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ABSTRACT. It is well known that the set of all functions g such that “fe L?” =
fgeL”” is L7 if 1/py =1/p1 + 1/ps with p; € (0,00], i =1,2,3. In this paper we
characterize the set of all functions g such that “f e wL? = fge wL?®” where wL %
i=1,2, are weak Orlicz spaces.

1. Introduction

Let Q = (2, 1) be a complete o-finite measure space. We denote by L°(Q)
the set of all measurable functions from Q to IR or €. Then L°(Q) is a linear
space under the usual sum and scalar multiplication. Let Ej, E, C L°(Q) be
subspaces. We say that a function g e L%(Q) is a pointwise multiplier from
E| to E,, if the pointwise multiplication fg is in E, for any f € E;. We denote
by PWM(E|, E;) the set of all pointwise multipliers from E; to E,. We
abbreviate PWM(E, E) to PWM(E). For example,

PWM(L(Q)) = L°(Q).

The pointwise multipliers are basic operators on function spaces and thus the
characterization of pointwise multipliers is not only interesting itself but also
sometimes very useful to other study.

For pe (0,0], L?(2) denotes the usual Lebesgue space equipped with
the norm

1/p
Ta. (JQ If(X)I"dﬂ(X)> T
1110y = esssup /()L

Then L7(Q) is a complete quasi-normed space (quasi-Banach space). If
pe[l,o], then it is a Banach space. It is well known as Holder’s
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inequality that
”fg”Ll’Z(Q) = HfHL”l(Q)”gHL’B(Q)v
for 1/p, =1/p1 +1/p3 with p; € (0, 0], i =1,2,3. This shows that
PWM(L? (Q),L7(Q)) D> L»(Q),
and

lgllpwnzr @), L2 (@) < N9llLrs ()

where ||gllpwwm(zn @), 172 () 18 the operator norm of g e PWM(LP (), L7 (R)).
Conversely, we can show the reverse inclusion by using the uniform bounded-
ness theorem or the closed graph theorem. That is,

PWM(L"(Q),L7(2)) = L7(L2) and ||g||PWM(L”1 (Q),L7(Q) = ||gHLv3(Q)- (1.1)
If p1 = p» = p, then
PWM(L?(2)) = L™ (2) and HgHPWM(LP(Q)) = Hg||L9°(Q)' (1.2)

Proofs of (1.1) and (1.2) are in Maligranda and Persson [12, Proposition 3 and
Theorem 1]. See also [17] for a survey on pointwise multipliers. The char-
acterization (1.1) was extended to several function spaces, for example, Orlicz
spaces, Lorentz spaces, Morrey spaces, etc, see [1, 6, 7, 9, 11, 12, 13, 14, 15, 16,
18] and the references in [17].

In this paper we give the characterization of pointwise multipliers on weak
Orlicz spaces. To do this we first prove a generalized Holder’s inequality for
the weak Orlicz spaces. Next, to characterize the pointwise multipliers, we
use the fact that all pointwise multipliers from a weak Orlicz space to another
weak Orlicz space are bounded operators. This fact follows from Theorem 1.1
and Corollary 1.2 bellow.

We always assume that the function spaces £ C L°(Q) have the following
property, see [3, pages 94] in which this property is referred to as supp E = Q:

If a measurable subset Q; C Q satisfies that
U{xeQ: f(x) #0}\2,) =0 for every f€E,
then u(Q2\2;)=0. (1.3)

We say that a quasi-normed space E C L°(Q) has the lattice property if the
following holds:

feE heLl’Q), |h<|flae = hekE |hlz<I|flz (14)
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Then we have the following theorem:

Tueorem 1.1 ([17, Theorem 2.7)). Let a quasi-normed space E C L°(Q)
have the lattice property (1.4). For any sequence of functions fie E, j=1,
2,...,0if f; = 0in E, then f; — 0 in measure on every measurable set with finite
measure.

Using the closed graph theorem, we have the following corollary:

CoroLLARY 1.2 ([17, Corollary 2.8]). If E\ and E, are complete quasi-
normed spaces with the lattice property (1.4), then all g€ PWM(E|, E;) are
bounded operators.

