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ABSTRACT. Let ¢:R" x [0,00) — [0, c0) satisfy that ¢(x,-) is an Orlicz function for
any given x € R", and ¢(-,7) is a Muckenhoupt A4, weight uniformly in 7€ (0, c0).
The weak Musielak-Orlicz Hardy space WH?(RR") is defined to be the set of all
tempered distributions such that their grand maximal functions belong to the weak
Musielak-Orlicz space WL?(R"). In this paper, we discuss the boundedness of the
Calder6on-Zygmund operator with variable kernel from WH?(RR") to WL?(R"). These
results are new even for the classical weighted weak Hardy space and probably new
for the classical weak Hardy space.

1. Introduction

Let S"! be the unit sphere in the n-dimensional Euclidean space IR”
(n > 2) with normalized Lebesgue measure do. A function Q(x,z) defined
on R" x R" is said to be in L*(IR") x LI(S" ") with ¢ > 1, if Q(x,z) satisfies
the following conditions:

Q(x,Az) = Q(x,z2) for any x,ze R” and 1€ (0, ), (1)
J Q(x,z)do(z') =0  for any xe R”", (2)
Sn—1
1/q
sup (|l )idolz)) <o ®)
xeR" \J§n-1

where z':=z/|z| for any z #0. Set K(x,z):=Q(x,z")/|z|" for all (x,z)e
R" x R". The Calderon-Zygmund operator with variable kernel is defined by

Nﬂ@%=pVJ K(x,x — )£ (3)dy.
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In 1955 and 1956, Calderén and Zygmund [2, 3] investigated the L7
boundedness of 7. They found that these operators are closely related to
the problem about certain second-order linear elliptic equations with variable
coefficients. In 2008, Lee et al. [19] further discussed the boundedness of 7" on
the weighted Lebesgue space L”(IR") under the Hérmander condition assumed
on kernel, where w € 4, and 4, denotes the Muckenhoupt weight class. Their
result is the following theorem. We denote the conjugate index of g > 1 by

g9 =q/(qg—-1).

THEOREM A ([19, Theorem 1]). Let gqe (1,0]. Suppose that Qe
L*(R") x L1(S""") satisfies that, for any R e (0, 0),

o0

1/q
sup Y _(2"R)" J K(x,z—y)—K(x,2)|%dz] <C< o (4)
2”1R§‘Z|<2'”+1R

xeR" =
0<\y\<Rm_1

and

o0

1/q
sup > (2"R)" J |K(x,z) — K(p,2)|%dz] <C<o. (5)
1 2111R£ |Z‘<2”’+1R

x,yeR" =
0<|x—y|<R

If we Ay, with pelq’,o0), then T is bounded on LI(R").

Not only that, they also established the boundedness of 7' from a weighted
Hardy space to a weighted Lebesgue space under an extra Dini type condition
assumed on Q.

On the other hand, the impact of the theory of Hardy space in the last
forty years has been significant. The classical Hardy space on the unit circle
or upper half-plane is defined with the aid of complex method. And its
theory was one-dimensional. The higher dimensional Euclidean theory of the
Hardy space was developed by Fefferman and Stein [8] who proved a variety
of characterizations for them. As everyone knows, many important operators
have better behaved on the Hardy space H”(IR") than on the Lebesgue space
L?(R") in the range p € (0,1]. For example, when p € (0, 1], the Riesz trans-
forms are bounded on H”(RR"), but not on L?(IR"). Therefore, one can con-
sider H?(IR") to be a very natural replacement for L?(IR") when p € (0,1].
Moreover, when studying the endpoint estimate for variant important oper-
ators, the weak Hardy space WH?(IR") naturally appears as a good substitute
of HP(R") with pe (0,1]. For instance, if d€ (0,1], Ts is a oJ-Calderdn-
Zygmund operator and 7 (1) =0, where 7; denotes the adjoint operator of
Ty, it is known that T is bounded on H?(RR") for any p e (n/(n+9),1] (see
[1]), but T5 may be not bounded on H"/("+)(IR"); however, Liu [18] proved
that T; is bounded from H™("+)(R") to WH"(")(R").
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Recently, Ky [15] introduced a new Musielak-Orlicz Hardy space H?(R"),
which unifies the classical Hardy space [8], the weighted Hardy space [26],
the Orlicz Hardy space [11, 12, 13, 14], and the weighted Orlicz Hardy space.
Its spatial and time variables may not be separable. Later, Liang et al. [22]
further introduced a weak Musielak-Orlicz Hardy space WH?(IR"), which
covers both the weak Hardy space [9], the weighted weak Hardy space [25],
the weak Orlicz Hardy space and the weighted weak Orlicz Hardy space,
as special cases. And various equivalent characterizations of WH?(R") by
means of maximal functions, atoms, molecules and Littlewood-Paley functions,
and the boundedness of Calderén-Zygmund operators in the critical case were
obtained in [22]. Apart from interesting theoretical considerations, the motiva-
tion to study Musielak-Orlicz-type space comes from applications to elasticity,
fluid dynamics, image processing, nonlinear PDEs and the calculus of varia-
tion (see, for example, [4, 5]). More Musielak-Orlicz-type spaces are referred
to [10, 16, 21, 23, 24, 27, 28, 29].

