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The Dirichlet problem for a prescribed mean curvature equation
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ABSTRACT. We study a prescribed mean curvature problem where we seek a surface
whose mean curvature vector coincides with the normal component of a given vector
field. We prove that the problem has a solution near a graphical minimal surface
if the prescribed vector field is sufficiently small in a dimensionally sharp Sobolev
norm.

1. Introduction

In this paper, we consider the following prescribed mean curvature prob-
lem with the Dirichlet condition,

(i) = 9. 7) i @ 1)
u=¢ on 0L,

where @ is a bounded domain in R”. The function H(x,t,z): 2 x R x R" —
R is given and we seek a solution u satisfying (1). Since the left hand side of
(1) is the mean curvature of the graph of u, (1) is a prescribed mean curvature
equation whose prescription depends on the location of the graph as well as the
slope of the tangent space.

Prescribed mean curvature problems in a wide variety of formulation have
been studied by numerous researchers. In the most classical case of H = H(x),
(1) has a solution if H and ¢ have suitable regularity and the mean curvature
of 00 satisfies a certain geometric condition (see [3, 4, 6, 7, 8, 11], for example).
Giusti [5] determined a necessary and sufficient condition that a prescribed
mean curvature problem without boundary conditions has solutions. In the
case of H = H(x,t), Gethardt [2] constructed H':! solutions, and Miranda [10]
constructed BV solutions. In those papers, assumptions of the boundedness
|H| < oo and the monotonicity 22 >0 play an important role. If |[H| < I
where I' is determined by €, there exist solutions of (1), and the uniqueness
of solutions is guaranteed by the monotonicity, that is, %’;’ > 0. Under the
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assumptions of boundedness, monotonicity and the convexity of Q, Bergner [1]
solved the Dirichlet problem in the case of H = H(x,u,v(Vu)) using the Leray-
Schauder fixed point theorem. Here, v is the unit normal vector of u, that is,
v(2) :ﬁ(z,—l). For the same problem as [1], Marquardt [9] gave a
condition on Q2 depending on H which guarantees the existence of solutions
even for a non-convex domain Q.

The motivation of the present paper comes from a singular perturbation
problem studied in [12], where one considers the following problem on a
domain Q c R™!,

—ed¢, + % =&V, - 1. (2)

Here, W is a double-well potential, for example W (¢) = (1 — ¢)* and {f},-,
are given vector fields uniformly bounded in the Sobolev norm of W'2(Q),

p>". In [12], we proved under a natural assumption

2
|, (‘”Vfﬂ' n Wi"”'))m il < € 3

that the interface {¢, =0} converges locally in the Hausdorff distance to a
surface whose mean curvature H is given by f-v as ¢ —» 0. Here, f is the
weak W7 limit of f,. If the surface is represented locally as a graph of
a function u over a domain Q C R”", the corresponding relation between the
mean curvature and the vector field is expressed as

div| — V| ) fru(x)  in @ (4)

V1 + |Vl

where fe W' (Q x R;R™") with p >, Note that f is not bounded in
L™ in general, unlike the cases studied in [1, 9]. In this paper, we establish
the well-posedness of the perturbative problem including (4) which has a W!?
norm control on the right-hand side of the equation. The following theorem
is the main result of this paper.

THEOREM 1. Let Q be a C"' bounded domain in R" and fix constants

>0, <p<n+1land q= w1 Suppose he W2 >(Q) satisfies the mini-

mal surface equation, that is,

div V—h —0. (5)

1+ [Va)?
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Then there exists a constant 6y > 0 which depends only on n, p, Q, HhHWz.x(Q),
and & with the following property. Suppose Ge W'?(Q x R) and ¢ € W>4(Q)

satisfy
G 1r@xwr) T 18l w20@) < 01, (6)

and a measurable function H(x,t,z) : Q x R x R" — R is such that H(x,-,") is
a continuous function for a.e. x € Q, and for all (t,z) e R x R”,

|H(x,t,z)| <|G(x,1)] for ae. xeQ. (7)

Then, there exists a function ue W>4(Q) such that u—h— ¢ e Wol"q(Q) and

div _u = H(x,u(x),Vu(x)) in Q, (8)
1+ |Vul?
[ =Dl a0y <& ©)