Since the weak Orlicz spaces are complete quasi-normed spaces with the
lattice property (1.4), all pointwise multipliers from a weak Orlicz space to
another weak Orlicz space are bounded operators.

Orlicz spaces are introduced by [20, 21]. For the theory of Orlicz spaces,
see [4, 5, 8, 10, 22] for example. See also [2] for the weak Orlicz space.

The organization of this paper is as follows. We recall the definitions
of the Young functions and the weak Orlicz spaces in Section 2. Then we
state main results in Section 3. The proof method is the same as [11]. How-
ever we need to investigate the properties of the quasi-norm on the weak Orlicz
space. We do this in Section 4 to prove the main results in Section 5.

2. Young functions and weak Orlicz spaces
For an increasing function @ : [0, 0] — [0, o0], let
a(®@) = sup{t > 0: &(¢r) = 0}, b(®) =inf{t >0: P(r) = w0},
with convention sup & =0 and inf & = co. Then 0 < a(P) < b(P) < 0.

DerINITION 2.1 (Young function). An increasing function @ : [0, 0] —
[0, 00] is called a Young function (or sometimes also called an Orlicz function)
if it satisfies the following properties;

0 <a(P) < oo, 0 < b(P) < o0, (2.1)
lim @(1) = B(0) =0, (2.2)
@ is convex on [0,b(®P)), (2.3)
if b(®P) = o, then Ilin; D(t) = P(o0) = w0, (2.4)
if b(®) < co, then lim @(1) = O(b(P)) (< ). (2.5)

t—b(®)—0
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In what follows, if an increasing and convex function @ : [0, c0) — [0, 00)
satisfies (2.2) and rllrr% ®(t) = oo, then we always regard that @(o) = oo and
that @ is a Young function.

We denote by @y the set of all Young functions. We also define three
subsets #) (i=1,2,3) of @y as

YD = {Dedy:b(d)=x},
Y = {®edy:b(dD) < 0, D(b(D)) = 0},
YO = {Dedy:b(d) < w0, Db(D)) < x0}.

REMARK 2.1. We have the following properties of @ € @y:

(Y1) If ®e@¥", then @ is absolutely continuous on any closed interval
in [0,00), and @ is bijective from [a(P), ) to [0, ).

(Y2) If @ e % then @ is absolutely continuous on any closed interval
in [0,b(®)), and @ is bijective from [a(P),b(P)) to [0, o).

(Y3) If ®e ¥, then & is absolutely continuous on [0,h(®)] and @ is
bijective from [a(®),b(®)] to [0, P(b(D))].

(Y4) If @e#® and 0 <0 <1, then there exists a Young function
¥ e % such that b(®) = h(¥) and

Y1 < d(t) < P(1) for all ¢ €0, c0).

To see this we only set ¥ = & + @, where we choose © € %> such
that a(@) = 0b(®) and h(O) = b(D).

DerNITION 2.2. For a Young function @, let

L*(Q) = {feLO(.Q) : JQ D(e|f(x)))du(x) < oo for some ¢ > 0},
1oy = 002> 0 | (L gy <1},

wL?(Q) = {feLO(Q) : osup D(tu(ef,t) < oo for some & > 0},

te(0,00)
1/ lzoe) = inf{i >0: s o(u(%.r) < 1},
te(0,00) A

where u(f,1) = pl(fx e Q: |f(x)| > 1}).

Then |- | 0(q) is a norm and thereby L?(Q) is a Banach space, and
| lwze(o) is @ quasi-norm and thereby wL?(Q) is a complete quasi-normed
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space (quasi-Banach space). For any Young function @,
L?(Q) cwL?(Q)  with ||fllwze) < IfllLo0)-
Let

B (1) = {07 re0,1],

oo, te(l, o]

Then @) is a Young function and
L% (Q)=wL?=(Q) = L*(Q)  with
||fHLq)('L)(Q) - Hf”wL"’(x)(g) = ||fHL°f«(Q)-

If @ be a Young function with b(®) < oo, then @(,)(7) < DP(b(P)t) for all
t€[0,00]. Hence,

wL?(Q) C L*(Q)  with ||l < b flyre)-
We note that

sup u(@(|f1),1) = sup D(t)u(f,1), (2.6)
te(0,0) te(0,00)

and then

I/ o) = inf{/l >0: sup @(l)u({:, l> < 1}

te(0,00)

=inf< A >0: sup lﬂ(¢<m>,t>£l .
te(0,00) 7

We give a proof of (2.6) for readers’ convenience, see Proposition 4.2.
Next we recall the generalized inverse of Young function @ in the sense
of O’Neil [19, Definition 1.2].