Motivated by all of the facts mentioned above, it is a natural and inter-
esting problem to ask whether the Calderén-Zygmund operator with vari-
able kernel 7' is bounded from WH?(IR") to the weak Musielak-Orlicz space
WL?(IR"). In this paper we shall answer this problem affirmatively. Our
results are new even for the classical weighted weak Hardy space and probably
new for the classical weak Hardy space.

This paper is organized as follows. In the next section, we recall
some notions concerning Muckenhoupt weights, growth functions and weak
Musielak-Orlicz Hardy spaces. Then we present the boundedness of 7' from
WH?(IR") to WL?(R") (see Theorem 1, Theorem 2, Corollary 1 and Theorem
3 below). In Section 3, with the help of some auxiliary lemmas and the atomic
decomposition theory of WH?(IR"), the proofs of main results are presented.

Finally, we make some conventions on notation. Let Z, :={1,2,...}
and N:={0}UZ,. For any f:=(f,...,5,) e N" let |f|:=p,+---+5,
and o .= ((J—;l)ﬂl .. (&) ", Throughout this paper the letter C will denote
a positive constant that may vary from line to line but will remain independent
of the main variables. The symbol P < Q stands for the inequality P < CQ.
If P< Q< P, we then write P~ Q. For any sets E, F C R", we use E® to
denote the set R"\E, |E| the n-dimensional Lebesgue measure of E, yp the
characteristic function of E, and E + F the algebraic sum {x+ y:x€E, ye F}.
For any se R, [s] denotes the unique integer such that s —1 < |s] <s. If
there are no special instructions, any space Z(R") is denoted simply by Z.
For instance, L>(IR") is simply denoted by L?. For any set E C R”, t € [0, 0)
and measurable function ¢(-,7), let @(E,t):= [po(x,0)dx and {|f] >t} :=
{xeR":|f(x)|>t}. For any xeR", re(0,00) and ae€(0,00), we
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use B(x,r) to denote the ball {y e R":|y— x| <r} and aB(x,r) to denote
B(x,ar) as usual.

2. Notions and main results

In this section, we first recall the notion concerning the weak Musielak-
Orlicz Hardy space WH?, and then present the boundedness of the Calderdn-
Zygmund operator with variable kernel T from WH? to the weak Musielak-
Orlicz space WL?.

Recall that a nonnegative function ¢ on R” x [0, c0) is called a Musielak-
Orlicz function if, for any x € R”, ¢(x,-) is an Orlicz function on [0, o0) and, for
any t € [0, c0), ¢(-, t) is measurable on R”. Here a function ¢ : [0, c0) — [0, 00)
is called an Orlicz function, if it is nondecreasing, ¢(0) =0, ¢(¢) > 0 for any
t€(0,00), and lim, ., ¢(¢) = 0.

Given a Musielak-Orlicz function ¢ on R” x [0,00), ¢ is said to be
of uniformly lower (resp. upper) type p with p e IR, if there exists a posi-
tive constant C such that, for any xeIR", r€[0,00) and se (0,1] (resp.
sell,0),

p(x,st) < CsPp(x, 1).
The critical uniformly lower type index of ¢ is defined by
i(p) :=sup{p e R: ¢ is of uniformly lower type p}. (6)

Observe that i(p) may not be attainable, namely, ¢ may not be of uniformly
lower type i(p) (see [20, p. 415] for more details).