The claim proves that there exists a solution of (1) in a neighbourhood
of any minimal surface if H and ¢ are sufficiently small in these norms. In
particular, if we take H(x,t,z) =v(z)- f(x,7) and G(x,t) =|f(x,t)|, where
[ £1lw1.0@xw) is sufficiently small, above conditions on G and H in Theorem 1
are satisfied and we can guarantee the existence of a solution for (1) nearby the
given minimal surface (see Corollary 1). The method of proof is as follows.
We prove that the linearized problem of (1) has a unique solution in W?24(Q)
and the norm of this solution is controlled by G and ¢. When (6) is satisfied,
there exist a suitable function space .« and a mapping 7T : .o/ — o7, and a fixed
point of 7' is a solution of (8) with u—h—¢e Wol’q(Q). We show that T
satisfies assumptions of the Schauder fixed point theorem, and Theorem 1
follows.

2. Proof of Theorem 1

Throughout the paper, Q is a bounded domain in IR” with C"! boundary
0Q. We define functions 4;:R" - R (i,j=1,...,n) as

1 Zizj
e (o)
1+ 12 L+l

and the operator

Liz](u) := A;;(z)Dju(x) for any ue WZ’I(Q),
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where we omit the summation over i,j=1,...,n. By the Cauchy—Schwarz
inequality, for any & e IR",

I 2
Ay(2)¢ig; = <5i/ - )fiéf

2
Y1+ L+ |

1 Zj
- |l -

V142 V1+]2)?

2

<i

SR B [FER (TG P
- 2 1+]z?
1+ 2| 2]
1 2
“rE )

Hence, as is well-known, the operator L[z] is elliptic.

THEOREM 2. Suppose ve C'*(Q) with 0<oa<1, B=(B),...,B,) €
L7 (Q;R") with ||Bill .« oy < K forallie {1,...,n}, [ € LY(RQ) and § € W>(R)
with ¢ >n. Then there exists a unique function ue W*9(Q) such that

{L[Vv](u) +B-Vu=f in Q, ()

u—g¢e Wy4Q).

Moreover, there exists a constant ¢y which depends only on n, q, Q, K, and
||v||cu@) such that

lull 2oy < colll £l ooy + 191l w2ae)- (12)
Proor. By (10), for any &e R",

1
1+ ol )

A (Vo)&g; > el = AeP, (13)

where the constant A depends only on || cix@)- Since each A4y is a smooth
function of Vv, there exists a constant 4 which depends only on [|v]| 1., such
that

[45(Vo)llcoszy <4 for all i, je{l,....n}. (14)

By (13) and (14), there exists a unique solution u e W?4(Q) satisfying (11)
(cf. [4, Theorem 9.15]). Using [4, Theorem 9.13], we can know that there
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exists a constant ¢; which depends only on n, ¢, Q, A, K, and A such that

lullp2o0) < crlllull Loy + 1/ 1 o) + 18llw2a@)- (15)
Using the Aleksandrov maximum principle [4, Theorem 9.1], we can know that
there exists a constant ¢, which depends only on n, 2, K, and A such that

[ull =gy < sup [ul + 2]l £l oq)

xeoR

sup 4] + el f | Lo(o)- (16)

xeoQ

By the Hoélder and Sobolev inequalities, ¢ € C(Q) and

L"(9)>

< c(ldllc@y + 1/ 1ena)
< &3([1f o) + 19llw200))s (17)

where ¢3 depends only on n, ¢, and Q. By (15) and (17), there exists a
constant ¢y which depends only on n, ¢, Q, A, K, and 4 such that

[ull o) < cllull o)

< c(sup 9]+ 1171
xed

Nl 2.0 < coUlf Loy + 19l w2a(0))- (18)
Thus this theorem follows. O
To proceed, we need the following theorem (cf. [13, Theorem 5.12.4]).

THEOREM 3. Let u be a positive Radon measure on R™" satisfying

1
K(u):== sup —u(B:(x)) < oo.
B,A(X)C]R’Hl r

Then there exists a constant cq4 which depends only on n such that

J ¢d,u‘£C4K(,u)J \Voldz !
]Rn+1 ]er+l

for all ¢ e CHIR").