DermNiTION 2.3. For a Young function @, let

& (u) = {inf{l >0:P(t) >u}, uell, ),
o0, u= c0.

2.7)

Then @~ !(u) is finite for all u € [0, o0), continuous on (0, c0) and right
continuous at u=0. If @ is bijective from [0, 0] to itself, then @~ is the
usual inverse function of .

REMARK 2.2. We have the following properties of @ e @y and its
inverse:
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(P1) &(@ (1)) <t <® 1(®(r)) for all te]0,00] (Property 1.3 in [19]).
(P2) @ Y(@(1)) =1t if &(r) € (0, 0).
(P3) If e ¥V uU®? then &(&'(u)) =u for all ue0,c0].

REMARK 2.3. Sometimes one defines
@ (u) =inf{t>0:D(t) > u} (uel0,n)) and

& (0) = lim & (u).

U—0

In this case ®(@~'(u)) < u for all ue [0, 0) and t < &~ (D(1)) if D(1) € [0, 0).

3. Main results

For Young functions @ and ®,, we denote by ||g9llpwmpwzei (@) w2 (@)
the operator norm of g e PWM(wL® (Q),wL?(Q)). The following result is
a generalized Holder’s inequality for the weak Orlicz spaces.

THEOREM 3.1. Let @;, i =1,2,3, be Young functions. If there exists a
positive constant C such that, for all ue (0, c0),

@ )@y (u) < Cby ' (u), (3.1)
then, for all fewL®(Q) and ge wL%(Q),
1/9llwr2:(0) < 4CI| fllwro @) 19llwros 0)-
Consequently,
wL?(Q) C PWM(WL? (Q),wL?(Q)),
and, for all g e wL%(Q),
l9llpwmwrer @), wre2 (@) < 4CN9llwres @)-
For the Orlicz spaces, it is known by O’Neil [19] that, if (3.1) holds, then
1791220y < 2C[ f1lLov (@) ll91l L3 (@)-
Next, we state our main result.

THEOREM 3.2. Let @;, i =1,2,3, be Young functions. If there exists a
positive constant C such that, for all ue (0, ),

() < Cy () B3 (), (3.2)
then

PWM(WL? (Q),wL?(Q)) C wL*(Q),
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and, for all g e PWM(wL® (Q),wL?(Q)),
l9llwres @) < Cllgllpwmwee @), wre @)
In [11] it was shown that, if (3.2) holds, then
PWM(L?(Q),L™(Q)) C L*(Q),
and, for all g e PWM(L? (Q), L (Q)),

91l L2s @) < Cllgllpwmze @), 122 (0))-

COROLLARY 3.3. Let &;, i=1,2,3, be Young functions. If there exist
positive constants C;, i = 1,2, such that, for all ue (0, 0),

Crley () < o7 (W)@ (1) < 00y (u),
then

PWM(wL? (Q), wL?(Q)) = wL™(Q),
and

Cf1||9||wms(9) = Hg”PWM(wL"’l (@), WL (@) = 4C2||g||wms(g)-

In the following, for functions P, Q : [0, 0) — [0, ), P(f) ~ O(f) means
that there exists a positive constant C such that C~'P(r) < Q(¢r) < CP(t) for
all ¢ €0, 00).

ExampLE 3.1. Let p;,q;€[l,0), i=1,2,3, and
®,(t) = " max(1,log 1)7, i=1,2,3.
Then
&7 (1) ~ /7 max(1, log 1)~ i=1,2,3.
Hence, if 1/py +1/p3 =1/p> and qi/p1 + q3/p3 = q2/p>, then
PWM(WL? (Q),wL?(Q)) = wL*(Q),
and the quasi-norms || - [|pwmwr i (@) wre2 () and | - [lyzes @) are equivalent.
ExaMpLE 3.2. Let p;,q;€[l,0), i=1,2,3, and
@;(t) = exp(’) — 1, i=1,23.
Then

=t {tl/Pf, 0<t<2,

i=1,2,3.
(log ', 2<1< o0,



176 Ryota Kawasumi and Eiichi NAkAI

Hence, if 1/p; +1/p3 = 1/p,, then
PWM(WL? (Q), wL?(Q)) = wL?(Q),

and the quasi-norms || - [[pwam(wre (@), wr2()) and || - [y (q) are equivalent.

