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ABSTRACT. We calculate the twisted Alexander polynomials of (—2,3,2n + 1)-pretzel
knots associated to the family of their SL,(C)-representations which contains their
holonomy representations.

1. Introduction

1.1. Motivations. The twisted Alexander polynomial is a generalization of
the Alexander polynomial, and it is defined for the pair of a group and its
representations. The notion of twisted Alexander polynomials was introduced
by Wada [W] and Lin [L] independently in 1990s. The definition of Lin is
for knots in S3 and the definition of Wada is for finitely presented groups.
By Kitano and Morifuji [KM], it is known that Wada’s twisted Alexander
polynomials of the knot groups for any nonabelian representations into SL,(IF)
over a field IF are polynomials. As a corollary of the claim, they also showed
that if K is a fibered knot of genus ¢, then its twisted Alexander poly-
nomials are monic polynomials of degree 4g — 2 for any nonabelian SL,(IF)-
representations. They also showed that there exists a nonfibered knot which
has an SL,(C)-representation such that the twisted Alexander polynomial of
the representation is monic (see [GoMo]).

If K is hyperbolic, i.e. the complement S*\K admits a complete hyperbolic
metric of finite volume, the most important representation is its holonomy
representation into SL,(C) which is a lift of the representation into the group
of orientation-preserving isometries of the hyperbolic 3-space H*®. Dunfield,
Friedl and Jackson [DFJ] conjectured that the twisted Alexander polynomials
of hyperbolic knots associated to their holonomy representations (so-called
hyperbolic torsion polynomials) determine the genus and fiberedness of the
knots. In fact, they computed the twisted Alexander polynomials of all hyper-
bolic knots of 15 or fewer crossings associated to their holonomy representa-
tions, and the conjecture is verified for these hyperbolic knots. Recently, the
twisted Alexander polynomials of some infinite families of knots, twist knots
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and genus one two-bridge knots associated to their holonomy representations,
are computed by Morifuji [Mol] and Tran [T1], and genus one two-bridge
knots associated to the adjoint representations of their holonomy representa-
tions is also computed by Tran [T2]. These examples are also supporting
evidences of the conjecture. Dunfield, Friedl and Jackson also observed that
the second highest coefficients of the hyperbolic torsion polynomials are often
real for fibered knots however they are not very often real for non-fibered
knots.

In this paper, we compute the twisted Alexander polynomials of (—2,3,
2n + 1)-pretzel knots K, depicted in Figure 1 associated to the family of their
SL,(C)-representations which contains their holonomy representations given
in the following section where integer n is not 0, 1, 2 ((—2,3,2n + 1)-pretzel
knots are hyperbolic knots for n # 0,1,2). The twisted Alexander polynomials
of K, are monic polynomials of degree 4(|n+ 1|+ 1) —2 where n < —2 or
2 < n, and the twisted Alexander polynomial of K_; is a non-monic poly-
nomial of degree 2. We can observe that K, is fibered for integers n # —1
and the genus of K, is |[n+ 1| + 1 (see [HM, Mu, O] for more details). Hence
Dunfield, Friedl and Jackson’s conjecture holds for (—2,3,2n+ 1)-pretzel
knots. Furthermore, the second highest coefficients of the twisted Alexander
polynomials of K, associated to their holonomy representations are 0 for n > 2
and are —2 for n < -2, i.e. the second highest coefficients are real when K,
is fibered. This result coincide with the question of Dunfield, Friedl and
Jackson. In contrast, the second highest coefficient of the twisted Alexander
polynomial of K_; associated to the holonomy representation is also real.
This is a rare case for non-fibered knots.

