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ABSTRACT. In this paper, we evaluate the asymptotic bias of C, type criterion for
model selection in the GEE (generalized estimating equation) method when the sample
and cluster sizes are large. We present the asymptotic properties of GEE estimator
and the model selection criterion. Then, we present the order of the asymptotic bias
of PMSEG (the prediction mean squared error in the GEE).

1. Introduction

Longitudinal data in which the observations are correlated are widely used
in many fields. Generalized estimating equation (GEE) proposed by Liang
and Zeger [6] is a representative method for analyzing such data. In the GEE
method, we use a working correlation matrix to estimate the regression co-
efficients without specifying the joint distribution of observations. We can
choose a working correlation matrix freely, which is one of the reasons that the
GEE method is widely used. The asymptotic properties of the GEE estimator
were derived by Xie and Yang [11]. They ensured the existence, consistency
and asymptotic normality of the GEE estimator under some conditions.

Model selection is an important issue in the GEE framework. A widely
used model selection criterion is the Akaike’s Information Criterion (AIC)
(Akaike [1], [2]). The AIC is based on the likelihood function of responses and
the asymptotic properties of the maximum likelihood estimator. Furthermore,
Generalized Information Criterion (GIC) proposed by Nishii [§] and Rao [10]
which is a generalization of AIC is also widely used.

Since we get the GEE estimator without specifying a joint distribution,
there is no likelihood. Thus, the likelihood based information criterion cannot
be used in the GEE. Pan [9] proposed QIC (quasi-likelihood under the inde-
pendence model criterion for GEE) by using an independent quasi-likelihood.
The Mallows’s C, (Mallows [7]) based on the prediction mean squared error is
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also widely used. Since the Mallows’s C, is based on the prediction mean
squared error without using a likelihood, we can use this kind of criterion
for GEE. Inatsu and Imori [4] proposed the new model selection criterion
PMSEG (the prediction mean squared error in the GEE) by using the risk
function based on the prediction mean squared error normalized by the
covariance matrix. PMSEG can reflect the correlation between responses.
Inatsu and Sato [5] evaluated the influence of estimation of the correlation
parameters included in the working correlation matrix and the scale parameter
included in the marginal distribution of responses. They mentioned that we
can get an asymptotic unbiased estimator of the risk function when the sample
size is large by using the moment estimators of the correlation parameters and
the scale parameter. They also mentioned that by using PMSEG, we can
select an optimal subset of variables and a working correlation matrix simul-
taneously. By selecting both the subset and the working correlation matrix,
we may be able to improve the prediction accuracy. Inatsu and Imori [4], and
Inatsu and Sato [5] proposed the C, type criterion when the sample size is large
and the maximum cluster size is bounded.

In this paper, we evaluate the asymptotic bias of PMSEG when the
maximum cluster size goes to infinity as the sample size goes to infinity. The
present paper is organized as follows: In section 2, we introduce the GEE
framework and PMSEG. After that, we introduce the asymptotic property of
the estimator of a regression coefficient vector. In section 3, we evaluate the
asymptotic bias. In section 4, we perform a numerical study. In Appendix,
we prove the theorems in section 3.

2. Model selection in the GEE

Let (yj,xs,;;) be observations for the jth measurement on the ith subject,
where i =1,2,...,n, j=1,2,...,m; and m; is the cluster size of the ith subject.
Here, yj; is a scalar response and xy ; is an /-dimensional explanatory vector.
Assume that the observations from different subjects are independent and the
observations from the same subject are correlated. For each i=1,...,n, let
v: = (yi1,---,Vim,)" be a response variable vector from the ith subject and
X;i=(xfi,...,Xr,m) be a full explanatory matrix from the ith subject.
Moreover let X; = (xi1,...,Xi,)" be a m; x p submatrix of the matrix Xy
where / > p. Liang and Zeger [6] used the generalized linear model (GLM) to
model the marginal density of yj:

S (i, xi, B, ¢) = exp[{yby — a(0y)}/d + b(yy, 9)], (2.1)

where a(-) and b(-) are known functions, 0; is an unknown location parameter
defined by 0; = u(n;) = 0;(f) with known injective function u(-), and ¢ is a
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nuisance scale parameter. Here, f is a p-dimensional unknown regression co-
efficient vector and 7; = x; ﬂ is called the linear predictor. We call that the
model with x;; and x; as the full model and the candidate model, respec-
tively. In the present paper, let @ be the natural parameter space (see, Xie and
Yang [11]) of the exponential family distributions presented in (2.1), and the
interior of @ is denoted as ®°. Then, it is known that @ is convex and all
the derivatives of a(-) and all the moments of y; exist in @°. We denote the
derivative and the second derivative of a function f(x) as f(x) and f(x),
respectively. Under this model specification, the first two moments of y; are
given by

#y(B) = Elygl = a(05),  oj(B) = Var[yy] = a(05)¢ = v(uz(B)).

Denote ( ) (lull( ) "'7ﬂf}’n[(ﬂ))/9 Dl(ﬁ) = aﬂz(ﬁ)/aﬂ, :Al(ﬂ)Al(ﬁ)le
Ai(p) = dlag( 2( B).-- .00, (B), Ai(B) = diag(60a /oy, .., 00m,/On,,) and

Vi(B,a) = (ﬁ’) v(a)A; Al 2(ﬁ’)¢ where a is a nuisance correlation parameter.
Here, Rw(a) is called a “working correlation matrix” that one can choose
freely. Typical working correlation matrices are follows:

Independence : (Ry(a)); =0 (j # k),
Exchangeable : (Rw(ll))jk =a (j £k),
Autoregressive : (Rw(a))j = (Rw(a))kj — gk (j > k),

o (j=k+1
1-dependence : (R,,(a)); = (Ry(a));; = {0 Ej . 1> P AR

Unstructured : (Ry,(a)); = (Rw(a))y; = o (J > k).

Note that the diagonal elements of R, (a) are ones, since it is a correla-
tion matrix. Assume that the cluster sizes m; on ith subject is the common
m. Denote E,-(ﬁ')fAl/z(ﬁ)RoAl/z(ﬂ)gb, where Ry is the true correlation
matrix of y;, here we assume that for i =1,...,n, the true correlation matrix
is the common. Moreover, R, (a) includes nuisance parameter a. If R, (a)
is equal to the true correlation matrix Ry, then V(f,,a)=2:(f,) =
Ail/Z(ﬂO)RoA,]/z(ﬂo)qﬁ = Cov[y,] at the true regression coefficient f,.