4. Properties of the quasi-norm

In this section we investigate the properties of the quasi-norm || - ||y ()
to prove the main results.

For two Young functions @ and ¥, if there exist positive constants Cj
and C, such that

D(Cit) < P(1) < D(Cyt) for all ¢ e 0, o0],
then wL?(Q) =wL¥(Q) and
Cillf ey < 1/ lwer@) < Collf lwro)-

By the measure theory we have the following property:

fi=0 and f 7 f ae.
= lim u(fj,t) = u(f,t) for each t €0, 0). (4.1)
J

From this property and the left continuity of the Young function @ we have
the following property:

£0) 1 s
N ’”<¢<||f||wm<g)>”> =t 42

We also have the Fatou property:

LewLl?(@Q) (j=1,2--2), f=0, f/fae and sup|filyreq <,
j
= fewL?(Q) and ”f”wL"’(Q) = Sujp”fj”qu’(Q)‘ (4.3)
J

ProposITION 4.1. If ® e %V U ® and g is a finitely simple function and
g #0, then ge wL®(Q) and

sup tu| @ M ,t] =1
1e(0,00) ||g||wL‘7’(Q)

Io(g) = sup tu(P(|g()]),1).

te(0,00)

PrOOF. Let
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Case 1. ®c®): In this case @ is strictly increasing and bijective from
(a(®@),0) to (0,00). Let g be a finitely simple function. We may assume
that g > 0, i.e,

N
g:ch)(Ak, 0<ci<ey<---<ey<oo,0<u(dy) < oo,
k=1

where Aj are pairwise disjoint. Then every &(cx/A) is continuous and de-
creasing with respect to A > 0. Moreover, @(ci/A) is strictly decreasing on
(0,ck/a(®@)) (for a(®) =0 we understand ¢;/a(®) = c0). Observing

N
C
(o2)) Ao
k=1
N C; Cji
=" u(4y), if@(%)st<¢<7’)7 j=12,...,N,
k=j y

where ¢y = 0, we have

N

g g g
Ip|=|= sup tu|lP@(=],t)= max &= Ag).
¢(/1> (e0r) ﬂ( (A> ) 1<j<N (A> ;ju( 0

Therefore, I4(g/4) is continuous and strictly decreasing on (0, cy/a(®)). Since
lim; o Is(g/A) = 0 and lim; .., /u@) lo(g/2) =0, we obtain that Is(g/-) is
bijective from (0,cy/a(®)) to (0,00). That is, there exists a unique A€
(0,cy/a(®)) such that Ip(g/A) = 1.

Case 2. ®ec%®: In this case @ is strictly increasing and bijective from
(a(D),b(P)) to (0,00). Let g be a simple function as in Case 1. Then, in
the same way as in Case 1, we obtain that Ip(g/-) is bijective from (cy/b(D),
cy/a(®)) to (0,00). That is, there exists a unique A € (c¢y/b(®), cn/a(P)) such
that Ip(g/4) = 1. O

In the rest of this section we show the following proposition.

ProposITION 4.2.  For any Young function ®,

sup D(Nu(f,1)= sup up(f,® ()= sup uu(S(|f()]),u). (4.4)

1€ (0, ) ue(0,00) u&(0,00)
REMARK 4.1. If t =u =0, then
(S, 1) = up(f, @~ () = un(P(|f ()]),u) = 0,
since #(0) =0. If t =u= oo, then
{x: /) > ={x:1f(x)] > 27 W)} = {x: 2/ () > u} = &,
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since @ !(0) = oo, that is,

D(r)u(f, 1) = up(f, " () = un(@(|f ()]), u) = 0.