DeFiNiTION 1. (i) Let g €[l,00). A locally integrable function ¢(-,7):
R" — [0,00) is said to satisfy the uniformly Muckenhoupt condition
A, denoted by ¢ € A, if there exists a positive constant C such that,
for any ball BC R" and fe (0,00), when ¢ =1,

xeB

% L o(x, t)dx{ess sup[p(x, 1)] ! } <C

and, when ¢ € (1, 0),

|IB|JB o, :)dx{|]13|JB[¢(x, t)]l/(‘“)dx}q_] <c

(i) Let g€ (1,0]. A locally integrable function ¢(-,?): R" — [0, c0) is
said to satisfy the uniformly reverse Holder condition RIH,, denoted
by ¢ € RIH,, if there exists a positive constant C such that, for any
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ball BC R” and 7€ (0,0), when g€ (1, 0),

{] ot r)dx}l {1 ot z)]qu}l/q <c

and, when ¢ = oo,

-1
{IJ o(x, t)dx} esssup ¢(x, 1) < C.
‘B| B xeB

Define Ay :=,cp1 o) Bg- It is well known that if pe A, with ge

(1,0], then ¢°e€ Ayy1—, C A, for any e€(0,1] and ¢’ e A, for some 7 e

(1,00). Also, if pe A, with g€ (1,0), then p € A, for any re (q,00) and

p € B, for some d € (1,¢4). Thus, the critical weight index of ¢ € A, is defined
as follows:

q(p) :==inf{ge[l,0) : pe A,}. (7)

For the uniformly Muckenhoupt (resp. reverse Holder) condition, we have
the following property as the classical case.

LemMma 1 ([15, Lemma 4.5)). Let 9 € A, with g € [1,0).  Then there exists
a positive constant C such that, for any ball B C R", 1€ (1,00) and t € (0, ),

@p(AB,t) < CA"o(B,1).

LemmA 2 ([17, Lemma 3.5]). Let re(1,00). Then ¢" € Ay, if and only
if 9 € RH,.

DEerINITION 2 ([15, Definition 2.1]). A function ¢ : R" x [0, 00) — [0, c0) is
called a growth function if the following conditions are satisfied:
(i) ¢ is a Musielak-Orlicz function;
(ii) @€ hy;
(iii) ¢ is of uniformly lower type p for some p e (0,1] and of uniformly
upper type 1.

Recall that the weak Musielak-Orlicz space WL? is defined to be the space
of all measurable functions f such that, for some A€ (0, ),

sp o({1f1>1).5) < 0

te(0,00)

equipped with the quasi-norm

1 e 2= inf{x €(0.%0): sup )cz)({lfl > 1.5) < 1}.
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In what follows, we denote by & the space of all Schwartz functions and
by &' its dual space (namely, the space of all tempered distributions). For any
meN, let %, be the space of all Y € & satisfying ||yl <1, where

1l == sup sup (1+ |x|)" D 0%y (x)].

aelN" xeR”
o] <m+1

Then, for any m € N and f € %', the non-tangential grand maximal function f}
of f is defined by setting, for all x € R”,

Ju(X) = sup sup |/ xy(p), (8)
Ve |y—x|<t
te(0,00)

where, for any 7€ (0,00), ¥,(-) :=t")(;). When

we denote f simply by f*, where ¢g(¢) and i(p) are as in (7) and (6),
respectively.

DEFINITION 3 ([22, Definition 2.3]). Let ¢ be a growth function. The
weak Musielak-Orlicz Hardy space WH? is defined as the space of all f e .’
such that f* e WL? endowed with the quasi-norm

HfHWHw = ||f*||WLw-

REmMARK 1. Let w be a Muckenhoupt weight and ¢ an Orlicz function.

(1) If o(x,1) :== w(x)¢(t) for all (x,1) e R" x [0, 00), then WH? goes back
to the weighted weak Orlicz Hardy space WH?, and particularly, when
w =1, the corresponding unweighted space is also obtained.

(i) If o(x,t) :=w(x)t? for all (x,t) e R" x [0,00) with pe(0,1], then
WH? goes back to the weighted weak Hardy space WHP?, and par-
ticularly, when =1, the corresponding unweighted space is also

obtained.

