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The so-called “non-commutative theory”” of integration for rings of operators on
Hilbert spaces has been much developed by Segal [26] and Dixmier [9], indepen-
dently. The former’s theory is a theory of integrals (or traces) for certain (un-
bounded) “measurable operators”, analogous to measurable functions in the classical
theory of integrations over abstract measure spaces. His idea of the “measurable
operators’ originates from the works of Murray and v. Neumann ([ 18], Chap. 16)
for factors of type II, and of Dye [11] for finite rings. The latter’s theory is a
theory of integrals as linear forms. For both theories the rings may be assumed
to be semi-finite without loss of generality. A ring M of operators is called semi-
finite [15] provided every non-zero projection €M contains a non-zero finite projec-
tion €M. Let M and N be xisomorphic rings of operators, and let m and p be
regular gages of M and N respectively such that m and p correspond by means
of the above *.isomorphism. If we stand on the view-point of Dixmer [9]. the
measurable integrable operators with respect to m and g must correspond *-isomor-
phically. We show (Theorem 1) that if M is *-isomorphic with N by means of a .
mapping &, then ¢ is uniquely extended to a s*-isomorphic mapping between
measurable operators with respect to M and N. To develop the theory of Segal
[26] for a given ring M it seems, therefore, preferable to take an appropriate
ring N s*-isomorphic with M and to develop the theory for N instead of M and then
to transfer it to that for M, if such a process is more suitable. It is known that
every semifinite ring M is s*isomorphic with the left ring L. of an H-system H,
and the regular gage of M in question corresponds to the canonical gage 1 of H.
Left multiplication operators L,, x&€H form a Hilbert space when the inner product
<Ly L, > is defined by <L.,L,>=<x,y>. The set 2, of all L, is the set of
square integrable measurable operators with respect to p. Thus in H the square
integrable measurable operators are given a priori. We define that T'=L,-L, is

integrable with respect to p and define its integral u(T) by <L, L,»>. Let &, be
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the set of all 7. To prove that &; is the set of all measurable integrable operators
is reduced to the proof of the following: in H (a) strong and ulirastrong (=st-
rongest) topologies, (b) weak and ultraweak (=o-weak [15]) to‘pologies coincide
respectively (Theorem 3). This is an easy consequence of a theorem of Griffin
([15], Theorem 12). But we shall prove it by an elementary way somewhat similar
to Segal’s method of proof of a certain theorem on a commutative ring [25]. As
its consequence, the Radon-Nikodym theorem and Lebesgue monotone convergence
theorem follow.

If M is commutative, then the above L is a masa (=maximal abelian self-
adjoint) algebra which is *-isomorphic with M. In this case the set H' of self-
adjoint elements of H is a vector lattice in which the lattice order is the usual
operator order. Finally we shall give a somewhal axiomatic definition of &; for a
general ring M and compare it with the AL-space of a vector lattice developed
previously by one of the present authors ([19] p. 86).

Some applications to the structure of L. are given in 3.

1. Measurable operators

1.1. Let M be a ring of operators on a Hilbert space § of arbitrary dimensions.
We shall always assume that M contains the identity operator I on $. M, and
M, respectivly, stand for the set of projections and that of unitary operators in
M. Let m be an ideal of M generated by a certain set of finite projections € M.
Any projection €M is then finite since the ideal mi, geﬁerated 'by all finite projec-
" tions €M contains only finite projections.

Derinirion 1.1, (ef. [26], Def. 2.1). A linear set © in § is said to be strongly
M—dense provided (a) U'D CO for every U'e€ M'y; (b) there exists a sequence of
projections P,€M such that P,HCO,P,L | 0 and P,-€m. An operator TyM is
called essentially wm-restrictedly measurable if T has a strongly ni-dense domain and a
closed extension. Moreover if 7 is closed, 7' is called m—resirictedly measurable. In
case 1 ="n1ly, we shall say simply that D is strongly dense, T is essentially measurable or
T is measurable as the case may be. ‘

Lemma 1.1. Let T be a closed densely defined operator nM, Then :

(1) T is m-restrictedly measurable if and. only if so is |T|;

(i) Let T>>0 and let TZSdeEA be its spectral resolution. T is M-restrictedly
0

measurable if only if Ex--(=I—E,)em for a positive \.

Proor. (i) is evident since 7" and |T'| have the same domain. The “if’’ part
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of (ii) is clear. Let T7>>0 be m-restrictedly measurable. Then there exists a
projection PEM such that TP is bounded and PL&m. Let ||TP] <Xe. We show
that PN Eyg-=0. If the contrary holds, there exits a non-zero x € § with PNE\jx=x.
[|T«|| = || TPx|| < No||x||, while ||Tx| = TE\{|>>Xo||%||. This is a contradiction. Since
for every projection Q.REM, Q—QNR~QUR—-R [17], we have E,j-=FE.+—Pn
E\} ~PUE,}-—P<P-em, as desired. '

Segal [26] proved that if S and T are essentially measurable and agree on a
strongly dense domain, then they have identical closures. Next is its slight general-
ization.

Lemva 1.2.  If two essentially Wi—restrictedly measurable operators S and T agree on a

dense domain, then they have identical closures.