Lemma 4.3. Let @ be a Young function with a(®) < b(P). If ue
(0, B(b(®))), then

{x: /() > @7 (W)} = {x: (f(x)]) > u}.

ProofF. Let ¢ =a(®) and b =b(P). Then @ is bijective from (a,b)
to (0,@(b)) in any case of b < o0 or b= c0; (b)) < o or P(b) = o0. Let
t=®& '(u). Then

te(a,b) < ue(0,0(h)).
If |f(x)| € (a,b), then
/() > 1= (f(x)]) > (1)
That is,
f()] > @7 () & oI (x)]) > u.
If |f(x)] <a, then
f(X) <a<t=d (u) and O(lf(x))) =0<u.
If |f(x)| = b, then
lf(x)|=b>t=d"(u) and O(|f(x)]) = @(b) > u.
Therefore, we have the conclusion. ]

ProoF (Proof of Proposition 4.2). Let a =a(®) and b = b(D).
Case 1: Let ®e %V U®#?® . Then & is bijective from (a,b) to (0, ),
and then

sup D()u(f, 1) = sup D()u(f,1)
te(0,b) te(a,b)

= sup wuu(f,d ' (u))

ue (0, 00)

= sup up(D(|f()]),u),

ue(0,00)

where we used Lemma 4.3 for the last equality. If b = oo, then the above
equalities show (4.4). If b < oo, then

sup D(H)u(f,1) =0 or .

telb, )
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If sup @(H)u(f,r) =0, then

te[b,0)
sup  P(Ou(f,1) = sup P()u(f1).
te(0,00) te(0,b)

If sup D(t)u(f,t) = oo, then u(f,b) >0 and 11117n DO(t)u(f,t) = oo. Hence

telb, o) 1—=b=0

sup D(Nu(f,1) = sup D(u(f,1) = .
1€(0, ) 1€(0,b)
Therefore, we have (4.4).
Case 2: Let ®e®#® and a<bh. Then & is bijective from (a,b) to
(0, ®(b)), and then

sup @(Hu(f,t) = sup D(Hu(f,1)
te(0,b) te(a,b)

= sup uu(f, D ' (u))
ue(0,®(b))

= sup w(D(|f()]),u),
ue (0,®(b))

where we used Lemma 4.3 for the last equality. If u(f,b) =0, then
w(f, @7 w) = w(@(|f()),u) =0 for ue[D(b), ),
since @ !'(u) = b and

{x:@(/(¥)) >u} C{x:@(f(¥)]) > @(b)} C {x:[f(x)] > b}

Hence,
sup D(u(f, 1) = sup up(f, @)= sup up(®(f(-)]),u) = 0.
telb, ) ue[d(b), ) ue(®(b), )

If u(f,b) >0, then u(f,b+1/j) >0 for some jeIN by the measure theory.
Hence,

5(10113 ) D(u(f, 1) = @b+ 1/)u(f,b+1/j) = .

On the other hand, u(f,b) > 0 implies that, for all u e (®(b), ),
u(f @7 W) = u(f,6) >0, w(@(fC))u) = u({x: (| f(x)]) = 0}) > 0.

Hence,

sup un(f, @' () = sup up((|f()]),u) = oo.

ue(0,00) ue(0,)

Therefore, we have (4.4).
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Case 3: Let ®#e®#® and a=bh. Then &(1)=0 for re(0,h] and
& Yu)=b for ue (0,00). If u(f,b) =0, then |f(x)| <b and &(|f(x)|]) =0
a.e. x. Hence

sup  @(Ou(f, 1) = sup wu(f, @' ()= sup uu(P(|f()]);u) =0.

te(0,00) ue(0,00) ue(0,00)
If u(f,b) >0, then, by the same way as Case 2, we have

sup D(Ou(f.0)= sup up(f, @ ()= sup up(P(|f()]),u) = 0.

te(0,00) ue(0,00) ue(0,00)
Therefore, we have (4.4). ]
5. Proofs

PrOOF (Proof of Theorem 3.1). Let f e wL?(Q) and g e wL?(Q). We
may assume that f,g >0 and || f{[yze (@) = [l9]lwres0) = 1. Let

h(x) = max(@:(f(x)), P3(g(x)))-

Then, by the assumption (3.1) and (P1),

F(x)g(x) < @71 (D1(f(x)) D5 (D3(9()))
< @7 (h(x)) @5 (h(x)) < CP5 ' (h(x)).
Hence, by (P1),