Before stating our main results, we recall some notions. In 2007, Ding
et al. [6, 7] introduced a notion about the variable kernel Q(x,z) when they
studied the Marcinkiewicz integral. Replacing the condition (3), they
strengthened it to the condition

1/q
sup (J |Q(x+rz’,z’)|qda(z’)) < 0. (3"
Sn—1

xeR”
re0, )
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For any ge[l,c0) and o€ (0,1], a function Q(x,z) is said to satisfy the
L%*-Dini condition, if (1), (2), (3’) hold and

Jl @4(9)

0 51+a

do < oo,

where
1/q

wy(6) := sup J sup |Q(x+rz',y") — Q(x+rZ',2")|1da(Z)
xeR" Sn—l yresn—l
re[O.oc) ‘},/7Z/|S6

For any o,f € (0,1] with f < a, it is trivial to see that if Q satisfies the L%*-
Dini condition, then it also satisfies the L¢#-Dini condition. We thus denote
by Din{ the class of all functions which satisfy the L¢#-Dini conditions for all
p <oa. For any o€ (0,1], we define

Din;” := ﬂ Din/.

g=1
A routine computation gives rise to
Din, C Din] if 1<g<r< oo,
and
Dinf C Ding if 0<f<a<l.
The main results are as follows. Their proofs are given in Section 3.

THEOREM 1. Let a€(0,1], re(l,00] and ¢ be a growth function
with pe (n/(n+a),1). Suppose that Qe[L*(R") x L'(S" )| NDin, satis-
fies (4) and (5). If o'/0-P) € Byu/in(1-p)), then T is bounded from WH? to
WL®.

THEOREM 2. Let o€ (0,1], g€ (1,00) and ¢ be a growth function with
pe(n/(n+a),1]. Suppose that QeDin! satisfies (4) and (5). If ¢7 €
B (pipajn—1/q)qs then T is bounded from WHY to WL?.

CorOLLARY 1. Let o€ (0,1] and ¢ be a growth function with pe
(n/(n+a),1]. Suppose that Qe Din, satisfies (4) and (5). If ¢ € Byi1am)s
then T is bounded from WH?Y to WL?.

THEOREM 3. Let re(l,0] and ¢ be a growth function with p:=1
and ¢ e Ay. Suppose that Qe L*(R") x L'(S") satisfies (4) and (5). If
there exist two positive constants C and M such that, for any y,heR"
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and t e (0, 0),

p(y+h,0), (10)

e}

J |[K(x+h,x—y) — K(x+ hx)|p(x+ h,t)dx <
Ix|= M|y

then T is bounded from WH?Y to WL?.

REMARK 2. (i) It is worth noting that Corollary 1 can be regarded as the
limiting case of Theorem 2 by letting q — 0.

(it) Theorem 1, Theorem 2 and Corollary 1 jointly answer the question:
when Q € Din! with =1, qe (1,0) or q= o0, respectively, what
kind of additional conditions on ¢ and Q can deduce the boundedness
of T from WH? to WL??

(i) Let w be a Muckenhoupt weight and ¢ an Orlicz function.

(@) When ¢(x,1):=w(x)¢(t) for all (x,t)eR" x[0,00), we
have WHY = WH(f. In this case, Theorem 1, Theorem 2, Corollary
1 and Theorem 3 hold true for weighted weak Orlicz Hardy space.
Even when =1, the corresponding unweighted results are also
new.

(b) When ¢(x,t) :== w(x)t” for all (x,t) e R" x [0, 0), we have
WH? = WHPE.  In this case, Theorem 1, Theorem 2, Corollary 1 and
Theorem 3 are new for weighted weak Hardy spaces. Even when
w =1, the corresponding unweighted results are probably new.

3. Proofs of main results
To show the main results, we need some notions and auxiliary lemmas.

DeriNiTION 4 ([15, Definition 2.4]). Let ¢ be a growth function as in
Definition 2.

(1) A triplet (¢,q,s) is said to be admissible, if g e (q(p), 0] and se€
[m(p),0) NN, where ¢g(p) and m(p) are as in (7) and (9), respec-
tively.