On the other hand, (—2,3,2n+ 1)-pretzel knot is an infinite family of
knots which contains the Fintushel-Stern knot i.e. (—2,3,7)-pretzel knot. It
plays an important role in studying of exceptional surgeries of knots [Mal].
In fact, the A-polynomials of (—2,3,2n+ 1)-pretzel knot are computed by
Tamura-Yokota [TY] and Garoufalidis-Mattman [GaMa]. We hope this result

Fig. 1. (-2,3,2n+ 1)-pretzel knot
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will be used as examples of the twisted Alexander polynomials of hyperbolic
knots for solving some questions and open problems.

1.2. Definition of twisted Alexander polynomials. In this paper, we use the
following definition due to Wada.

DeriNiTION 1. Let G(K) = 71(S°\K) be the knot group of a knot K.
The existence of a presentation of the form

G(K):<x17'~'7xn|717-'~77nfl>

is well known for any knots (see [CF]). Let I" denote the free group generated
by x1,...,x, and ¢ : ZI' — ZG(K) the natural ring homomorphism induced by
the presentation of G(K). Let p: G(K) — GL,4(IF) be a d-dimensional linear
representation of G(K) and @ : ZI" — My(IF[t,t~']) the ring homomorphism
defind by

D= (p®aodg,

where &:ZG(K) — Z<{t,t"'y and p are respective ring homomorphisms
induced by the abelianization «: G(K) — <{t) and p. We put

6}’,‘
4y = ¢(a—x,)’

0 — o .

where — denotes the Fox derivative (or free derivative) with respect to x;, that
Aj

is, a map ZI' — ZI satisfying the conditions

o o, 0 o,
5_x_/x’_5” and a—xjgg—ax/_ngg@xjw

where J; denotes the Kronecker symbol and ¢g,¢9’ € I’. Then, the twisted
Alexander polynomial of K is defined by

A . det A/),k
Er = det d(xe — 1)

where A, is the 2(n—1) x 2(n — 1) matrix obtained from A, = (4;;) by
removing the k-th column, i.e.

A o Ak At k1 - A
Ap ik = : : : :
An—l,l An—l,k—l An—l,k+1 An—l,n
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2. Presentations and holonomy representations

In this section, we give a presentation of the knot group G(K,) and its
holonomy representation p,, : G(K,) — SL,(C), where m represents the eigen-
value of the image of the meridian of K.

Let L be the link depicted in Figure 2 and E = S*\L. Then, the
Wirtinger presentation (see [CF]) of =(E) is given by

a, b, x| {axba(xb) ™"} ' x = xb{axba(xb) "'} " (axb) "' xb, [x,axba(xb) '] = 1),

where @, b and x are Wirtinger generators assigned to the corresponding paths
depicted in Figure 2. Note that E, := S3\K, is obtained from L by (—1)-
surgery along the trivial component, that is, removing the tubular neighborhood
of the trivial component and re-gluing the solid torus again after twisting —n
times along the longitude. Therefore, by the van Kampen theorem, we have

71 (Ey) = <a, b, x| {axba(xb) ™"} "' x = xb{axba(xb) "'} " (axb) "' xb,
x = {axba(xb) "' }">.

PRrOPOSITION 1. For a non-zero complex number m, there exists a represen-
tation p,, : 7 (E,) — SLy(C) such that

(I’)’l2 _ S)(s2n+l + 1)

pla) =" T msn |,
0 m~!
5 (s — mf) (mso. — f)
1 mﬁ
pm(b) = E
m(mso — ff) + sa
p m
and
s" 0
pm(x) = st — 57" —n ’
sty 8

Fig. 2. Link L
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where s is a solution of
0=mb(s— 1)(s+ 1)*(s¥ — §7)s>"*?