In the GEE method, when the correlation parameters and the scale
parameter are known, we solve the following equation:

4n(B) = _DI(B)V, " (B)(v; — 1(B)) = 0y, (2.2)
i=1
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where 0, is the p-dimensional vector of zeros. Here, the parameter space of
the correlation parameters is defined as follows:

o ={a=(a,...,05) e R*| R, (a) is positive definite}.

When the correlation parameters and the scale parameter are unknown, we
estimate a¢ by f and an estimator of ¢ Furthermore, we estimate ¢ by p.

Let a(B, §(B)) = (@1 (B, $(B)),- -, é(B,4(B))) be an estimator of a, where ¢()

is an estimator of ¢. We replace (2.2) with the following equation:
n
sun(B) =Y D{(BT " (B)(y: — m(B)) = 0, (2.3)
i=1

where I';() = Vi(B,a(B,$(B))). The solution of (2.3) denoted as f is the
estimator of true regression coefficient f,. We call ﬁ the GEE estimator.

When the parameters a, f and ¢ are unknown, we estimate them by the
following iterative method (see, Inatsu and Sato [5]):

Algorithm (Estimation method for parameters a, f and ¢)

Step 1 Set an initial value of a denoted as a<%.

Step 2 Solve the GEE with @, and the solution of the GEE is denoted as < = f(a<®).
Step 3 Estimate ¢t by .

Step 4 Estimate a*™" by g% and ¢,

Step 5 Iterate from step 2 to 4 until a certain condition about the convergence holds.

We use the moment estimators of ¢ and a, for example:

m

Scale parameter : ¢(f) = nmzz (i '“U ﬂ) ’

i=1 j=1

Exchangeable : a(B, 4(B)) = ;Z fl,(ﬁ)f’zk(ﬁ)/&(ﬁ),

nm(m — 1) i
) PP 1 n mflA L A
Autoregressive : a(f, ¢(f)) = m; 2. i j(B)ijr1(B)/d(B),
P 1 nmflA L o
1-dependence : a(B, 4(B)) = m 2.2 i j(B)Fi 1 (B)/d(B),
Unstructured : a; (f, (B) _1 fi.j(ﬁ)fi,k(ﬁ)/ﬁg(/}),
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where r,](ﬁ) = yij — ,u,j(ﬂ). Then, we assume that a(By,d,) — ao € /° and
¢(ﬂ0) —>¢0, where ap is the convergence value of a(f,,¢,) and ¢, is the
convergence value of ¢(ﬁ0).

Inatsu and Imori [4], and Inatsu and Sato [5] proposed the following risk
function:

n

D (=) E (i - ﬂi)‘| ] — mn,

i=1

Riskp = PMSE — mn = E, [E

where a; = (ﬂilv s Haim)l = :ui(ﬁ)a i,0 = (ﬁo) and z; = (Zi17 s ’Zl'm)l is an

m-dimensional random vector that is independent of y, and has the same

distribution as y;. Note that if the estimator of regression coefficient equals

to the true regression coefficient, Riskp has the minimum value zero.
Denote

= LS B - B - (B A7)0,

LBy B) =D (v — m(B)) AT P (B)RT (B)A] P (By) (v — m(B)) (B,

i=1

n

LB =Y (vi—m(B) Zi5(vi — mi(B)).

i=1

Since the PMSE is typically unknown, Inatsu and Sato [5] estimate the PMSE
by Z(p, ﬂ,»), where ﬂ, is the GEE estimator from the full model. Then, by
correcting the asymptotic bias of the estimator of the risk, they propose the
model selection criterion PMSEG as follows:

PMSEG = Z(B,B;) + 2p.

Xie and Yang [11] presented asymptotic properties of the GEE estimator
of the regression coefficient ﬁ when the cluster size m goes to infinity as the
sample size n goes to infinity. Let Apin(A) (Amax(A)) denotes the smallest
(largest) eigenvalue of a matrix 4, and

nm ZD/ ﬂ7a0) (/)))

M,n(B) = Covlg,,(B ZD’ (B, a0)Zi(B) V' (B 20) Di(B),

an(ﬁ) = Hnm(ﬁ)M;:ni (ﬂ)Hnm(ﬂ)
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We consider the following regularity conditions (see, e.g., Xie and Yang [11],
Inatsu and Sato [5]):
Cl. The set 2 is compact. For all sequence {x;}, it is established that
u(x;f) e ©° and x; € .
C2. The true regression coefficient f, is in #4°, where #° is the interior of
an admissible set 4, i.e., f, € B°, B = {ﬂ|u"(x{j )eO if x; €X'},
C3. For any f € %, it is established that x;;8 is included in g(.#), where
A is the image a(@°) of ©°.
C4. The function u(n;) is four times continuously differentiable and
u(n;) >0 in g(.#°), where .#° is the interior of ./.
CS5. The matrix M, o is positive definite when n or m is sufficiently
large, denoted by

2: 1
nm()— D ,0210 0D107

where D; o= D;(f,) and Vo = Vi(fy, o).

C6. It is established that liminf, . m—o Amin(Humo/nm) >0, where
Hnm,O = Hnm(ﬂo)

C7. 1t holds that Tuimax(H, o) — 0, Where Ty = Amax (R, (@0)Ro).

C8. It holds that nﬁmrnmmy,(,,o,g — 0, where

j~min(Ruirl ((lo)) 7

T =

y(0> = max max Jx;

TH X
I<i<n 1<j<m v an v

C9. It holds that (c,n) M(Z,,m )2+(s y,(,m — 0 for some J > 0, where
Chm = /lmax(My;;g,’oHnm,O)’
inm = /lmax(R‘;l(ao)»

The conditions C1-C9 are the modifications of the conditions proposed by Xie
and Yang [11]. Here, to evaluate the asymptotic bias of PMSEG, we present
the following lemma:

LemMma 1. Suppose the conditions C1-C9 hold.
(@) There exists a sequence of random variable B such that g — P, in
probability, and M H,,mﬁo(ﬁ —pBo) and M;,;{gqnm(ﬂo) have the same

nm,0
asymptotic distributions.
(b) When n — oo,
M 1/2H,1m’0(ﬁ —Bo) — N(0,,1,) in distribution.

nm, 0
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Lemma 1 is the same as that of Corollary 1 of Xie and Yang [11], so we
omit the proof. Here, I, is the p-dimensional identity matrix.