(i) For an admissible triplet (p,q,s), a measurable function a is called
a (¢, q,s)-atom if there exists a ball B C R” such that the following
conditions are satisfied:

(a) a is supported in B;
() lall oz < lxsllze, where

1 J . }1/4
sup |———| lalx x,0dx| , qell, o),
Ha”Lg(B) = 1 (0, ) |:¢(B, t) B | ( )‘ (ﬂ( ) [ )

llall q= o0,
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and
lxslle = inf{Z e (0,0) : p(B,A7") < 1};
(€) [gra(x)x”dx =0 for any y e N" with || <s.

DErFINITION 5 ([22, Definition 3.2]). For an admissible triplet (¢, ¢, s), the
weak atomic Musielak-Orlicz Hardy space WH5*" is defined as the space of
all /'€ &' satisfying that there exist a sequence of (¢, ¢, s)-atoms, {a; ;};.7 jez.»
associated with balls {B;;};.z ;cz,, and a positive constant C such that
> jez, Xp,,(x) < C for any xeR" and i€ Z, and f =3}, 4 Ai jaj in
&', where A; ;= éy”%&,,”m for any i€Z and jeZ,, and C is a positive
constant independent of f.

Moreover, define

21’
I/ Wwzges = inf§ infq 2 € (0, 0) : sup Z (D(Bib_) <1,
“ ieZ jez, A

where the first infimum is taken over all decompositions of f as above.

JjEL,

LemMA 3 ([22, Theorem 3.5]). Let (¢,q,s) be an admissible triplet. Then
WH? = WH**
with equivalent quasi-norms.

LemMaA 4 ([7]). Let ge[l,00). Suppose Qe L*(RR") x L4(S"") satisfies
(3").  If there exists a constant € (0,1/2) such that |y| < SR, then, for any
heR",

1/q
(J |K(x—|—h,x—y)—K(x+h,x)|qu>
R<|x|<2R

, 4ly|/R
< CR™1 M+J @) 45 ).
R Jopyr 9

where the positive constant C is independent of R and y.

LEMMA 5. Suppose Q satisfies the L9 *-Dini condition with q € [l, ) and
o€ (0,1. Let b be a multiple of a (p,0,s)-atom associated with some ball
B(xp,r) C R".

(1) If g =1, then there exists a positive constant C independent of b such

that, for any R € [8r, ),

Te)Wdx = Lol R (7)

JRsx—xo<2R
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(i) If ge(l,0), then there exists a positive constant C independent of b
such that, for any R e [8r,0) and t e (0, w0),

n+o
| 7)ol dx < CB] o (Blxo, 2R), 0]/ R (‘> |
R< ‘X*X()‘<2R R
ProoF. We only prove (ii), since the proof of (i) is analogous to that of
(i). From the vanishing moments of b, Fubini’s theorem, Holder’s inequality
and Lemma 4, we deduce that, for any R e [8r,00) and ¢ € (0, o0),

oo Tl s
- [ Ko p0)nlpt, nas
R<|x—x0|<2R|J|y—xo|<r
= J J [K(X, X = y) - K(va - XO)]b(y)dy (IJ(X, t)dx
R<|x—x|<2R|J|y—xo|<r

IA

J b(y) (J [K(x,x = y) = K(x, x — xo)|o(x, t)dx> dy
|y—xo|<r R<|x—x9|<2R

/g’
< (| o )] dx
|y— r0|<) R<|x—x¢|<2R

1/q
X (J |K(x,x—y)—K(x,x—xo)|"dx> dy
R<|x—x9|<2R

< 1Bl [9” (B(x0,2R), 1))/

1/q
] K esx -y - Kasmla) a
|yl<r R<|x|<2R

, , , AI/R ) (5
< 10l (B, 280.0) | R ('% ] et d&) &
Iyl<r 2001/R

< 10l (B, 20000 | R [% " (%) ]dy
lyl<r

, , r n+o
< 160, b (B, 280,01/ R (1)

Hence the statement in Lemma 5(ii) is proved.
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PrOOF OF THEOREM 1. We only consider the case re (1,00), since the
case r = o0 can be derived from the case r =2. Indeed, when r = oo, by
L7 (R") x L*(S" ") € L*(R") x L*(S""") and ¢/~ € A,y p(1-p), We know
that Theorem 1 holds true for r = co. We are now turning to the proof of
Theorem | under the case re (1,00). Let (p,00,s) be an admissible triplet.
By Lemma 3, we know that, for any fe WH? = WH} ™", there exists a
sequence of multiples of (¢, c,s)-atoms, {b;;};.z ;cz. . associated with balls
{Bij}icz jez,> such that