C oS5 (258 455 —dst 45 52— s — 1)sh

(5485 — st ds? s 2)s 4 56

+ m*{ (52 4 1)s% 2 4 (58 + 255 — 35* — 257 + 657 — 45 — 2)s¥F3

— (2% +45° — 65 + 257 4357 — 25 — 1)s¥ 4+ (s* + 1)s°}

s (250 455 — At s 42— s — 1)st

— (S’ — st = A — s —2)sM 450
+ (S— 1)(S+ 1)2(S2n _ SZ)S2n+2

and o, f are given by
o= (52 — Ds¥{—mS(s — 1) (s" 1 + 1) + m* (s 2 (s* =25 + 35— 1)

45t =357 4257 — 1) —ms(s™(25° — 52 + 1)

—5(s® =54 2)) + (™ = D)},

B=m"s2(? —1)(s* + 1) —m s {s¥ (s> — s + 1)
+5 s —D(SPH+s+ D)+ + D) = (s° —s+ 1)}
+m3s2 (5% + D)2 = 1)(s™ 4 52) — ms® (s — 57) (™" + 5).

In what follows, for simplicity, we denote the right hand side of (1) by r.

Proor. For simplicity, put 4 =p,,(a), B=p,,(b), X = p,(x). By the

aid of Mathematica, we have

0
AXBAXB) ' = -1 1
N

1 1
r s+l 4] s+1
m3so2 s+ 1 1 ’

where
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r = —olms(m?s¥ 2 —m? — s 45) 4 ap(m® — 1) (m* 4+ Ds™ s+ 1)

+ B2ms¥ (m?s* ! — ms — 72 4+ 1) = 0 mod ry.

Therefore, by (1), we have X = {AXBA(XB) '}", that is, p,,(x) is equal to
pu{axba(xb)™'}").

On the other hand, we can observe
AXB{AXBA(XB)_l} = XBX"{AXBA(XB)_I}XB mod ry

and so AXB{AXBA(XB) '} = XBX '{AXBA(XB)"'}XB by (1). Further
more, we obtain

XB{AXBA(XB)"'} ' (4xB)"'XB
= XB(AXB{AXBA(XB)"'})"'XB
— XB(XBX'{AXBA(XB) '} XB)"'XB
= {AXBA(XB) '} 'x

that is, p,,({axba(xb)™'}'x) = p,,(xb{axba(xb) ™'} ' (axb)"'xb). This com-
pletes the proof. O

REMARK 1. Since the representation p,, comes from the holonomy repre-
sentation obtained from the ideal triangulation of E given in [TY], the holonomy
representation p,, of G(K,) is given by the solution to (1) which maximizes the
hyperbolic volume of S*\K,.

3. Calculation of the twisted Alexander polynomial
The following is the main result of this paper.

THEOREM 1. The twisted Alexander polynomial of K, associated to p,, is
given as follows, where

H =1 — m?s + m2s?t! —S2"+2,
n = mo —ms™ o+ 7B+ m>s™"B,
1y = —msa + ms* o — s — s
(i) Ifn>2
2n—

1
AK;,,/J,,,(Z) =1 + /1,‘(!H3 + t4n7i+3) + t4n+6,
i=0



Twisted Alexander polynomials of (—2,3,2n + 1)-pretzel knots 49

where
2
s(m” +1) <Si/2 Mt (577+1 _S—i/2—l)) fO0<i<om_2
m Hp ..
and i is even,
. S=1)/2 _ (=12 .
A = - if 0<i<2n-2
5= and 7 is odd,
g1 g=(n=1) (sz - Dy, .
P R TR if i=2n-1.
(i) If n=-1
ms(s — Do+ Bm?>+ 1) 2(m*+1)
A, (1) = _ ;
K—lw/)m() mzﬂ m
ms(s — oo+ 3m*> + 1) ,
+ .
m2f
(i) If n=-2
2
Ak o) () =141° —m—H(l‘Jr )
' m
ms?(s3 — Do+ (m?> + Dsp s> +s+1 2
+ (m? — s+ m?s?)p (41

2(m? + 1)s((s — 1)s%a + mp) 3
(m? — s+ m2s2)f r

(iv) If n< -2
—2n—1 ) .
Kup (1) Z At 7,
i=0
where
i/241 _ g=if2—1
% if i is even and,
P i#2, =2n-2,
Loty =2
S - b
s HEY — 1) + (7 - D) if i =—2n—2
H(s—s ) |
2.4 : i i
s(mm+ ) (m I;r/;?z (5762 _ =12y —s<”>/“> if i is odd.
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As a result, we can observe following.