3. The asymptotic bias of PMSEG

In this section, we evaluate the asymptotic bias of PMSEG. We denote
the derivatives of a matrix W whose elements w;’s are functions of f8, by f and
B as follows:

9 ow oW oW fow;
— QW =—,...,— |, _:( !/),
op <0ﬂ1 6ﬂp> B, P,

where = (f,,....8,)".

We consider the following assumptions (see, Inatsu and Sato [5]):

C10. There exists a compact neighborhood of ay, say Ug, such that
vec{R,'(a)} is three times continuously differentiable in the interior
of Uy,.

C11. There exists a compact neighborhood of f,, say Ug, such that
a(B,d(P)) is three times continuously differentiable in the interior

of Uﬁ[).
Cl12. For all fe Uy, it is established that ¢ () = 0,(1) (k =1,2,3),
where
- (B, (B)) - o - - o
(g = YULPP)) @(g) = ) g =L 0a?
a’(p) = B (B) = a(p), a”(p) = ®@a(p)

C13. The estimator ay = a(f, #(f,)) satisfies (/n/m)(ay — ag) = O,(1),
and there exists an s X p nonstochastic matrix # such that

a(By) — A = Op(m//n).
Cl4. The following equations hold:

E -lzn;(yi —1;0)' Zi o Diohio| = O(m* /n),
E -é()’i _:uiA,O)/ZiTOlDl’,O.il,O = O(m*/n),
E _im — )" diag(A; ; by 0) Ry A; 4Dy o o| = O(m* [n),
E _;Z:m — m;0)' A5y " Ry diag(A;] , oby.0)Dj0h1 0| = O(m* /n),
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12y
lz — o) dlag(Aszbf 0) OlAi,O/ Diojyo

= O(m*/n),

n
E[Z(J’ ﬂzo) A; 1/2R0 dlag(A/ i.0by, O)Di,Ojl,o = 0(m4/”)7

i=1

where ;o = () and A; o0 = A;(fy).
Cl15. liminf, .o Amin(Bum,o/nm) > 0, where

n
Bnm,O = ZX,'/AI‘,OA[,OAI‘,OXH
i=1
and 4,0 = 4;(p)-
We write the definitions of A1 0, j, o, 45 ;( and by in the proof of Theorem 1
in Appendix. By using the moment estimator of the correlation parameters
and the scale parameter, the conditions C10, Cl1, C12, C13 and Cl4 are
fulfilled. Condition C15 is necessary to prove following Lemma 2:

LemMMmA 2. Suppose the conditions C1-C15 hold.  Even if the working
correlation matrix is misspecified, we have

B~ Bo = Op(m/Vn).
ProOF. Suppose the conditions C1-CI15 hold, we have
H,,o.= ZXiAi,OA,'l’{)zR,Il (QO)A,']’{)ZAi.OXi
=1
> Zmin (Rwl (aO))Bnm,O

1
}vmax (Rw (GO))

Bnm, 05

Moo= Xidi oA R, (ag)RoR} (a0) A} 4; 0 X

< m{imax(R;] (QO))}ZBnm,W

According to Lemma 1, §— f, — N(0, an o) in distribution. We calculate
F,,. o as follows:

I
an 0o Hnm OM"m OHnm 0

< m{;“max(R ( ))} Hnm OBﬂm OHnm 0
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Then, we can get the following inequality:

B> H-' M,,  H' B

nm, 0% nm,0 nm, 0 nm, 0

< m{hmax (R, (@0)) Y BL o H b o Bum o, o B

nm, 07" nm nm, 0 nm, 0

= m{Zmax (R, (00))}2 (B o H,,L B )

nm, 0% nm, 0 nm,0

< m{ Amax (R‘;l (aO))}z{)vmax (RW(“O))IP}Z-

Thus, we calculate F;,,LO as follows:

H,pp oMy 0H o < m{ i (R} (80)) 1 {2max (R (00))}* B,

nm, nm, 0
= O(m*/n).
Hence, we have
/;'—ﬂo = Op(m/V/n).
Furthermore, we evaluate the asymptotic bias of PMSEG.

THEOREM 1. Suppose the conditions C1-C15 hold. The variance of the
asymptotic bias of PMSEG excluding the bias independent of a candidate model
goes to 0 with the rate of m*/n or faster even if we use a wrong correlation
structure as a working correlation.

We prove Theorem 1 in Appendix.
Furthermore, to evaluate the case that we use the true correlation matrix
as a working correlation matrix, we present the following lemma:

LemMa 3. Suppose the conditions C1-C15 hold. If R,,(ay) = Ry, we have
ﬁ - ﬁo = Op(l/\/ﬁ)-

PrOOF. Suppose that R, (ay) = Ry, we have

Mo = XiAi,oA,»l,{)zRJI (a0)RoR,, (GO)A,‘{/OZALOXI'
Py

n
= ZXiAiﬁOA,'l_’{]zR;zl(aO)A[{{)zALOXi
P

=H nm,0-
Thus, we have

Fono=Hpo < Zmax (R (@0)) B, 0 = O(1 /).

nm,0
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By the above, we have
B~ By = 0,(1/vn).

Then, we evaluate the asymptotic bias of PMSEG when we use true
correlation matrix.

THEOREM 2. Suppose the conditions C1-C15 hold. The variance of the
asymptotic bias of PMSEG excluding the bias independent of a candidate model
goes to 0 with the rate of m*/n or faster if we use the true correlation structure
as a working correlation.

We prove Theorem 2 in Appendix.