Proor.. With no loss of generality, we may assume that S and 7 are M-restr-
ictedly measurable. The set ©={x; Tx=Sx} is obviously invariant under every
U'e My, and is dense in §. Let T, be the restriction of S and T on ©. TD>7T,
implies 7% CT,*. As T* is m-restrictedly measurable, as proved below, so is To*
by the very definition of measurability. It follows, from the result of Segal above
mentioned, that 7*=7,* and hence T=T,**. By symmetry S=7,**, and we have
T=S, as desired.

From Lemma 1.1. if T is m-restrictedly measurable, then so are T*T, |T|*

(a>>0). We show that T is m—restrictedly measurable if so is 7. Let T=W|T

be the polar decomposition of 7, where W is a partially isometric operator €M

with the closure of the range of |T'| as the initial set and with the closure of
the range of 7" as the final set. Let WIW*=E and let | T| f:g MNdE,, | T*| :SdeFA
Y 0

be the spectral resolutions of [7'| and |T*| respectively. |7%|=W|T|W* yields
F.=WEW*+E! (\>0). Hence F\-=WE,LW*. This implies by Lemma 1.1 that
|T*| is m-resirictedly measurable. It is clear that the intersection of a finite
number of sirongly m-dense domains is so also.  After Segal we define the
strong sum S47 and strong product S- 1" of two M-restrictedly measurable operators
S and 7. S+ 7 and S+ T are the closures of S+ 7" and ST respectively. (cf. [26],
Def. 2.2). But in case of our mi-restrictedly measurable operators, S+1 is seen to
be essentially m-restrictedly measurable from the above. That ST is so also, follows
from a modification of a proof given in [26], and details are omitted.- Hence in
our case S+ T and S+ 7T are M-restrictedly measurable. Thus we have the

Lemma 1.3, The set of all W~restrictedly measurable operators forms a *—algebra with
respect to the .strong sum S+ T and product S+ T, the scalar multiplication (except that
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0. T=0) and adjunction.

We remark that the two measurable self-adjoint operators S, T are commutative
(§+T=T-9) if and only if every two projections in their spectral resolutions com-
mute (This is usually a definition of commutativity of two self-adjpint operators on
). The “if” part is well known. Let S and T commute, and if we put V=S4T,
then V*V'=VV* will follow and therefore F*is normal. From this we obtain the

statement of the “‘only if” part.

1.2. A projection PE Mp is called countably decomposable if each set of mutually
orthogonal non-zero projections in PMP is at most countable. In the sequel only
three types of ideals M are concerned: (a) o is the. ideal of M generated by all
finite projections € M; (b) m,; is the ideal of all finite countably decomposdble
projections € M; (c) M, is an ideal of M generated by the metrically finite projec-
tions with respect to a regular gage. In the last case we assume that M is semi-
finits. A ring M is called semi-finite [15] if every non-zero projection €M contains
a non-zero finite projection € M. Clearly oD nt; DMy Lot d(P) be a dimension
function on Mp in a certain sense of Segal [26]. He proved that if we let
{P,, i3 $j=1,2,3,--} be an indexed family of projections € 11y such that for each
i, d(P;, )10 (pointwise except for a non dense set) as j}oo, then there exists a
subsequence {j(@)} of the integers such that >3;2:d(P;, i) < oo (pointwise except for
a non-dense set). In particular, if P; ;}0 for each i as j{oo, then there exists a
subsequence {j(@)} of the integers such that \U,Z, P; ;;y€M; and |0 as nfoo.
For m=mnt,, if we use a regular gage instead of a dimension function, we get a
corresponding result. Segal’s discussion is concerned with the case when the center
M* of M is countably decomposable, but it holds as well for the modified statement
above mentioned, since a countable number of countably decomposable finite projec-
tions €M is contained in a center which is countably decomposable in M.

Segal exposed a convergence discussion by the following definition ([26], Def.
2.3). A sequence {T,} of measurable operators is said to converge nearly everywhere
(n.e.) to a measurable operator T, if for every positive & there exists a sequence
{P.} of projections, such that 1,3 P, 10 as nteo and [[(T,=T)P,| <& (n=1,2,3,--).
In case M is a factor of Type IIl, a measurable operator is nothing but an element
of M, and n.e. convergence in this sense means 7,=T (n=1,2,3, ---). This shows
that the uniform convergence does not necessarily imply the n.e. convergence. On
account of this unsuitableness, we shall give the following improved

Dermvition 1.2. Let {T,} be a sequence of Mi-restrictedly measurable operators
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n M. {T.} is said to converge W-nearly everywhere (M—-n.e.) to a measurable operator
T if for every positive number & there exists a sequence of projections P, € M
(n>>n.) such that ||[(T—=T,)P,)|<& P,Ll0 as ntoo and P, lcm. If m=m, we
shall omit “m—7.

It will turn out from the discussion below that T is necessarily M-restrictedly
measurable. Segal [26] proved that T is unique for an n.e. convergent sequence
{T.}.

Levma 1.4, Let {T,,} be a sequence of Wi-restrictedly measurable operators nM. A
necessary and sufficient condition for {T.} to converge M-n.e. to a measurable operator nM
is that, for erery positive >0, there exists a sequence of projeciions P,€M (n>n.) such
that |[(Tn=T)P,||<& for m>n>n. and P,-| 0, P,Lcm.