COROLLARY 1. The coefficient of the second highest degree of the twisted
Alexander polynomial Ak, , is real if K, is a fibered knot i.e. the second
coefficients are written by

s(m* +1) o2 M TM o1 —02-1y) _ -
p. (s 7 (s s )] =0 if n>2
241
L e S S A
m
s(m* +1) (ni +n, (57002 _ =02y _=0-02-1) — Ly iy 2
m Hp ’

where m = 1, which corresponds to their holonomy representations.
Then the above result can be reformulated as follows:

REMARK 2. Suppose n #0,1,2. Then the twisted Alexander polynomial
of K, associated to p,, can be rewritten by

1= L 7l 0\ g A
- 1 L} _1 i ; 1 ] _1 i ii i (|In]/n)(4n+1)—1—i
2;{(+n< >)K+( i >)}<r+t )

+ ¢lnl/2m)(@n+1)-1/2 <I—2n—3 _ (SZ — D, (t_l 1)+ [2n+3>7

Hs"f
up to t~CPEH) yhere
o — s(m? +1) {1+ (s~ (/@31 _ (/42430 1)y
=
m Hp
+Ms<n/4n><2i+1>1/4}7
n
A= #(S(1/4)(2i—3\n\/n+1) s /I3l

S os—s!
To prove Theorem 1, it suffices to show the following:

ProPOSITION 2.  For simplicity, we put S =s" and T =1t". The twisted
Alexander polynomial Ay, , (t) is given by

S—T*s (mst —mStT> + (1 + m?)(1 = s*)S’T>
s—1* S m(l —s2)83

(L+m?)(1 = sSET?)(, + 1)
+ Hmt3f — >




Twisted Alexander polynomials of (—2,3,2n + 1)-pretzel knots 51

1—-ST? s ((1 +m?)(1 — s*)S — mSt + mstT?

1—s2 S m(1 —s2)83
(L m?)(sS = 2T (1 + 1)
Hmi’p
1 (1 -1+ 2Ty
a7
+ 16 A HSHp
By multiplying ¢2("=7+D+(/20)(#+7) and rearranging this with respect to ¢,

we obtain the formula of Theorem 1, by using

S=T> |n| (1/2)(l+n)~1 n—n L
om, e

s—12 n
2 |n|—1
ST -1 _|n| 4 (172 lnl) pr— Z §ig
st —1 n

4. Proof of Proposition 2
Recall that

1 (Ey) = {a,b, x| {axba(xb) "} 'x = xb{axba(xb) "'} " (axb) ' xb,
x = {axba(xb) 1"y
= <a,c|(acac™)"" = ¢(acac™) (ac) e

Then the twisted Alexander polynomial of K, (n > 2) is given by

0 -1 0 N Y
detd)(%(acac ) —%c(acac ) (ac)” ¢

Ak, (1) = det d(c— 1) ’

where

0 —1\n—1 0 —1y-1 -1
@(a(acac ) aac(acac )~ (ac) c)

—1
Z 20 p, ({axba(xb) 1Y) {p,, (1) + 20D p, (axb))

+ 4 (xbxba™') + 2" p, (xb{axba(xb) '}

+ 173, (xblaxba(xb) ' }(axb) ). 2)
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For simplicity, we put
Y| = so— mp, vy = mso — f3, 73 = m>s(sS* + 1.