LeMMA 1. Suppose ve WL (Q) with [ollpro@ <V and Ge
WiP(Q x R) with L < p<n+1. Let q= w1 Then there exists a con-
stant c¢s which depends only on n, p, Q, and V such that

1G( v Logo) < esllGllwrraxr)- (19)
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ProoOF. Define
I :={(x,v(x)) e 2 x R}.

A set B'(x) is the open ball with center x and radius r in IR”. In the fol-
lowing, #" denotes the n-dimensional Hausdorff measure in R"*! and #"L
is a Radon measure defined by

H"_r(A):= A" (ANT)  for all 4 C R™

Then the support of J#"L j satisfies in particular spt #"L C Q x (=2V,2V).
For any B"'((x,x))) C R with (xp,x)) € R” x R,

VI+ Vo de < (1+ V)o,, (20)

where w, is the volume of n-dimensional unit open ball. Usir£g the standard
Extension Theorem, we can know that there exists a function G € W'?(IR"*!)
such that G=G in Q x (=2V,2V) and

1 1
— A" _p(B™! A —
g r(B ((x0,x))) < Lp(mm

[ G” wipR*) = c6| G| WLr(Qx(=2V,2V))» (21)

where ¢¢ depends only on n, p, Q, and V. By Theorem 3 and smoothly

approximating G,
G(x, o(x))|7\/1 + [Vo|* dx

_ J 1G(x, )| 1A
I

L} |G (x,v(x))|dx < L?

<, V)J VGGl demt!
]er+l

q—1

= C(I’l, b, V)HVG| Ll’(JR”“)”G” W (R™

< ¢(n, p, V)C6||G||;/]Vl-/f(.Qx(—ZV,ZV))
< c(n.p. V)eel|Gl 1y 0m- (22)
This lemma follows. O

We write the Schauder fixed point theorem needed later ([4, Corollary
11.2]).

THEOREM 4. Let % be a closed convex set in Banach space % and let T
be a continuous mapping of 9 into itself such that the image T(9) is precompact.
Then T has a fixed point.
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We first prove Theorem 1 in the case that & = 0.

THEOREM 5. Assume that Ge W1P(Q x R) with % <p<n+1 and

¢ e WH9(Q) with q = n+"1”7p. Then there exists a constant 6, > 0 which depends

only on n, p, and Q such that, if

1Gllw1s@xr) + I8l w20(9) <02, (23)

then, for any measurable function H(x,t,z):Q x R x R" — R such that
H(x,-,-) is a continuous function for a.e. x € Q and

|H(x,t,z)| < |G(x,1)]  for ae. xe, any (t,z) e R x R", (24)

there exists a function ue W>4(Q) such that u— ¢ € Wol’q(.Q) and

div| — | = Hxu),vu(x)  in @ (25)

1+ [Vl

Proor. Define

of = {ve CHP Q) ||U||c1~1/2—n/2z1(§) <1} (26)

The set .o/ is a closed convex set in Banach space C!/27"/24(Q). By (24) and
Lemma 1, H(-,v(-),Vu(-)) € L1(Q2) for any ve o/. Using Theorem 2, we can
know that there exist a unique function we W?>4(Q) and a constant ¢; > 0
which depends only on n, p, 2, and not on v such that

L[Vvl(w) = H(x,v,Vv) in Q,
w—ge Wy (Q), (27)

HWHWM(Q) =< C7(HG||W1~1’(Q><]R) + H¢||W2v‘l(9))'
By the Sobolev inequality and (27), we obtain
el cnnnnsay < esl¥lennn)
< oollwll 2o
< aw(lGllwiraxr) + 18llw20e); (28)
where cg, cg,c190 > 0 depend only on n, p, and Q. Suppose that
Gl wrr@xr) T 18l w2eo) < cig =:62(n, p, Q). (29)

Let us define an operator T : .o/ — .o/ by T(v) = w which satisfies (27). We
show that 7'(.</) is precompact and T is a continuous mapping. For any
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sequence {vm},en C o/, we have sup,,cnl|7(0m)ll c1ino(z) < cg! by (28) and
(29). There exists a subsequence {7 (vm,)}ien C {7 (0m)},,en Which converges
to a function w,, € C'(Q) in the sense of C'(Q) by the Ascoli-Arzela theorem.
We see that w,, e C117"/9(Q) because