Proor. That the condition is necessary is evident. For the sufficiency proof
we only consider the casves m=m, and m=mnt;. For the case m=1Mm,, it is treated
in much the same way as in the case m=11,. First consider the case m=1n,.

Write 7.=n; and P,=P when €=7c17. We may assume that n;foo as kfoo,

and that
1) Q=2 Piltem, V2, P00 as ntoo.
We use the symbol D to denote the domain of operator 7. The intersection

O=nDOr, is strongly nt;—dense [26]. By definition there exists a sequence of
projections E,€M such that E,CD, E 0 and E,L€m,. Put

(2) Qn: N k:1 Pifa)x(n, ) f\En- (QI :Q)‘
Then Q, =\, PEL 1) VE,L]0 as ntoo, since U7, PR ny 40 and E, L]0
as nteo. Evidently Q,-€m,. We obtain

3 (T, =T)0.] < ]%;f for every p>>qg=>max(n,n).

Let £, be the set-theoretical union of {Q.D}. Then L, is strongly m,—dense. (3)

‘shows that {T',} is a Cauchy sequence on each Q.9 in the uniform topology. Hence we

have an operator 7% M with domain 2y such that [[(T—7,)Q,[| << %5 for g—>max(n,n,).
For any positive number €>>0, we take k=£(E) so large that —]12—<5. Then wé have

4) (T—TNQ.|| <& for n>>nue, Quti0, and Q,-€m,.

If we can show that 7 has a closed extension 7, then 7 will be m;-restrictedly

‘measurable and {7,} converges mi-n.e. to 7. The proof will follow from the
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following lemma (we take m=nt).

Levwia 1.5, If {T.} satisfies the condition of the preceding lemma, then every sub-
sequence of {T,*} has a subsequence satisfying a condition of the same type.

Proor. It suffices to prove that {7,*} has a subsequence stated in this lemma.
We use the notation in the proof of the preceding lemma. Let 0*=NDr,* which
is strongly ut;—-dense.  There exists a sequence of projections F,EM such that
FHCO* FAl0 and F,lem,. Put

e =Fu DN (T =Tu}) ' (Qu®) for I>k.

Then L, =Fd 9V (T} —T.5) 7 (Qu DI By a result of Segal ([26], Lemma 3.1)
we have d(Pgt) <d(Ful) + 2d(Q.f). We select a subsequence {n;} such that
SV d(Fuh)<eo, 33 d(Quf;) < oo except for a non-dense set. Let

(5) ' gn:ni:n[gkii-],ki] and anpi)n'
Then G,L€m,, G, |0 as ntoo. It follows from (3) that ”(Tnki,F]_Tnki)Qni”<#.

Then we obtain H(Tni,-ﬁu,—T,i“ki)ng—kl_—zHx” for every x€G,9 for i>>n ((26], the
proof of Theorem 9). Hence

) [T, =Tk Gl <3m )y for j=1,
which shows that {7T.},} satisfies the condition of the preceding lemma. The proof
is completed.

We return to the proof of Lemma 1.4. By making use of Lemma 1.5 and
the result so far obtained in the proof of Lemma 1.4, we can infer that there
may exist a subsequence {75} of {T.*} converging pointwise to an operator 7’ in
a strongly m,—dense domain D,*. Let x€D,, y € Lo* be chosen arbitrarily. Then
LT pu, yp=<x, Tpky), which yields (Tx,y)=<x, T"y). This implies that 7* has a
dense domain, so that, T has a closed extension 7, as desired. It is noted that 7T
is m;-restrictedly measurable.

We show that ||[(T—=T,)P./ <& [(T.—T,) (P.nQ,)||<é& for m>n. Let mtoo
in this inequality, then we have (T—T.)(P.nQ,)||<& Since P,—P,NQ,~P,UQ,
—Qp by [17] and P,VQ,—Q,<<Q,L]0 as ptoo, we can easily obtain the desired

inequality.

Next we turn to the case m=mt,. Let {Q.} be a maximal orthogonal family

of projections € M', each of which is countably decomposable in M. For each Q,,
consider the sequence {7,,.}, where 7,,,=T7,Q.. Put P, ,=P,UQL. Then (T, —T,.)
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P,.=(T,=T,Q.,P, and thérefore T, =T, ) P,,.|| <& for m>n, P,L,J;=P,LLQL$0 as
nteo and P €m, T,, is evidently mi-restrictedly measurable. We can apply
the result for m=m, to {7,.}. Let 7. be the limit of {7, } in the m,-n.e. con-
vergence. Then [[(T,—T,,.) QP <& Let T be the closed operator such that
7Q,=T.. Evidently T.Q.-=0, so that the existence of 7 is proved in a usual way.
It is easy to see that /9M and [[(T=—T,)P,| <& Therefore T is the n.e. limit of
{T.}. The proof of Lemma 1.4 is completed.

From (3) in this proof we can incidentally read off the following

Lemma 1.6, Let {T.} be a sequence of W—restrictedly (where M =11, or M) measurable
operators converging M-n. e., and {&;} be a sequence of positive numbers decreasing to 0.
Then there exists a sequence of projeciions {Qi}, Qi-€m, Q0 as ktoo, and an in-
creasing sequence of positive integers {ni}, such that [[(Tn—T.) Q] < E-k for every
m>n_>ny.