By the aid of Mathematica, the first term of the right hand side of (2) is given
by

n—1
> 2N (AXBAXB) ) TN E + 2D AXB)
i=1

(ST? — s2)(SPBT? + ma) T*(ST? — %) (111, + (moc— B)y3)
B mst?(st2 — 1)o B m2s(s + 1)S(st2 — 1)of
N mCia — SPET2C,p Cit* T + CyP2T* + CstST? + Ct* T2 + G |
msS(sS? + 1)e%(s — 1) (st2 — 1) (s +1)S222(s — 12) (52 — 1)y38

where
Cp = —t*s(s? = 1)S — THA(S? — s%) — 5(S* — 57},
Cy = 221> — D)s(s + 1)S + T*{2(S* + 5%) + 5(S* — 5)},
Cy = (7 +8%)yyy — {57 (msa+ B) — S (mo — f) }s,
Cy = —s(s + Sy + s{s(mso + f) = S*(mor — f)} 73,
Cs = —s(s+ 1)S{pimy + (ny + 1, — (1 + m*S* = s8%)B)3},
Co = s(s + 1)S{sou, — m(s +1)S*Bp,},

Cr = s(s+ 1)S(st> — 1)(S? — sT*)fy;.

Similarly, the second term of the right hand side of (2) is given by

S2D; msD Dy — (s8% + 1)(sS2Dy + my3a)3°
(s+1)Dy  msS2D\D; + s(sS? + 1)(m2sa® — S25%) D, . ’
(582 + 1)y3a 52(582 + 1)y;ap?
where

Dy = —(s+ D)ayy +m(n; + 7, +mS*y,)B,

D2 = —ur,y + mS2(7]] + mszyl + yZ)ﬂa

the third term of the right hand side of (2) is given by
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SE, _Snn
RIS ms(sS? + 1)of mof3
XB{AXBA(XB) '} ! = (s + 1)Es E, ,

msS(sS? +1)2app mS(sS* + 1)af
where
Ey = (" — Doy, +m(n; +mS?y; — s9,)P,
Ey = (s — Doy +mS*(n; + mSy; — sp2)Pp,
E3 = —sany +m(s + 1)S?By,,

and the fourth term of the right hand side of (2) is given by

mF; Fy
e AP ek by
XB(AXBAXBA(XB) ') = m(s2 — 1)FiF> mFs ’

S2(sS% +1)y3p° S2y34°
where
Fi=m(s + 1)S* (g, +mS*p)f — n2,
F> =m(s+ 1)S*(sS* + 1) — sFy,
Fs = —{mp(n +mS>p) + 57172 = 70} F2 + ms(s + 1)S? (8% + 1)717,5%,
Fy = (s* = D){m(n, +mS>p) — 70} F5
+ y3{myyo — (mPny + 870y + M S%y — 57(S7 = 1)) — msyi 2},
Fs = (s — 1)(sF| — my;0) Fy — m*S*(sS% + 1)yp;0°.
Therefore, the determinant of the right hand side of (2) is written as

Zi,j Ui‘jtiTj
m38216(s — 12)(st2 — 1)1’

where
Upo=Uso=Uso=Usg=Upgas=Uss = Us s = Upng = —m’sS?p*,
Uso = Uio s = m*(s* + 1)S*f%,
HUs g = HUyg = —m*(m” + 1)sS*B(Hsf — (s> = 1)(; +1,))r mod ro,