4. Numerical study

In this section, we perform a numerical study and discuss the result. The
purpose of this simulation is to compare the results by using the correct
correlation structure and the results by using a wrong correlation structure.
The targets of comparison are the values of each bias and the prediction
errors. In this simulation, we got data from gamma distributions which
have scale parameter included in exponential family. In this simulation we
supposed that there are two groups (e.g., male and female). To create data
distributed according to the gamma distributions with correlation, we used
copula method. We set m =10,20. When m = 10, we set n = 20,50, 100.
For each i=1,2,...,n, we construct a 10 x 8 explanatory matrix X,; =
(xf,n,xf,iz,---,xf,no)/- Here, for each i=1,...,(n/2), the first column of
Xy i is 11, where 1, is the p-dimensional vector of ones. The second column
of X,; is (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0). The third and forth col-
umns of X, ; are 019. Furthermore, all the elements of the fifth, sixth, seventh
and eighth columns are independent and identically distributed according to
the uniform distribution on the interval [—1,1]. For each i = (n/2) +1,...,n,
the first column of X, ; is 1io. The second column of X, ; is (0.1,0.2,0.3,
0.4,0.5,0.6,0.7,0.8,0.9,1.0). The third column of X/ ; is 1j, and the forth
column of X ; is (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0). Furthermore, all
the elements of the fifth, sixth, seventh and eighth columns are independent
and identically distributed according to the uniform distribution on the interval
[-1,1]. When m =20, we set n =80,200,400. For each i=1,2,...,n, we
construct a 20 x 8 explanatory matrix Xy ; = (X711, %712, ..., Xy, iz())/. Here, for
each i=1,...,(n/2), the first column of X, ; is 1. The second column of
Xy is (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.8,
1.9,2.0). The third and forth columns of X, ; are 0. Furthermore, all the
elements of the fifth, sixth, seventh and eighth columns are independent and
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identically distributed according to the uniform distribution on the interval
[—1,1]. For each i=(n/2)+1,...,n, the first column of X, ; is 1y. The
second column of Xy ; is (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,
1.4,1.5,1.6,1.7,1.8,1.9,2.0). The third column of X, ; is 1y, and the forth
column of X, ; is (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,
1.6,1.7,1.8,1.9,2.0). Furthermore, all the elements of the fifth, sixth, seventh
and eighth columns are independent and identically distributed according to the
uniform distribution on the interval [—1,1].

Let B, = (0.25,0.25,0.25,0.25,0.25,0.25,0,0)" be the true value of regres-
sion coefficient. The explanatory matrix for the ith subject in the kth model
(k=1,2,...,8) consists of the first k& columns of X;,. Let the true correla-
tion structure be the exchangeable structure, ie., Ro= (1 —a)l, + al,l),.
Furthermore, we set «=0.3. We simulate 10,000 realizations of y=
(V1ty-+-s Yimr---s Vnls---s Yum), Where each y; is distributed according to
the gamma distribution with the mean u; = exp(xf ;8y). Here, in order to
obtain f,, we used the independence working correlation matrix in this
simulation.

First, we considered the case that we use the correct correlation structure.
Since the bias includes Bias3 in proof of Theorem 1, to ignore Bias3, we
evaluate (the bias of the 8th model) — (the bias of the each model). The
frequencies of selecting models and the prediction errors are given in Table 1.
In Table 1, the frequency of selecting the 6th model tends to be large when
m?/n goes to 0. Furthermore, the frequencies of selecting of the 1-5th models
tend to 0. In Table 2, (the bias of the 8th model) — (the bias of the 6th model)
seems to go to 0 as m?/n goes to 0 when m = 10 and m = 20.

Next, we consider the case that we use a wrong correlation structure as
a working correlation structure. We use the autoregressive structure as one
of such structures. The frequency of selection of each model and prediction
error are given in Table 3. Table 3 indicates that in the case of the working
correlation structure is misspecified, the frequency of selecting the 6th model

Table 1. Frequencies of selecting models (%) and prediction errors

n m 1 2 3 4 5 6 7 8 Prediction Error

20 | 10 || 10.1 69 58 42 150 255 155 17.0 7.9230 (0.04)
50 | 10 31 08 08 08 21 567 175 182 7.3248 (0.04)
100 | 10 01 00 02 02 03 621 189 172 6.9307 (0.04)

80 | 20 61 18 19 0.0 32 513 187 17.0 9.4235 (0.05)
200 | 20 00 00 00 00 00 588 223 189 9.1930 (0.05)
400 | 20 00 00 00 00 00 761 121 11.8 8.5806 (0.04)
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Table 2. (The bias of the 8th model) — (The bias of the each model)

n m 1 2 3 4 5 6 7 8

20 | 10 14.83 12.65 11.69 9.705 2.416 6.025 2.640 0.0
50 | 10 39.28 25.26 27.31 26.27 11.62  —3.193 0993 0.0
100 | 10 5.483 1.858 —1.464 —2.077 0.378 1.028 0.522 0.0

80 | 20 177.1 186.2 172.8 179.7 48.62 1296 2.024 0.0
200 | 20 || —2459 —184.0 -—97.02 —-85.64 —35.13 2705  1.111 0.0
400 | 20 || =766.9 —497.2 3147 -273.1 —1382 1.024 0490 0.0

Table 3. Frequencies of selecting models (%) and prediction errors

n m 1 2 3 4 5 6 7 8 Prediction Error

201 10 || 145 7.5 69 38 125 292 125 131 8.0385 (0.04)
50 | 10 1.7 06 09 1.6 1.8 558 203 173 7.8406 (0.04)
100 | 10 01 01 00 00 01 692 193 112 7.6361 (0.04)

80 | 20 66 1.7 11 35 48 445 164 214 9.8726 (0.05)
200 | 20 02 00 00 0.1 02 722 149 124 9.9280 (0.05)
400 | 20 00 00 00 00 00 731 158 111 10.1993 (0.05)

Table 4. (The bias of the 8th model) — (The bias of the each model)

n m 1 2 3 4 5 6 7 8

20 | 10 64.84 139.3 107.3 39.11 4190 -1721 —-67.21 0.0
50 | 10 18.13 10.39 9.038 6.802 0.834 —1.311 1.238 0.0
100 | 10 3.335 1.409 1.878 1.288 0.471 1.135  0.4865 0.0

80 | 20 || —649.7 —339.8 -—-266.8 —199.1 —-71.66 —5982 7344 0.0
200 | 20 [ —279.5 —187.5 —1043 —88.66 —45.36 1.404  0.5944 0.0
400 | 20 || —763.7 —500.4 —322.1 —283.0 —141.2 1.278  0.5243 0.0

tends to large as m*/n is small, and the frequencies of selecting of the 1-5
models tend to 0. In Table 4, the differences between the bias of the 8th
model and the bias of the 6th model and the 7th model go to 0. Furthermore,
Table 4 indicates that the rate of the asymptotic bias of PMSEG m*/n is
overestimate, so we may not need so many samples.