Remark. At this juncture we shall point out the following fact which will be
used later. If {7,} be a sequence of uniformly bounded m-resirictedly (where
n=1ty, My or Ing) measurable operators converging M-n. e. in the star sense to an
m-restrictedly measurable operator 7, then T is bounded and 7,—T strongly.
This follows easily from Lemma 1.6 if m=u1; or M, As for the case m=nt, we
decompose M into direct summands by the family of projections {Q.} used in the
last part of the proof of Lemma 1.4, and the problem can be reduced to *the case
m=m,; on each direct summand MQ.,.

Lemma 1.4 together with Lemma 1.5 shows that if a sequence {7} of m,-
restrictedly measurable operators converges nt;-n.e. to a measurable operator T,
then T is necessarily m;-restrictedly measurable and {7,.*} converges m,-n.e. to T*
in the star sense. This is also proved by Segal [26].

Let {T.} be a sequence of n;-restrictedly measurable operators converging ;-
ne. to 0, Then [T.P,[< 1 for nny PAY0 and Plem,. Let M=P$H N
I.*"Y(P.D). Let E, be a projection on the closure of IM,. Then d(E,L)<d(P,-)+
2d(P,1)=3d(P,~). And we can find a subsequence {p.} of the integers, such that
ULEemy and U2, EL 0 as ntoo. Tt is easy to see T EE,. | <|T},Pp,|| and there-
fore ||TpnTrt Epnll <
that {T,T,*} converges nt;-n.e. to O in the star sense. Similarly {7,*7T.} converges
m;-n.e. to O in the star sense. Segal [26] proved that if {7.} is a sequence of

1m,-restrictedly measurable operators 7 M converging 1;—n. e. to a measurable operator

T, Pp,|I%. Thus {Tp,Tri} converges m;-n. e. to 0. From this we see
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TnM and S is an wt;-restrictedly measurable operator, then {S- 7.} and {T,- S}
converges M;-n.e. to S+7 and TS in the star sense respectively.

Lemua 1.7. Let {S.} and {T.} be sequences of Wu—restrictedly measurable operators
converging My-n.e. to S and T in the star sense respectively, then so does {S. - T.} to S+ T.

Proor. Since S+ T=—p—{(S*+ 1)+ (* + T) = (S*=T)* - (S*=T) =i (S*+i1)* -
(S*+iT)+i(S*—iT)* - (S*=iT)}, it is sufficient to prove the lemma under the
assumption S=T* T *T,—T*T=(T*=T1) - (T=T)+T,*- T+ 7T*-T,—2T*T.
This equation yields that {T,,*T,,} converges fit;—n. e. to T*T in fhe star sense. But
(Sa=T.") + (S*=T.) =8, 8. + T, * To= (S, » T+ T," - $,*) and (S, +iT.*) « (S,* —iT.)
=88+ T.*T,—i(S,* T,—T,*+S,*). The first of these equations shows that
{S. - T.+T.*+S.* converges Wi;—n.e. to 2T*T in the star sense and the second
one shows that {S,- 7,—7,*-S,*} converges u,—n.e. to O in the star sense. There-
fore{ S, T.} converges N;—n.e. to T*T in the star sense. The proof is completed.

The discussions so far given hold also for m=ut,. Hence Lemma 1.7 is true
for m=mt,. Therefore if nt=nt;, or M, the algebra of m-restrictedly measurable
operators is a topological algebra with respect to the star topology. Let m=nt or
;. Then we have the following

Lemma 1.8.  If @ sequence {T.} of mi-measurable operaters nM com‘erges.'m—n. e. 1o
0 in the star sense, then so does {|7T,|}.

Proor. From the above discussion {7,*T,} converges 1-n.e. to zero in the
star sence. Therefore any subsequence of {T,*T,} contains a subsequence converging
m-n.e. to 0. Let it be denoted by {7.57,.}. For any given positive & there
exists a sequence of projections P,EM (n>>n.) such that |T,5T,.P.|<&, Plem
and P, {0. Let x be an arbitrary element of P,§. ||| Tm|x]?= < T Ty, x>
Tk Tpux ||x]] < &lx]|%. Hence || |T,.|P,/I<{& The proof is completed.

» 1.3. Let N be a ring of operators on a Hilbert space . Suppose that
there exists a *-isomorphic mapping 6(4) from M onto NN (¢ is bi-continuous in
the ultrastrong (= strongest = ultrafort [9]) and ultraweak (= o—weak = ultrafaible
[15], [9D top’ologies»[9]). Let 11 be the ideal of N corresponding to m under 6,
that is, n=60(m). Let ¢ and 3 be the *algebras of all ni-and 1t-resirictedly
measurable operators respectively. We shall show that @ can be uﬁiquely extended
to a *-isomorphic mapping from .% onto 7. When this is once done, we see that
0 will preserve the convergence character, since the Definition 1.2 is concerned only
with the algebraic property of M (note that *-isomorphism preserveé norms). The fact
that there is a unique extension of ¢ will be important for our theory of integra-

tion for operators, because our point of view is that the theory is first developed
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for a certain ring N x-isomorphic with M and then we transfer it to the theory
for M through the extended *-isomorphism.