Us,o = Uy g = m*(m* + 1)sS*f% mod ry,

53
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HU, , = HUy16 = m*(m* + 1) (s — 1)sSPi,t mod rg,
HU,, =HUs,=HUg >, =HUy ¢ = HUs ¢ = HUjp6
= m3(s*> — 1)sSPy,1 mod r,
HUs , = HUy ¢ = m>(m* + 1) (s — 1)SB{HsS?f — s(sS* + 1),
— (s*S? + 52 + 1)n, }1 mod ry,
H?Uy, = H*Us 6 = m(s — D)sS{H*m>af + H(m* + 1)(m*s + s+ 1),
= (m? + 1)%(s> = Dy(y + 12) } mod ro,
HUs, = HU; ¢ = —m*(m* 4 1)(s — 1)sSpn,1 mod ry,
HU; 5 = HUs g = m*(m* +1)(s — 1)sSB(HS?f — (sS* + 1)y,
— (s8* = 1)n,)1 mod 1y,
H?Us 4 = H*Ug 4 = —m?(m® + 1)(s — 1)*s(s + 1)5,752 mod ry,
H?Uys 4 = H*Ug 4 = m{H>m?(s> — s + 1)S?F> + (m? + 1)*(s — 1),
x (—HS?f + (sS? + 1)y, + s8%1,)}1 mod ry,
H?Usy = H* Uy 4 = —(m* + 1) (s — 1)s{(s — gy (m* Ho. + (m* + 1)n,)
+m*S?HB(HP — (s + 1)(n; + 1,))}1 mod ro,
H*Us 4 = —2ms(HmSP — (m* + 1)(s — 1))
x (HmSP + (m* 4+ 1)(s — 1)y7,)1 mod ro,

where we put 1 = m2s>(s + 1)S(sS? + 1)°0f, and the other U; ;s are 0.
On the other hand, by the aid of Mathematica, we have

1 0
det ®(c—1) = det(tz”“pm(xb) - (0 | ))
_ mSHB +mSH*T*B — (m? + 1)(s — 1)i1T?n,
N mSHp

(s er? .
mS(sS? + 1) Hap"'

~ mSHB +mSH*T*S — (m* + 1)(s — 1)tT?n,
B mSHp '
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Consequently, we have

Zi,j Vi«,jtiTj
 Hm?2Sto(s — 12)(st2 — 1)B’

Al(mpm ([)

where
Voo =Vao="Veo=Vaa=Vsa=Vios=—Hm?sSB,
Voo = Vs.a = Hm*(s*> + 1)Sp,
Vao = Vs = mlm® + 1)sS{(s> = 1)(n, + 1) — Hsp},
Vso=Vsa= Hm(m2 + 1)sSp,
Voo = Vgo=m’s(s* — D,

Vio="V72= m(m?

+1)(s = Ds{(s+ Dy +712)
Vio = Ve = (s— )s{(m*+ )y, + Hna},
Vs = =2m(m* +1)(s — 1)sn,,

and the other V;;’s are 0. By the aid of Mathematica, the difference be-

tween the right hand side of (3) and the formula in Proposition 2 is equal
to

SZ_,/I +[627212Z:1 +I3C2 +SZ4C1 P
Hm?St3 (s + 1)(s—2)(se> = )~

where
& = m(m* 4 D)s(s + 1) (HS?B — s(S? — Dy — (sS% = D)yy),
(o = Hm*s(mo — ms*o + sp + S*B) — (s* — 1)(m?n, + m>s>n, + sy, + m*sn,).
Note that {; =0 by the definition of H, n, and #, and that
G=m{(m?*(s* —s+1) —s)(s’S? +1) — Hs(s — 1)}rp = 0.
This completes the proof of Proposition 2 for n > 2.
REMARK 3. For n <0, the knot group G(K,) is presented by
hyn-l1

m(E,) = <a,c| (acac™ = c(acac™ ") (ac) "¢

—n+1

= {a,c| (acac™) = ¢ Yac)(acac™") ey,
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Then, the twisted Alexander polynomial of K, is given by

0

0 0
9 tacac="" — L e ae) acac—N e
det@(aa(acac ) 3¢ (ac)(acac™)c )
AK,?./)m()*

det @(c — 1) ’

where

7 P ~1y,.-1
@(aa(acac ) 3¢ (ac)(acac™)c

—n

= > Ppufaxba(b) ™} ) {p, (1) + 20 Vp, (axb)} — 72" p,, (xb) )

i=0
—tp, ((xb) " axb) — "3p, ((xb) ' axbaxb).

By calculating the above formula in the same way as n > 2 and multiplying t*'~4,
we can obtain the formula of Proposition 2.
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