Appendix

We prove the Theorem 1 and Theorem 2, simultaneously.
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Proor. By applying Taylor’s expansion around ﬁ’ = f, to the equation
Sum(B) = 0,, Sum(P) is expanded as follows:

O8un(B) ’
# B=B

(B—5o)

Snm, 0 +

| (N / 0 0Sum () .
t5(B-py o) (e nh) ¢

= Sum,0 — f@nmA,O(Ip + 91,0 + 92,0)(#? - ﬁO)
1 N I *\( P
+§{(ﬁ—ﬂo) ®I,}Li(B")(B — Bo)
:Op;

where B* lies between f, and ﬁ, and Sy, 0 = Sum(fy). Here, Li(f*), Dym,o,
Y10 and &, are defined as follows:

" 0 asnm(ﬁ)
Ll(ﬂ )_<6ﬂ® aﬂ/ )‘ﬂﬁ*; an*ZD Orl()lDlo’

Do0=-Y ”mOZD’()(@ﬁ (ﬂ)‘ﬂﬂ>{lp®(yi_:ui,0)}7

n a
D0 = —@n—ni,oz<a—ﬂ, ®D§(l”)‘ )[1 Q{4 (¥ — m.0)},
i—1 B=h

where I';o=I:(f,). By Lindberg central limit theorem, it holds that
Li(B*) = O,(nm) and B — B, = 0,(m/\/n). Furthermore, if R, (a) = Ro,
we have Li(B") = O,(nm'?) and f— B, = 0,(1/\/n). Moreover, R (a) is
expanded as follows:

R (a0) = R, (@0) + R, (20){Ry(@0) — R (a0)} R, (@0) + Op(m®/n).  (AA)

By Taylor’s theorem, since @y — a9 = O,(m/\/n), it holds that

0
1Ry (a0) — R (i) < H% ® R, (a)

a0 — ao|| = O,(m//n),

a=a*

ie., Ry.(ao) — Ry(a) = O,(m/\/n), where a* lies between @y and a,. If
R, (@) = Ry, we have R, (ay) — R,(6y) = O,(1/\/n) and the third term of
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(A.4) is O,(1/n). Hence, it holds that

n
/ -1
Dumo = _ D} Dio

i=1
—ZD oA; P (Bo) R, (a0) A7 (Bo)Dio

=H,p o+ O,,(mznl/z).

Thus, by using the fact that su.o = g,, o+ O,(m?), B is expanded as
follows:

ﬁ _ﬂO = Hn_nl,()qnm,o + OI,(m3/n) = blso + OP(m3/n)7

where ¢, 0 = gum(Bo). Also, since

0
op’

0 o rand )
(aﬂ, @ R, alf. ¢(ﬂ)))‘ﬂ_ﬂo> E

= Oy(m//n),

® R, (a(p, é(ﬂ)))‘ ]
B=B,

the GEE substituted in f, is expanded as follows:

1 2 ~ _ —1/2
Sum 0 = Z D} oAy Ry (a0){Ry(0) — R(0) R, (0) A, o> (v; — ;)
+ Hnm()(lp + Hn_ni,OBl,O + Hn_ni,OBZ,O + Hn_n/lt,OBS;O)(ﬁ - ﬂo)

+ZD 2o R (@) {Ru(a0) — Roy(0) YR, (a0) A, 5* Do (B — Bo)

2B~ B) ® L} S0+ (L) — S0} (B~ By)

1 R , 6 6 6snm(ﬂ)
B8 ®Ip}{a—ﬂ/ ® (@ © = )Hw

{(B—By) ® (B-Bo)}, (A.5)

where f** lies between f, and B, and S0 =E[Li(By)]. We define B, o, B> o
and B3, as follows:
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By = ;Xi' (6%, ® Ai(ﬂ)’

){1 ® A "R, @0)A; o> (v — mi) ),
B=B,

SN EP
Boo = X4y (aﬁ, ® A,W(/f)\ ){Ip ® R, (04,0 (v = 1i0)}-
i=1

B=By

i=1

0 _
Bso—ZXAloA”ZR (@ ><7 ® 4; ”%ﬂ)]ﬂ_ﬂ){Ip®<y,~—ﬂf,o>}.

Here, we calculate the rate of B .

ZZX’

i=1 k=

~ —1/2
E[B) (B} o] ALTR (@0)A; " (v — 110)

- . 04;
(i _/‘i.o)/Ai,olﬂR,_rl(aO)Ail.{)z a[)gﬁ) X’]
k

= i Xl/ aAl(ﬁ) All{)ZR ( )R Rw ( )Ail,{)z aAl(ﬂ) Xi

i=1 k=1 P P
/ A (Mi(ﬂ)
imax X ¢ A Xi
<m{ o))} Zkz 2B,
= O(nm?).

Thus, By o = O,(n'?>m). Similarly, we calculate By g = O,(n'>m) and B; =
0,(n'?m). Furthermore, if R, (a9) = Ry, we have By o = 0,(n'?m'/?), By o =
0,(n'?m'/?) and By = 0,(n'?m'?). By (A.5), we have

Hyp oI, + H,,) oBi o+ H, oBao+ H,\ 0Bs0)(B — By)

q,,mo+ZD:0A VPR, (00) {Ros(00) — R (0) YR, (a0) A, o> (i — i)

i=

_ZD 70 Ry (00) {Ro(0) — Ruy(@0)} R, (@) A7 "Dy b o

1

+ 5( 10 ®1,)1.0b10

Op(m4/\/ﬁ)-

From the above, we expand f — P, as follows:
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1
_Hr;7i,0(bi,0 ®1,)%1,0b1.0

ﬁ _ﬂO = Hy;i,o%m,o + 2

+H,, o(Bio+Byo+ Bs.0)H,, om0
+hio+Jjiot OP(m4/n3/2),

where

1/2 ~ _ —-1/2
Jio= nmoZD,’oA PR (@0){Ru(00) — Ru(0) IR}, (00) Ao (v; — 1:0),
i=1

hy o = nmozl’ o PR, (@0){Ro(a0) — Ryy(@0) } R, (a0)4;* D ob -

Denote
byo=H,, ((Bio+ B0+ Bs.0)H,, om0,
b3 = Hn_,,i’o(bf,o ®1,)F1.0b1.0/2+ R0+ i o
Hence, we have
B — By = b+ b+ b o+ Oy(m*n*?). (A.6)

Note that, by o = O,(m/\/n), bso = O,(m*/n) and b3 o = O,(m*/n). Further-
more, if R,(ay) = Ry, we have

B— By =bio+bro+ b+ Oy(m?/n?),

where bl,O = Op(l/\/ﬁ), bz"o = Op(m/n) and b3,’0 = 0p(m/n).
We calculated the asymptotic bias of PMSEG as follows:

Bias = PMSE — E,[Z (8. 8,)]
= {Riskp — E,[2"(B)]} + {E,[Z"(B)] - E,[£"]}
+{E,[Z"] - E,[Z ()]} + {E,[Z"(B)] — E.[Z(B.B,)]}
= Biasl + Bias2 + Bias3 + Bias4.