=33 by ing,

ieZ jeZ,

Yez, X5, (x) S1 for any xe R" and i€ Z, ||b;l|,. <2' for any ieZ and
j€eZ,, and

o) 2
1 wize ~ mf{ﬂ € (0,00) sug{ 3 w(Bl-,,-,r)} < 1}.
1AS] jEZ+

Thus, our problem reduces to prove that, for any f,1¢€(0,00) and

fe WH?,
o((rni>mf) < sup{ > (/)(B%)}

ieZ jEZ+

To show this inequality, without loss of generality, we may assume that
there exists ip € Z such that f=2%. Let us write

in—1 o0

IEDIDILIED D BLIEL AT

i=—wjeZ, i=iy jeZ,

We estimate F; first. A tedious calculation gives par’ > n(1 — p). For
simplicity, denote por’/[n(1 —p)] by u. By Theorem A with ¢pe A/,
Minkowski’s inequality, > ;.7 x5 (x) <1 for any xeR" and i€Z, and
the uniformly upper type 1 property of ¢, we know that, for any /e
(0, 0),

2 20
o(ire=20%) <[ (w7 )
(T(F)[>20} ~

. o
< - J T(F) ()| (x, 27> dx
[Rﬂ
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: 2o
< 2_“’°J |F1(x)|“(o<x,7)dx
[Rﬂ

2[
ieZ JezZ,
which is wished.

Next let us deal with F>. Denote the center of B;; by x; ; and the radius
by rij. Set

8

where Bj; := B(x;;,8(3/2) /", ). To show that

oy 20 2
¢'<{|T(F2)| > 2'0},}) < sup{ 3 ¢(3>}
) ez JEZy ~

we cut {|T(Fy)| > 20} into A;, and {xe (4;)" : |T(F)(x)| > 20}.
For A;, from Lemma 1 with @€ Ay m (since V1P € By i),
and the uniformly lower type p property of ¢, it follows that, for any A€

(0, o),
(03)= S5l

i=ig jeZ+

0 (i—io)p 2o
S50 w2

i=iy jEZ
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£50 e

i=iy jJel,
2i
sup Z @ Bi,j77 ) (12)
ieZ jEZ+ A
which is also wished.

It remains to estimate (A,-O)E. Applying the inequality || - ||,» < || - ||,» with
€ (0,1), we conclude that, for any 1€ (0, c0),

A

A

“’(“e (4i)° I T(F2) (x)] > 2,-0},%)

. Do
<2 | r@Eele(x s
(4p) ~

<2 irewire(x 5 s (13

i=iy jeZ+

Below, we will give the estimate of integral
21
L | 6 0re(x5 )as
(Bj,;) -

i = (2K B )\(2" By ).

For any ke N, let

It follows from Hélder’s inequality that

s 2] o] ] [PGE)] e

On the one hand, noticing that ¢!'/(=7) ¢ A p2/In(1—p))> there exists a constant
de(1,pa/[n(1 — p)]) such that ¢'/0-?) e A; By Lemma 2, we have g€
RH;/(;_,. Thus, thanks to Lemma 1 with ¢/"?) € A,, and ¢ € RH, (),
it follows that, for any 4 € (0, o0),

i\ 71/(1-p)
)] e
E; A
- o 20
<prren)

1-p

I—p
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! 1—p (i—ip)/ (n+)
P

2o 3 (i—io)/(n+a) nd(1-p)
S (Vz',j)"pw(Bf,;,T) 2k <§>

On the other hand, since d < po/[n(1 — p)], we may choose & € (0, «) such that
d < pa/[n(1 - p)]. By the assumption Q € Din!, we know that Q satisfies the
L'“*-Dini condition. Then Lemma 5(i) yields that

nd(1—p)

o

‘ NEE=
| el < 2,y z’f() .
E/c ’ ; 2

The above three inequalities give us that, for any 4 € (0, o0),

) 2o ) . 3 (i—ip)/(n+a)
I's 21}60(31‘,./'77) Z 2 <§)

k=0

nd—ndp—pa

Substituting the above inequality into (13) and using the uniformly lower type
p property of ¢, we obtain that, for any 1€ (0, c0),

so({xe (43" | T(B)(x)] > 2'““%)

- I, ' 2[,() © 3 (i—iy)/(n+2) nd—ndp—pa.
s 2 ~hp Z Z 21[7@(31',])7) Z 2k (5)

i=iy jelZ,

2! A 3\ =0}/ (n+2) nd—ndp—pd
k
sup{ Z 60(31',]‘,/1)}22[2 (2) ]

i€l \ jez, i=ip k=0

- 525{ 5 o(m3) } e

JEL,

A

where the last “~” is due to d < pa/[n(1 — p)].