Tueozem 1. Let M and N be x-isomorphic rings of operators by a mapping 0. 0
can be uniquely extended to a x-isomorphic mapping from H onto J).

Proor. We prove the theorem for m=my, and m=m,. For, the case m=11,
is treated along the same line as in the case m=m;. First we shall consider the
case Mm=m,. Let T be any element of .  There exists a sequence {4,} of
operators € M converging N;-n.e. to 7. For example, let T=W|T| be the polar

decomposition of T, let le‘——SdeE,\ be the spectral resolution of |7'|, and put
0

A, = WSnXdEM then it is clear that {4,} converges M;—a.e. to 7. A *-isomorphism
’ 0

6 preserves norms. The criterion for m-n.e. convergence gi\}en in Lemma 1.4 is
concerned only with the operators € M.  Therefore {0(4,)} converges 0(in,)-n. e.
to a 6(m;)-restrictedly measurable operator which we shall denote by 6(7). 6(7) is
independent of the particular sequence {4,}, because if {4,} is another sequence
with the same property as {4,}, then {4.—4,} converges m;-n.e. to 0 and then
{6(4,)—6(4,)} converges 6(in1)-n.e. to 0. {4,*} contains a subsequence converging
nt;-n. e. to 7%, so that we obtain &(T)*=@6(T*). It is clear that the mapping 0 is
linear and one-to-one. From Lemma 1.7 we see that (S« 7T)=8@(S) - 8(T). Therefore

0 is a *-isomerphism. Uniqueness is evident, and details are omitted. -

Next consider the case m=mu,. Let the mapping 6(7) be defined in the
same manner as before. Only points for us to make clear are the following :
O(T*)=0(T)* and 6(S-T)=0(S)-0(T). Let {Q.} be a maximal orthogonal system
of central projections € M' each of which is countably decomposable in M*. From
the proof of Lemma 1.4, {4,Q.} converges ny-n.e. to TQ, if {4,} converges n.e.
to T. Hence 0(TQ,)=6(T)0(Q.). Since TQ. is nn-restrictedly measurable,
A(T*6(Q)=0(T*Q.)=6(TQ)*=0(T)*6(Q.). This equation holds for every Q, and {6(Q,)}
is also a maximal orthogonal system of central projections. Hence O(T*)=6(T)*.

In like manner it is easy to see that O(ST)=6(S)0(T). The proof is completed.
Corortary 1.1. (| T[*)=|6(T)|* (@>0) for every measurable TnM.

Proor. First suppose that 77>0. Let T:S AdE, be the spectral resolution
0

~

of . Put F\=0(E,). Then {F,} is a resolution of identity. Put A,l:ykdE)\.
A

Then ()(An)i::Sn AdF, and 8(4,%)= an“dF}\. It follows from the manner of extension
0 0
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of 6 that 0(T)=Sw7\dF>\ and 0(T‘”)=Sw7\“dF,\. Therefore 6(7*)=60(T)*. The general
0 °

case follows easily from the above. O(|T|*)=0(|T|*® =0(T*T)> ={6(T)*0(T)} *=
|6(T)|*. The proof is completed.

The theorem is wellknown when M is commutative ((26], Lemma 15.1).

1.4. Dermvition 1.3. A linear set € of measurable operators M is called an
invariant linear system of M if T€ L implies UT, TUE & for every U€E My.

Let £ be an invariant linear system. Let K be a self-adjoint operator €M

such that 0 <K <{T. Then U=K+i(I—K2)%EMU and 2K=U+U* Hence K- &,
LKL As every operator AEM is expressed as a linear combination of such
K, we see that 4-8, 84CL for every A€M. Let T and S be measurable oper-
ators such that 0<{S<(T and T€¥. Following Dixmier [9], we show SE ¥ as

1
follows. It is easy to see that the domain DT% of 7% is contained in the domain

1 1
Dsi of S% and [|S%x||<[|T*x| for every x€ DT%‘ Let C be an operator such that

1
2

1 1
Cy=_S8%x for y=T"x and zero for any y&|[range of 7°]1. We denote by the same

C the closed linear extension of C. Then C€M and S%ZC- T%. And in turn
S=C-TC*€Q We can also show that 7€Q implies 7% |[T|€&  For let
T=W|T| be the polar decomposition of 7, then |T|=W*T€ ¥ and T*=|T|W*c .
Let &* stand for the set of positive operators € L. Every operator € ¥ is expressed

as a linear combination of operators € &*.

It follows from the above discussion that the set £* has the following properties :

(a) if T€ Q" and UE My, then UTU*€ &*;

(b) if T€eQ* and 0<S<T, then SE€&*, S being a measurable operator ;

(c) if S, T€¥*, theu S+Te€ " .

Conversely let £ be any set of positive measurable operators satisfying the
conditions (a), (b) and (c). Then &% is an ¥* of an invariant linear system £
determined as the set of linear combinations of elements of £*. This is also shown
by the method of proof due to Dixmier [7] for an ideal. The main idea of the
proof is that we let £ denote the set of all >3, T;+S¥*, where T; and S; are
measurable and T - T#,S;-S* € 8*. The details are omitted.