We evaluate Biasl, Bias2, Bias3 and Bias4 separately.
Biasl is expanded as follows:
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n n
Biasl = E, |E. lZ(zi — i)' Z0(zi — ﬁi)] = i) (i - ﬁ,-)]
i1 pay
n
AN/ — A
=E, |E. lZ(zf — 0+ 0 — ) 250 (3 — o + o — ﬂ,»)]
i=1
> vi—#i0+mo *ﬁi)lzf(}(yi*ﬂi,o JF:”i,Oﬁi)]
i1
n n
AN/ — A
=B |> (5 —#,0)' Zi0 (=i — m0) | + By | (w0 — i) 250 (m0 — ﬂi)]
i=1 i=1
—-E, Z(J’z —Mi0) 25 0(Vi—#io)| —2Ey [Z(J’i - .”i,o)/zl?& (mi0— ﬁz)‘|
i=1 i=1
n
P — A
—Ey Z(ﬂi,o — ;) Zi,&(ﬂi,o - :)]
i=1
=2E, Z(J’i - ﬂi,o)/Z;S (; — ”i,O)] . (A7)

i1
Since f; is the function of ﬁ, by applying Taylor’s expansion around B = By,
A; 13 expanded as follows:

N _ op(B)

Hi :ul',O - aﬂl ‘ﬂ_po

(B—5o)

1 p / i aﬂi(ﬁ) A _
w3(-p o (e Yl b

d-wrenly(ye 5],
BB © (B~ Bo)}

= Dio(f— o)+ 3 (B~ B0) @ LD (B~ )
+ 0y ), (AS)

where f*** lies between f, and B, and D;lo) is defined by
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By substituting (A.6) for (A.8), we can expand s, as follows:
. 1
f; —p; o= Dio(b1o+bro+b3o) + 3 (b1 ® Im)D,slo)bl,o

+ 0,,(m7/2/n3/2). (A.9)

By using (A.7) and (A.9), we get the following expansion:

1 ) n _ R
EBlasl =E, lZ(y,- - ,“i,o)lzi,o1 (; — ﬂi,o)]

i=1

n
=E, lZ(J’i - :ui.,O)/Ei_(}Dl}ObLO‘|

i=1

tE, Z(yi - ﬂi,O)lE;(}Di,Obz,o]
i=1

[ n
+E, Z(yi - ﬂi‘O)/EholDi,Ob3,0‘|
P

n

+Ey Z(yi - ﬂi,o)/zf& (b1, ® Im)Dl(,lobl-O]

L i=1 '

+E,[0p(n™'Pm)]. (A.10)

Same as Inatsu and Sato [5], the first term of (A.10) is calculated as follows:

Ey
i=1

n
Z()’i _”i,O)IEL(;Di,Obl,O] =p.

Since the data from different two subjects are independent, we calculate the
second term of (A.10) as follows:

n
E, [Z(J’i — o) /E,f& D; by,
i=1

n
=E, Z(J’[ - .“i,o)/E;&Di,oH;ni,oGoH;ni,oD;,o Vi.,7()1 (i — /‘iﬁo)]

i=1

n

-1 -1 -1

=1tr (Z Hnm,OGOHnm,ODi/A,O VI’,O D,"()>
i=1

= O(m’/n),
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where Gy = By o+ Byo+ B3o. If R,(a) = Ry, the second term of (A.10) is
O(m?/n). Similarly, the orders of the third and the forth term of (A.10) are
evaluated as follows:

E, lZ(yi —1:0)' Z; 5 Diobs.o| = O(m"" /),

E)’ [Z(J’ N 0) E ( 1,0 ® Im)Df,l(;bl-O = 0(m5/2/n).

i=1

Furthermore, if R, (ag) = Ry, the order of the third term of (A.10) is O(m>/?/n)
and the order of the forth term of (A.10) is O(y/m/n). Under the regular-
ity conditions, the limit of expectation is equal to the expectation of limit.
Furthermore, in many cases, a moment of statistic can be expanded as power
series in n~!' (e.g., Hall [3]). Therefore, we obtain

Biasl = 2p + O(m"/?/n).
If Rw(ao) = Ro, we have
Biasl = 2p + O(m*?/n).

Similarly, we calculate Bias2 4 Bias4. Now, Bias2 and Bias4 are ex-
pressed as follows:

Bias2 = Ey[f*(ﬁ)] —E,[Z"(B)]

n n
=E, lZ(J’f —ﬁl)lzz ol(y — ) — Z(yi - :ui,O)/EiT(}(yi - lli,o)

i=1 i=1
=E, lz Z ) (ﬂi,o - ﬁz)]

+E,
i=1

Z(/‘i,o - /21')/2;(% (#i0— ﬁl)] )
Bias4 = E,[Z(B,.B,)] — E,[Z2(B. ;)]

—E,

S0 ) Ay PR )ty B (3, - ) </?>]

D= ) AT BOR (B AT (B (v~ m«?‘(if,-)]
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‘$~>

=—Ey[2i<y —130)' A7 (B)R (B AT (By) (g — ) 1(/30]

i=1

_ Ey

i(m i) A7 P BORT (BAT (B (mio — )™ (/@)].

i=1

Hence, Bias2 + Bias4 is
Bias2 + Bias4 = E, [2 ST i—m0){Z00 — A7 PBRT(B)AT (B (B}
i=1

(M0 _ﬂi)] (A.11)

n

S (o~ ) {250 — A7 P(BIRT (B AT (B (B)}

i=1

+E,

: (/‘i,o - ﬁz)] . (A.12)

Then, we perform the stochastic expansion of A4, 1/ 2(ﬁf), I}_l(ﬂ}), ﬂi(ﬂ}), B
and ¢(ﬂf). The expansion of ﬂf is as follows:

ﬁAf - ﬂf,O = Hfi,tlzm,Oq_f,mn(ﬂf,O) + Op(m3/n) = bf,O + Op(m3/n)a

where B is the true value of B, br o= Hf_,}qm,oqf,nm(ﬂf,O)r
qf, nm ﬁ/ ZDf ﬂj ﬂj7af 0)( i_:ui(ﬂf))a
as o is the convergence value of a correlation parameter in the full model and

Df,(ﬂ/z) = A,(ﬁ/)Al(ﬂ/)Xfl Here, Hf,nm,O is

1 _
Hy im0 _ZszO o/’R; (a7)4;," Dy 0,
i=1

=—1 . . . . .
where Dy ;o= A;0d;0Xr,; and R; (ar) is a working correlation matrix which
can be chosen freely including a nuisance correlation parameter ar. Further-
more, if R,(ay) = Ry, we have

By — Br.o = Hy 1oy (Br.0) + Op(m/n) = by.o + Oy (m/n).
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Thus, we can expand ,ul-(ﬂAf) as follows:

1(By) — 1o = Dy i.0by.0 + Op(m" ).

If R,(a9) = Ry, we have

1(By) =m0 = Dy i.0by.0 + Op(m? /n).

Furthermore, ay ;(f;) is the m-dimensional vector consisting of the diagonal
components of A;(;/z(ﬁ/-), ie., diag(as(B/)) = Ai_]/z(ﬂf). Then, we can per-
form Taylor’s expansion of ay, l-(ﬂf) around f; = B, as follows:

ari(Br) = ar,i(Bro) + A_;,L,obf,o + 01»(””3/”)7

where

0
A =agyl
f,i,0 L i\Pf

aﬂl Br=Bso

Therefore, we can expand A; 1 2(ﬂf) as follows:
1/2 1/2 3
A; () = diag(ay i(By) = +diag(4y ; oby.0) + Op(m”/n).

Note that by o = Oy(m/\/n), Dy.iobso = Oy(m*?/\/n) and diag(4; ; oby.0) =
O,(m/A). 1 Ry(a)=Ro, we have byo=O,(1/vi). Dyiobyo—
Oy(v/m/+/n) and diag(4;,  bs0) = O,(1/y/n). Moreover, we can expand
qg(ﬁf) as follows:

$(By) = ¢o + Op(m//n).

Furthermore, same as Inatsu and Sato [5], l?’l(ﬁ,-) is expanded as follows:
B =Ry +R01{ 0 ——ZA 20— m0) (i = 0)' 4,0y
LS diag(4: b o
*ZZ iag( £,i,0 7,0) (Vi — #5,0) (¥ /‘zo) ¢o
i1
- —ZA 1/2 ﬂi,o)(J’i - ﬂi,o)/ diag(A;,i,obf,OW(;I

——ZA_I/Z —0) (5 = 10)' 4,5 (6 (ﬁ/‘)—¢ol)}R()_l

0, (m*/n). (A.13)
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Note that the second term of (A.13) is O,(m/\/n). Then, we have

oo — A7 PBORT (BT (B (By)

= 270 — (A, + diag(4] , obr0)}

~R01+R01{ o—*ZA Vi ) (i — o) Aoy

1< . . 2
— > diag(4] ; oby.0) (7 — o) (v — #i.0) Ay "y
i=1
—1/2 !l q: * —1
—*ZA —t:0)(¥i — o) diag(A4y ; oby.0)dy

—‘ZA V2= 10) (9 — m0) AP (9 (f’f)—fbol)}Rol

A, + diag(4; ; obro)Heo ' + (67 (B) — #5"))
+ 01,(m3/n)

: * — —-1/2 ,— —l 2
= —diag(4; ; obr,0) R, lAi,O/ by — / R, diag(A; ; obr, 0)dy "

~4,0"R {Ro——ZA V20— 0 (0= ) Ay
1 di Ty 1/2
_EZ iag( 'f,i,0 7,0) (Vi = #i0) (¥ — 1, 0)'4 ¢0
i=1
—1/2 ! q: * —1
——ZA —#;0)(¥i — mio) diag(Ay ; obr.o)dg

——ZA Vi — .0 i — o) Ay 0P (67 (B) — >} Ry A, 45!

— AR ATG T B — 40
0, (m? /n),

where X3 — A2 (B)R™ (B AT (B)4(By) = Op(m/v/m) and fiy —p; o =
D; obi o = O,(m*?/\/n). Then, (A 12) is calculated as follows:
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n

Ey [ (o — i) {250 — A7 PBORT (BAT (B (B (w0 — i)

i=1
= Ey[Op(mé‘/\/’Z)]
= O(m*/n).

Furthermore, if R, (ay) = Ry, we have

i — A7 PR (B)AT P (B)S(By) = 0,(1/ V),

and @; — p; o = Djob1,0 = Oy(y/m/+/n). Thus, the order of (A.12) is O(m/n).
In addition, we calculate (A.11).

[22 —t;0)’ 3—Ai‘/2</3f>1?1(/3f>Ai1/2</3f>«31(/@«)}(#,»,0—;1,-)]
[22 — ;) {diag(A; ; oby.o) Ry A, 45"
+ 4, Ry diag(Af,i,obf,O)(ﬁo1}Dt,0b1,0]
—Eylzn:( ~#io) _l/zRolzzA_l/z = 15,0 (3 = #.0)’
ARG §y 7 A Diob, O]
Eyliw —10) A" Ry ZdlagA,,obfox —1,0)(y; — 1;0)’

i=1

A 1/2R01¢02A 2Dy oby, 0]

n
12512 172
_E)’lZ(J’ .",0 /Rol ZAJ / ﬂ,o)(y —Hio )/
i=1

- diag(A]; obr.0) Ry by 24,y zDi,Obl,O]
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- 412 2 —1)2 ~1/2
—E, lZ( ) / Ry l ZA / — K 0)()’ — K o) A /

'{‘igil(ﬁf) ¢y IRy A, 1/2(15011)1‘,0’)1,0]

22 —ti0)’ 1/ZROIA 1/2{¢ (B ) — ¢ ' }Dioby, o]