Ve () = Ve )| _ W T () () = VT )0 _
N -y o

Let Wy := T(vy,) — W, and Wy converges to 0 in the sense of C!'(2). Then
we have

12
Vﬂ)k X) — Vﬂ/k y Vﬁ)k X) — V\X/k y ~ ~
| ( ) l/z_n/z(q )‘ < | ( ) l_n/q( )| |VW/C(X) _Vwk(y)|1/2
Ix — [x =yl
< 2¢5 22Vl o)) (30)

Hence, {T (0, )};n converges to a function w,, in the sense of C!:1/277/24(Q),
and the operator 7 is a compact mapping. In particular, the set 7(</) is
precompact.

Suppose that {v,}, . converges to v in the sense of C':1/>7"/24(Q). By
(28) and (29), sup,,cn 7' (vm)ll24(0) is bounded. Hence, there exists a sub-
sequence {7 (vm)}ren C {7 (Um)}nen Which weakly converges to a function
we W>4(Q). We show T(v) =w, that is,

A;(Vo(x))Dyw(x) = H(x,v,Vv).

For any y e Cy°(Q), by the weak convergence and the Holder in-
equality,

UQ Y{A;(Vo)Dyw — A,-]-(Vumk)DU-(T(vmk))})
< UQ YA, (Vo)(Dyjw — D,»j(T(va.)))‘
4 UQ YDy (T(tm,)) (A (V) — A;,»(va,c))‘

< UQ Y A;(Vo)(Dyw — Dij(T(Umk)))‘

N7 @m0 (A (Vo) = A (Vow, )|

—0 (k — o0). (31)

La/a=1)(Q)
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By (24) and |[vm, |0 [[t]lp=@) <1, we compute
[H (X, Opyy (X), VO, (X))]
< [G(x, vp (%)) — G(x,v(x))| + [G(x, v(x))|

1
< J,l |D;G(x, t)|dt + |G(x,v(x))]. (32)

ﬁl |D,G(-,1)|dt +|G(-,v(-))| is an integrable function by Lemma 1, [|[v]| g <

1, and Fubini’s theorem. Since H is a continuous function with respect to ¢
and z, using the dominated convergence theorem, we have

JQ Y{H (x,v(x),Vv(x)) — H(x, 0, (x), VU, (x))} =0 (k— 00). (33)
By (31) and (33),
L YA, (Vo) Dyw — H(x, o(x), Vo(x)}

= lim j WA (V0u ) Dy(T (0n,)) — Hx, 0, (x), Vo, ()}
— 0. (34)
Using the fundamental lemma of the calculus of variations, we have
Aji(x,Vv)Dyw — H(x,v(x),Vo(x)) =0 for a.e. xe @,

and T(v) =w. Hence, {T(vy)},cn Weakly converges to T(v) in W24(Q).
By the compactness of T and the uniqueness of limit, we can show
{T(vm)},,en converges to T(v) in CH1/277/24(Q), and T is a continuous map-
ping. Using Theorem 4, we obtain a function ue W24(Q) satisfying u — ¢ €
W, 1(Q) and (25). O

ProOF (Proof of Theorem 1). We should show that there exists a function
ie W>4(Q) such that

Ay(Vit+Vh)Dy(i + h) = H(x, i+ h,Vii+ Vh), (35)
i—¢e W, i(Q), (36)
]l pr2aiq) <& (37)

Using the minimal surface equation (5) for A, we convert (35) as
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Dyjh

(1+ Vi +Vh|?)*?

— DjitD;ii — D;itD;h — DjiiD;h)

Ay(Vit+ Vh)Dyit + (IVa* + 2Vi - Vi)o,

=H(x,u+hVa+Vh). (38)
Define

ot = {ve CHVPQ): o] g < o). (39)

The set .o/ is a closed convex set in Banach space C'-'/2-"/24(Q). We consider
the following differential equation,
Dyh

A;i(Vo+Vh)D;w +
i Dy (1+|Vu+Vh|2)3/2((

Vo-Vw+2Vw.-Vh)d;

— D,'UD_/W — D,‘WD_/'/’I — D_/WD,'}Z)
= H(x,v+ h,Vv+Vh). (40)
Define

Dyh

BVv) -Vw =
o) (1+ |Vo+Vh?)?

