dimensional multivariate linear regression analysis. J. Multivariate Anal., 132, 138-150.

(17) Kubokawa, T. & Srivastava, M. S. (2012). Selection of variables in multivariate regression
models for large dimensions. Comm. Statist. A-Theory Methods, 41, 2465-2489.



(30]

(31]

(32]

(33]

Ryoya Opa

Magnus, J. R. & Neudecker, H. (1979). The commutation matrix: some properties and
applications. Ann. Statist., 7, 381-894.

Mallows, C. L. (1973). Some comments on C,. Technometrics, 15, 661-675.

Mallows, C. L. (1995). More comments on C,. Technometrics, 37, 362-372.

Nagai, 1., Yanagihara, H. & Satoh, K. (2012). Optimization of ridge parameters in multi-
variate generalized ridge regression by plug-in methods. Hiroshima Math. J., 42, 301-324.
Nishii, R., Bai, Z. D. & Krishnaiah, P. R. (1988). Strong consistency information criterion
for model selection in multivariate analysis. Hiroshima Math. J., 18, 451-462.

Sparks, R. S., Coutsourides, D. & Troskie, L. (1983). The multivariate C,. Comm. Statist.
A-Theory Methods, 12, 1775-1793.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6, 461-464.
Srivastava, M. S. (2002). Methods of Multivariate Statistics. John Wiley & Sons, New
York.

Timm, N. H. (2002). Applied Multivariate Analysis. Springer-Verlag, New York.

Wille, A., Zimmermann, P., Vranova, E., Fiirholz, A., Laule, O., Bleuler, S., Hennig, L.,
Prelic, A., von Rohr, P., Thiele, L., Zitzler, E., Gruissem, W. & Bithlmenn, P. (2004). Sparse
graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana.
Genome Biol., 5, 1-13.

Yamamura, M., Yanagihara, H. & Srivastava, M. S. (2010). Variable selection in multi-
variate linear regression models with fewer observations than the dimension. Japan. J. Appl.
Stat., 39, 1-19.

Yanagihara, H. (2015). Conditions for consistency of a log-likelihood-based information
criterion in normal multivariate linear regression models under the violation of the normality
assumption. J. Japan Statist. Soc., 45, 21-56.

Yanagihara, H. (2016). A high-dimensionality-adjusted consistent C,-type statistic for select-
ing variables in a normality-assumed linear regression with multiple responses. Procedia
Comput. Sci., 96, 1096-1105.

Yanagihara, H. (2019). Evaluation of consistency of model selection criteria in multivariate
linear regression models by large-sample and high-dimensional asymptotic theory under
nonnormality. J. Jpn. Stat. Soc. Jpn. Issue, 48, 1-13.

Yanagihara, H., Wakaki, H. & Fujikoshi, Y. (2015). A consistency property of the AIC
for multivariate linear models when the dimension and the sample size are large. Electron.
J. Statist., 9, 869-897.

Zhao, L. C., Krishnaiah, P. R. & Bai, Z. D. (1986). On detection of the number of signals
in presence of white noise. J. Multivariate Anal., 20, 1-25.

Ryoya Oda
Department of Mathematics
Graduate School of Science

Hiroshima University
Higashi-Hiroshima 739-8526, Japan
E-mail: ryoya-oda@hiroshima-u.ac.jp