22 A7 PR A P9y Digbio | + O(m*/n).  (A.14)

Note that E[(y; —#;0) ® (¥; = #;0) (¥ = #,0)] = 0w (not i=j=1k), so we
can expand the first term of (A.14) as follows:

lzz Aul 0 {dlag(Aj IObf O)RO :()1/2¢(;1

+4;,°Ry! diag(A‘;l-vobﬁo)(ﬁo1}Di70b1,0]

n

23 (i — mi0) {diag(A; ; obr.i.0) Ry AP by
i=1

:Ey

+ A;ol/zR(;l diag(4; ; oby, i,0)¢01}Di,0b1.0‘|
= 0(m*/n), (A.15)

where bf i,0 = Hf nm, ODf l(ﬁf 0) (ﬂf 0)(y1 :ui(ﬁf,()))' MOI‘COVCI‘, if RW(aO) =
Ry, the order of the first term of (A.14) is O(m?/n). Similarly, since

E[(vi = #3.0)' () — #5,0) (% — #,0) (¥ — #e,0)] = 0 (unless i = k), the second
term of (A.14) is expanded as follows:

n

“12p5-12 12y,
-E, Z( ﬂzo /Rol ZA, / —1,0) (¥, — Mo )!
=1

ARG 952 AP Do o
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n _l 2 2 n _1 2
=- y[Z(y — o) A;, /Roln ST AL w0 - m0)

=l J=Li#j
' A/lOI/ZRO1¢02AL(}/2Di,ob1i,0]
+ O(m*/n)

22 — ) E,()DtObIIO + O(m*/n)

= —2p+ O(m*/n), (A.16)

where by; o = Hnm oD} o V’ (yi —#;9) = Oy(m/n). If R,(ag) = Ry, we have

& —1 212 ~1)2
—E, lZ( — Mi0) / Rol ZA / — K o)(y —H o)

i=1
'A_1/2R01¢0 2A ',Obl,()

= —2p+ O(m*/n).

Here, we will use a kind of abbreviation for summations such as:

ZZZ

i=1 j=
n n
i#j i=1 j=1,i#j

It holds that E,[(y;—a;0) (¥ —#0® yi — #0) ¥k — Mo ® ¥ — t9)] =0
unless the following condition:

i=j=1 o i=j#k=1 or i=Il#k=j o j=l#k=Ii

Thus, the third term of (A.14) is calculated as follows:

—E, | (v —m.0) 4,4 °R ZdlagAfjobfox —15.0)(; — 1.0)'

i=1

: A;(}/zRo*l¢0_2A,-T(§/20i,0b1,0
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LJ

:—E},lzu ) A0 PRy 2 diag (A by 0) (3 — 15,003, 1.0)

'A_l/zRo bo 2A i,0b1,0‘|

=—E, lZ(J’ —H; 0) A_I/ZR 12 diag(A;,i,obf,O)(.)’i — 1 0)(¥; _”i,())l

i=1

A 1/2R01¢02A 2D, oby. 01

—Ey[Zw — p0)' Ay *Ry dmg(A,,obf,o)( — 1,0) (¥, — ;0)’
i#j

A 1/2R01¢0 2A’ Di‘obl_,,ol

-1/2
—EylZ(y — :0) 474" Ry dlag(Af/ObeO)( —#5.0)(¥; — 1:0)
i#]

A —1/2R0 Loy 2A, (;/ D; oby; o]

O(m* /n)
= O(m*/n). (A.17)

If R, (ap) = Ry, the order of the third term of (A.14) is O(m?*/n). Similarly,
the forth term of (A.14) is expanded as follows:

n

12512 12}
—E, |3 (0~ m0) 4, Ry ZA, Py = m.0) (v — 1:0)’
i=1

. diag(A;7j7Obf“’0)R61¢62A;&/2Di70b170

= O(m*/n). (A.18)

If R, (@) = Ry, the order of the forth term of (A.14) is O(m?/n). The fifth
term of (A.14) is calculated as follows:
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! 412 2 ~1/2 ~1)2
-E, lZ( ﬂzo /Rol ZA / — N 0)()’ — N 0) A /

{67 (B - ¢01}R01A[,&/2¢O‘Df.obl-o]

i=1

- 2
:_EylZ(y /‘zo)A 1/2R : Ai,()l/z(yi_:”i,o)(y ﬂlo)A )2

04(B))
ops

by.j.oRy' A, o by lDi,obl./,O]
Br=Bso

n
“1/25-12 172 ~1)2
- E, [Z(J’ —#i0)' /Rol ZA; / —Ho )(Y/—!‘./,o)/Aj,o/

i=1

(B
op,

by i70R01A,’7(§/2¢01D1}0b11‘,0‘|
Br=Bs.0

n
PR 2 ~12 ~12
—-E, lZ( Mo /Rol ZA / —H 0)()’ — K 0) A /

bf,i,oRolAl»,ol/zfﬁo_lDi,obu,o]

by Br=Pr.o

E PR 2 _1 ~1/2
—Ey[D —130)' 4, R = ZA Py —m.0) (v — m0)' A7
P

-1 4-1/2 ,—1
B by j.oR, Ai,o/ b0 Di.Obli,0‘|

= O(m*/n). (A.19)

Br=Bs.o

The sixth term of (A.14) is calculated as follows:

[ZZ — ) _1/2 _IA;OI/Z{é(ﬁAf)_¢0_1}Di,0b1,0]

=E, |?Z .”10 1/ZR()IA 172 aé(,f )
f

= O(m*/n). (A.20)

br i oD oby;, 0]
Br=Bso
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Furthermore, the seventh term of (A.14) is calculated as follows:
lzz T OIAM)I/ZgbO‘ID,;ObLO] =2p. (A.21)
By (A.15)-(A.21), (A.11) is calculated as follows:
E, [22 — ) {250 = A7 P (BORT (B AT (B (B (o —ﬁ»]

= O(m*/n).
If R, (a) = Ry, the order of (A.11) is O(m?/n). Thus, we have
Bias2 + Biasd4 = O(m*/n).

If R,(ay) = Ry, we have Bias2 + Bias4 = O(m?/n). From the above, the bias
is expanded as follows:

Bias = 2p + Bias3 + O(m*/n).
If R,(a9) = Ry, the bias is expanded as follows:
Bias = 2p + Bias3 + O(m?/n).

Note that Bias3 does not depend on the candidate model. If we ignore Bias3,
the asymptotic bias of PMSEG goes to 0 with the rate of m*/n or faster.
Furthermore, if we use the true correlation structure as a working correlation,
the asymptotic bias of PMSEG goes to 0 with the rate of m?/n or faster.
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