Finally, combining (11), (12) and (14), we obtain the desired inequality.
This finishes the proof of Theorem 1.

ProoF oF THEOREM 2. We only consider the case p < 1. The proof
of the case p=1 is similar and easier. Once we prove Lemma 5(ii), the
proof of this theorem is quite similar to that of Theorem 1, the major change
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being the substitution of

U )|¢<x %)derEk(p(x’z%)dx]lp
s Ellomwoon] [ pe5)] ")

We leave the details to the reader.

Ms

for

Ms

PrOOF OF COROLLARY 1. By ¢e A1y, we see that there exists
de(1,0) such that ¢ € Ay ,,. For any ge(l,0), by p>n/(n+a),
some tedious manipulation yields (p + pa/n—1/q)qg’ > p(1 +o/n) and hence
9 € B(pipa/n-1/qq- Thus, we may choose ¢ :=d/(d — 1) such that

0! = 0" € Bipeinrigg
and hence Corollary 1 follows from Theorem 2.

ProoF oF THEOREM 3. Since the proof of Theorem 3 is similar to that
of Theorem 1, we use the same notation as in the proof of Theorem 1.
Rather than giving a complete proof, we just give out the necessary modifica-
tions with respect to the estimate of (A,-O)C. Reset

where Z?;:: B(xi_j,(3/2)<"7"°)/"r,‘_,j) For any A€ (0,00), we have

¢<{xe(AiO)'3:|T( 2)(x)| > 2"} 2;)

i 210
2 ¥ )C\T( xX)|o| x,— )dx

0

<20y Y J~c )|(p<x 2;)dx. (15)

i=iy jeZ,

IA

Below, we will give the estimate of integral

2/
L | 1700 (x5 ).
(B:)® A



166 Bo L1

By the vanishing moments of b; ;, Fubini’s theorem and (10), we obtain that,

for any 4 € (0, o0),
go(x, 2/1> dx

- j
(B:)"
2o
| mo|] K(x,x—y>—K(x,x—x,».»w(x,—)dx dy
B; ; (Bi.j)C A

|| Ko=) = Ko =t ()

IA

= J |bi,j (¥ + xi ) J
l<ry 2 (3/2) 0,

20
|K(x+xij,x—y)— K(x+ x,-vj,x)|(p<x—|—x,-,j,7>dx] dy
2 (i—io)/n o
5 J 1bij(y + xi )] <> ¢ (y + Xij, ) dy
[yl<ri 3 A

o) (i—ip)/n o
< bl - (g) W(Bi,j»7>~

Substituting the above inequality into (15) and using the uniformly lower type 1
property of ¢, we obtain that, for any 4 € (0, o),

otre (s 7m0 > 207

> 2\ (i=io)/n o
<235t (3) o8 %)

=iy jeZ,

= NGO 5
< 2—io Z Z i (3) 2101¢<Bi,j7/1>

=iy jeZ,

) (i—ig)/n i
< Py su B; s
() e Se(m))

i=iy
21'
~sp 3 e(03)
This finishes the proof of Theorem 3.

REMARK 3.  We should point out that, if ¢ is a growth function of uniformly
lower type 1 and of uniformly upper type 1, then WH? = WH;(‘ 1 and WL? =
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WL;(,‘I). In fact, there exists a positive constant C such that, for any x € R”
and t € (0, 00),

Cligp(x, 1) = Clap(x, 1/1) < g(x,1) < Ctop(x, 1),
which implies that

sup o({|/]>1},0) ~ sup o({lf|> 1}, D)r.

te(0,00) te(0,00)

Hence, we have WL? = WLQI)(, 1 Analogously, WH? = WHWI(,‘I).
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