Then

s (o100 0
< s u(gen (). 0)

G E)

t S(I()lp» (@1 (f (x)) + P3(g(x)),21)

N =

<

N =



Pointwise multipliers on weak Orlicz spaces 181

< s (@) ¢ a0, )
< l(1 +1)=1
—_— 2 )

where we used (4.2) for the last inequality. Therefore, || /gy, o) < 4C and
the proof is complete. O

ProOOF (Proof of Theorem 3.2). Case 1. &; and @3 are in ¥ O ywy®.
Let

g e PWM(WL? (Q),wL®(Q)).

Assume first that ¢ is a finitely simple function. Then g € wL%(Q) and

G(x) := @ gl < a.e. in Q.
||9HwL“’3(Q)

Put

[ N(G(x)), if 0<G(x)< o,
hix) = {o,l it G(x) = 0.

From the property (P1) it follows that @(h(x)) < G(x) a.e. in £ and

sup tu(®Dy(h), 1) < sup tu <Q§3 <M>,t> <1,
) Q)

1e(0,0) te (0,0 Hg||wL‘1’3(

which gives |||y 0, < 1. Next we show that

q§2<Ch(x) Lﬂ)) > G(x) = @ <M> 5.1)
Q

191wz os( 19llwz23 )

If 0 < G(x) < oo, then by the property (P2) and the assumption (3.2),

no I _ @rl(G(x))qD;](@( l9()] ))

9llwz2s (@) l9llwres )
=& (G(x)D;'(G(x)) >

and hence, by (P3),

@, (Ch(x) ﬂ) > &y (D5 (G(x))) = G(x).

Hg||wL4’3(Q)
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If G(x) =0, then /(x) =0 and &, (Ch(x) e ) = 0. Thus, we have (5.1).
By Proposition 4.1 we have M

sup tu| &2 Ch(~)M 1] = sup tul| @ gl =1
te(0,00) Hg||wL‘b3(Q) te(0,0) ||gHwL‘b3(Q)

and so th”de’z(_Q) = lCHg“WL‘bB(Q)’ that is,

l9llpwmwr e @), wrer (@) = aHg”wL%(Q)»

where we use the fact that the pointwise multiplier g is a bounded operator.

In the general case, g can be approximated by a sequence of finitely simple
functions {g;} such that 0 <g; /" |g| a.e. in @, since u is a o-finite measure.
Then

1
||g||PWM(wL‘P1 (Q),wL®(Q)) = ||gj||PWM(wL4’1 (@), WL (Q)) = EHQJ'“wL“’z(Q)

by our first part of the proof. Using the Fatou property (4.3) of the quasi-
norm | - [|yze:(q), we obtain

l9llpwmwee @), wrex (@) = 6”9”%“’3(9)-

Case 2. @, e W or @3 e #3): We consider only the case that both @,
and ®; are in %), since other cases are similar. In this case, by (Y4), for all
0 <0 < 1, there exist ¥, € @ and ¥;e#® such that

¥, (0u) < @y (u) < V(u), Y5 (0u) < @3(u) < Pi(u) for all u.
It follows that
0Dy '(u) < Wy (u) < @y (), 0By (u) < ¥y (u) < @5 (u),
lgllwrrie) < 19llwre@) < l9llwrr(o)
5Hg||wL5"3(Q) = ||g||wL¢3(Q) = ||x||wL5"3(Q),
and
Igllewmwro @), wr @) < 19llpwmwro (@), wre2 @) < 19llpwmwe @), we ()

Using the inequality

v < S0 0 W)
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which follows by (3.2) and the definitions of ¥, and ¥3;, we have

0

l9llpwmwr e (@), wr 72 (0)) = C l9llwr 7

by Case 1. Then

52
9llpwmwe o (@), w2 (9)) = EHg||wL‘D3(Q)

holds for all 0 <J < 1. Therefore,

1
l9lpwmewz o1 (@), wr e (@) = ZHgHqu’S(Q)?

and the proof is finished. ]
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