Derinvition 1.4, (cf. [8] Def. 2). Let £ be an invariant linear system of M.
The power L*(a>0) is defined as the invariant linear system generated by all
T® such that T€ Q. l
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Let 7 and S be positive m-restricted measurable operators and T=S N E,,
0

S*—*{ AdF, be their spectral resolutions respectively. If we put G,=FE,NF,, then
JO

Gt=E,-UF,-em for sufficiently large A by Lemma 1.1 and G, |0 as Afoo.

We define T’ \/Szgw)»dGA, which is also positive and m-restrictedly measurable. We

0

note that if P and ( are projections €M, then P\/Q coincides with the usual one
(PUQ). We write TS [8] if Ex>>F, for every positive A>0. 7« S implies

T* 8" for every a>0. Since we can write T‘”:SwE:\L%d?\ and S"‘=SmF}\L&dX. It
0 1}

is clear from the definition of 7V/S that 7, S€ TVVS. Assume that & satisfies the

conditions :

(n It TZSNXdEAEQ" and S=SN)»dF,\__>_0 are measurable opertors such
0 -

0

that Fy\1<E,l for every positive A, then S&&".
(L) I T, S€&*, then TVTE Q.

These conditions are always satisfied if £ CM ([8], Lemma 7 and 8). By using
(€)1 and (£): we can show after Dixmier [8] that the set {7%; 7€ £*} satisfies
the conditions (a), (b) and (¢). (a) is evident. Let Th, To€ &* and S* 1"+ 13", S
being a positive measurable operator. Put T'=T\VT,€&*. Then T\*+T,* <27T".

= 1 o
Let S=S AdF, and 2"T=S AdE, be the spectral resolutions respectively. Then

0 0
E,\f\F)\J‘:O is eaSily Veriﬁed- FAJ‘:F)\‘L_F)\J‘QE)\’VF)\’LUE,\‘"‘E)\SE,\‘L [17].
Therefore by (£); we have S€ &*. Hence (b) and (c) are satisfied.
We note that if @ satisfies (€); and (), then so do all the other £*(a>0).

1 1
For if 7€ ¥** and S satisfy the hypothesis of (<);, then so do 7 €& and S”.

1
Therefore S* € &%, that is, SE€8% T*VS*=(TV S)® shows that &% satisfies (<)..

We state the following theorem for the powers of 8, corresponding to that of

the powers of ideals due to Dixmier [8].

Tucorem 2. Let & be an invariant linear system of M satisfying the conditions ()1
and (&)s.  Then,

(i) (L*)P=L", Q7. P=1""F «, >0;

(ii) if an &% is an algebra for some >0 then so are all the other £P.

Proor. (i): The proof is modelled after that given by Dixmier [8] for the

1
case € CM. Let T be any positive element of (8%)%, then 7% €¢*" and therefore
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T"%ES that is, 7€ 2*®*. .The converse is also true. Therefore (2*)*=8%%. Let
7€ 8% and T P*. We show that T, T.€ 88 [8]. Let. T'=T,VVT>. Then
T2 <T%, T, <T% therefore Ty*=Cy-T* and TF=Cy-T% for some Ci, C;€M.
T« TE=T"+ (T.°5)*=C, - T***C,*€ &*** Therefore 8- CL**A.  Conversely let
TP (8**3*, Then T€ Q" and T*F=T*.T%, T*cQ*, TP %, and therefore
T**Bc @®. L% Hence L%+ L=, ‘

(ii) That L% is an algebra is the same as €D £* and therefore £D ¢%  From
this we ohtain €*> €% for every 8>>0. The proof is completed.

We note that if an £ is composed of m-restrictedly measurable operators, then
so are all the other ¥f,

Lemma 1.9, Let & stand for the linear space composed of the self-adjoint operators

r

€ an invariant linear system &. If &' is a veztor lattice by the ordering of operators,

then & is commutative.
Proor. The lemma follows immsdiately from a result of Sherman [27] or of
Kadison [16]. But it seems that the following direct proof has some interest. We

have only to show that any two projections E, FEX are commutative. We show

1
first that ENF is a projection. Let EF\F:S AdG, be the spectral resolution of
. o

1 . 1
EnF. Tt follows from (ENnF)* <{E, F [22] that (EUF)* <ENF, and therefore

1 1 1 1 1 1
S A dGy g( AG,. On the other hand g A dG, 2S MG, since )»%27\ for 0<A<{1.
0 JO Jo 0

Hence (Ef\F)%zEf‘\F, that is, ENF is a projection. As ¥’ is assumed io be a
vector lattice, EVF—F=E—ENF. Since the right side of the equation and F
are projections, so is EUF. Put E»’ZE-—Ef\F and FF=F—FENF, then E'+F'=
EUF—ENnF=EUF. This means that E'+F" is a projection, and therefore
E'F’=0, that is, (E—ENF) (F—ENF)=0. This yields EF=ENF. By symmetry
we have EF=FE, as desired.

4

2. Integrals with respect to a canonical gage.

2.1. Segal [26] has developed a theory of non-commutative exiension of
integration for the measurable operators associated with a ring of operators on a
Hilbert space. Theorem 1 shows that a s#-isomorphism between two rings of
operators has a unique *-isomorphic extension between measurable operators. There-
fore in order to develop such a theory it does mot matter how to choose any one

of #.isomorphic rings. For his theory the singular part of a ring plays no essential
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role, and therefore we assume, otherwise stated, that rings are semi-finite [15]. A
semi-finite ring is *-isomorphic with a left ring of a Hilbert system (H-system),
which we shall take as a basic ring for our development of Segal’s theory of inte-

gration for operators.