(Vv-Vw+2Vw-Vh)d;

— DjvD;w — DiwD;h — DywD;h).

Here, there exists a constant c¢;; > 0 which depends only on n, p, 2, ¢ and
||h||Wz.aV<Q> such that

1Bi(VU)ll o) < en for all ie{l,...,n}, (41)

where B(Vv) = (B1(Vv),...,B,(Vv)) e L*(2;R").

Using Theorem 2, we obtain a unique function we W24(Q) satisfying
w—¢ge WO1 (Q) and (40). By (41), Theorem 2, Lemma 1, and the Sobolev
inequality, there exists a constant ¢j» > 0 which depends only on n, p, Q, ¢,
and ||| 2. () such that

||W||c1,1/2—n/2q((g) < (|G| wir(@xR) T H¢||WM(Q))' (42)
Suppose that we have
Gl 1r@xwr) + 18l w20 < cie =01 (43)

Let a operator T :.«/ — .o/ be defined by T(v) =w which satisfies w— ¢ e
Wol’q(Q) and (40). The compactness of T can be proved by the argument of
Theorem 5. In particular, the set 7'(.</) is precompact.
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Suppose that {v,,},,.n C -/ converges to v in the sense of C!:1/277/24(Q).
Then there exists a subsequence {7 (Vp, ) }ienw € {7 (vm)},,en Which weakly con-
verges to a function we W29(Q). For any ¢ e C°(Q),

J Y{B(Vv) -Vw—BVuy,) -VT(vm)}
Q
- L YB(Vo) - (Viw — V(T (b))

+j WV (T(0my)) - (B(V0) — B(Vom,))
Q
-0 (k — o0), (44)

since B is a continuous function and 7' (v, ) converges weakly to w. By (44)
and the argument of Theorem 5, we can show that 7 is a continuous mapping.
Using Theorem 4, we obtain a function # e W?*4(Q) satisfying (35) and (36).
Moreover, # satisfies (37) by (42) and (43). Define u:=u+h. Then u sat-
isfiesu—h—¢ge W()l’q(Q), (8), and (9), and the proof is complete. O

COROLLARY 1. Suppose [ = (fi,..., fur1) € WhP(Q x Ry R") with 5L <
p<n+1 and ¢ e W>4(Q) with q = n+"f’7p. Let ¢ >0 be arbitrary. Suppose
he W% (Q) satisfies the minimal surface equation, that is,

div[ Y| o (45)

\/ 1+ |Vh|?

Let 61 > 0 be the constant as in Theorem 1. If

n+1

Z 1illwiroxm) + 18l w2 < 01, (46)

i=1

then there exists a function ue W*9(Q) such that u—h— ¢ e Wol‘q(Q) and

div SRR v(Vu(x)) - f(x,u(x)) in Q, (47)
1+ |Vul?
||Ll — h” W2a(Q) <é&. (48)

Proor. Define

H(x,t,z) :==v(z) - f(x,1).
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By fe Whr(Q x R;R"™!), for ae. xeQ, f(x,-) is an absolutely continuous
function. Hence H(x,-,-) is a continuous function for almost every x € Q.
We have

n+1
|H(x,t,z2)| < Z | fi(x, 1)) for a.e. xe @, any (f,z) e R x R",
i=1

and S fi(x, 1) € W'P(2 x R). By the Minkowski inequality,

n+1 n+1
Z |fi(x, 1) = /il wir2xm)-
i=1 =1

WLr(QxIR) i

Define

n+1

G(x,1):= > _|filx, ).
i=1

Then H and G satisfy the assumption of Theorem 1, and this corollary follows.

O

REMARK 1. The uniqueness of solutions follows immediately using [4,
Theorem 10.2].  Under the assumptions of Theorem 1, if we additionally assume
that H is non-decreasing in t for each (x,z) € Q x R" and continuously differ-
entiable with respect to the z variables in Q x R x IR", then the solution is unique
in W>1(Q).
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