Let A be a unitary algebra [14]: A is a *-algebra and a pre-Hilbert space with
the inner product <a, ) satisfying the following conditions :

(a) <a,ap=<a* a*> for every a€ A;

(b) <ab,c)=<b,a*c) for every a,b,cEA;

, (c) the mapping b—>ab is continuous for every fixed a€ A ;

(d) A? is dense in A.

Generally A is not a Hilbert space. If A is a Hilbert space, then A becomes
an H*.algebra of Ambrose [1], taking the norm multiplied by an appropriate

positive number as its new norm. In this case we say that A is essentially an H*-
algebra.

The completion H of a unitary algebra A is equivalent to an H.system [2].
For any x€H, x*, xa, ax are defined by continuity. Let L, denote the operator
a—>xa (@€ A) and we define L,‘;(L;*)*. Likewise we define R,. L,y is defined if
and only if R,x is defined. Then L,y=R,x will be denoted by xy. The left ring
L. of an H-system H is the ring of operators on H generated by L,(a€ A). Similarly
the right ring R is defined. The operation J:x—x* is a conjugation of H and
R=JLJ. . and R are commutants of each other [10], [13], [14], [26]. By mak-
ing use of this fact R. Pallu de la Barriere [24] proved that L, *=L and
R.*=R.». x€H is called bounded if L. (equivalently R,) is bounded. The set B
of bounded elements of H becomes a x-algebra called bounded algebra of H. We
denote by Ly the set {L,;x€B}. Lg is an ideal of L and is dense in L. in the
strong topology. Any projection PE Ly is of the form L, with 2 self-adjoint idem-
potent e. We write x>0 if L,>0. V

Lewma 2.1, Let {e.} be a maximal orthogonal system of self-adjoint idempotents. Then

O H=>@QeH=3,@OHe,;

(i) Put pA)=>],{de,e) for ACL*. Then $(A)is a faithful, essential, normal,
pseudotrace of L. The maximal ideal associated with ¢ is L.

(iii)  ¢(A4) is independent of the particular choice of {e}.

(iv) If we put W(P)=¢(P) for PELp, then p(P)=|le|l> or + oo acccording as
P=L, for some e or not (j is a canonical gage of H in » certain sense of Segal [26]).

Proor. (i): Each eH is the range of projection P,=L.. eH_|eH for e e,
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If I%=\U,.P, we can find a non-zero projection P=L, such that P<I—\ P, and
therefore {e,} will not be maximal. This is a contradiction.  Similarly we have
H=>},@®He,. We note that for any x€H, x=>).e,x=>},xe, and [|z]|*=>] [l¢, x|
=23 lxe™ '
(ii)': That ¢ is linear, normal and positive is clear. Let ¢(4)=0 for some
A>>0. Then Ae, =0, and therefore A(e,x)=A(R.e)=(Ae)x=0. Owing to x=2>],¢. %,
A must be 0, that is, ¢ is faithful. Let A=L,» for some x€B*. Then ¢(4)=
S lLae, e =>].<xe, xe>=|x||>, while for any UE€ Ly, ¢p(UAU*)=>},<UL.U",
UL, U*e>=>){UU’ x)é, iUU’x)eL> = |[UU?x||*=]|x||* where U’=JUJ. Therefore
H(A)=pUAU*) for any A€ Lg*. Hence by normality of ¢ we have $(A)=pUAU*)
for any A€ L*. If ¢(4)==0, then we can take an L, such that 0<x€B* and
L.:<<A. Then ¢(L,2)=|x[* is positive and finite. ~That is, ¢ is essential. The
first part of (ii) is proved. To see the last part it suffices to show that if ¢(4)
is finite for A€ L.* then A€ L}, Put xtzA%Q. Then x, € He, and H(4)=>],|x|[%

1
and therefore there exists an x € H such that xe,=x. A%¢,=xe. It is easy to see

that A*=L, with x€B", that is A€ L.

(iii). For any choice of {e}, ¢(4)=|x||* for A=L,-€ L}. Hence by normality,
< is unique.

(iv) P€Lj is equivalent to PE Lg. Hence (iv) follows from the last part of
- (ii). The proof is completed. )

Since I. has a faithful, essential, normal pseudo-trace ¢, L is semi-finite, and )
is known [7] that ¢ is uniquely determined by .

Derinition 2.1, ¢ in Lemma 2.1 is called the canonical pseudo-trace of H.

To make clear the independence of {(4) of the particular choice of {e}, we

give another expression of ¢(A). .

Lowwa 2.2, Lt AzrxdE,\ be the spectral resolution of A€ L*.  Then $(4)=
0

S : pEL)dh=— S: Nd (B, L),

Proor. Let I be the bound of A. Let {\;} be 0< A< y< < Aps1 =1
AZ=>050 (Bys—Ey). The set {30\ (Basa—Ey,)} is a directed set converging
uniformly to 4. Hence by normality of ¢, ¢(4)=lim DN p(Er41—E,,)=1lim DI\,

M= B ==\ 2By = v
0 0

CoroLrary. Let A=g NE), be the spectral resolution of A€L*. In order that
o .
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A€ Ly it is necessary and sufficient that Sw;uJ(E;/LX Ydrn= —S Ndu(EL) < oo. In this case
0 0

the integral equals ||z, where A=L,, x€ B, ’
Proor. A€ L} is equivalent to A’€ L3, and therefore to that (A%< oo,
Hence the statement of the lemma is true by the preceding two lemmas.

Here we note that x€ B* is approximated by >3;Z;\e; as nearly as we want,

where \;>>0 and e; are orthogonal self-adjoint idempotents. Let A:L’“:S M E,

¢

be the spectral resolution of L,. Since lim[/E\lx—x[=0, we may assume E;lx=x
A0
for some 8>0. Let C,\ZS —)l;dEA for A>0 then E,t=C,L,=L,., therefore C,x is a
A

self-adjoint idempotent. e,. Using. the notation of the proof of Lemma 2.2 and letting
M=8, {DV:ZiNi(Exs1— Ex)esy converges to Aes. Lieg=AL,=AELl=A=L,.
Ligr; e~ Enpes=Enis1 — Erxi=Lep;~en;4.-  Therefore x is approximated by 33,2 \(e

—eii4,) A4S near as we want.

2.2. A projection P is called metrically finite [26] if u(P)<+oco. Such a
projection is evidently countably decomposable and the ideal m generated by all
metrically finite projections is of type m, of 1.2. - We shall use the terms “u—
restrictedly measurable” and ““p-—nearly everywhere” according to the cases. It is wellknown
that m is dense in L in the strong topology (it is the restricted ideal of the
maximal ideal associated with ¢ [7]). Let £; be the set {L.; x€H}. Let us
introduce an inner product {L., L,>=<x,y), then £, is a Hilbert space isometric
with H. The element of ¥, is called square integrable with respect to .

Lemma 2.3. (i) L, is p-restrictedly measurable.

(i) X is an invariant linear system of L.

(iti) LeNL=Lg. Therefore a projection PE L is metrically finite if and only if
PEL,. |

Proor. (i): Let L,=W/|L,| be the polar decomposition of L,. |L.|=W*L,=
Ly+, [24]. By Lemma 1.1 we have only to show that L., x>>0 is p-restrictedly

measurable. Lst Lx:Sm)dE,\ be the spectral resolution of L.. Put A:Sw% dE,,
0 . Js
8>0. Then A€ L and AL,C Ly, and therefore L+ L, A=E;L, that is Lnyx=
E;te L. This implies Ax€ Lg. By Lemma 2.1, Esl is metrically finite. Lemma
1.1 shows that L, is p-restrictedly measurable.
(ii) : That ¥ is linear is evident. Let U€ Ly, U-I,=UL,CLy,. Since UL,

and Ly, are measurable, we obtain U+ L,=L;, €& LU=U*-Lx)*c*=2,.
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(iii) follows from the definition of Lpg.
Now we show that &, satisfies the conditions (<), and (/<)2 stated in 1.4. To

this end the following lemma is needed
Lemma 2.4. Le T:-SO)\dEA be the spectral resolution of a positive measurable oper-
ator TnL. T€EZL; if and only if —S:deu(E)\J—)———S: w(ELDdAN is finite.  In this case
< 1=\ wEL . ‘
Proor. First assume that 7€ &%, that is, =L, with some x€H*. Lg,,=
E)\T=S:>\dE,\ being bounded, Ex€B* and HE)‘x”2=—S:)\,2d/.b(E,\-L) by Cor. of

Lemma 2.2. Exx—x as A} eo. Hence ||x]]*=— Smxzd,b(E,%) :S w(B)dN <+ oo,
0

BV

A
Now we shall show the converse. E,T is bounded and —S Ndu(E\L)< +oco. Then
0
A
by the same Cor., we can write E\T=Lsx,, where x, € B* and ||x,[*= —g Ndu(E\-b).
0
N
For ¥ >A>0, ||xy —x,]?= ——S Ndu(E\L) since  Lay, -, =Lxy,=—ILx, = (E,, —E\) T=
A

A7 0 A7
S ME, €Lg. — g Ndu(E\+)< + oo implies that — S Mdp(Ey-)—0 as M >A—>00,
A ¢ A

v

and therefore there exists x € H such that x,—>x as A—>oo. That x,=FE,x,  for
N >N implies.xy =E,x. Then E\T=Lx,=Lg,x=E,-Lx for every x>>0. This implies
T=L,. The proof is completed.

Let T:S' ME, € 8,5 and S“—‘S MF, be a positive measurable operator. If
0 .

0

F\-<E. - for every A>0. Then u(Fy-) <u(E,L) and therefore rl"“(Ff/x)dx< + oo,
0

which implies S€ ¥;*. Hence ¥, satisfies ()i- Next assume that SEL,".  Let

Gr=E\NF,, then u(G) = p(E-U F) < p(EL) + p(Fi-) and therefore§ p(GL)IN< + oo,
This means that T\ Se€ &,*. &, satisfies (€),. ’

We define £,=23" for «>0. €, also satisfies the condition (<);, and (<)..
Each T€ &, is expressed by L.+ L, or more generally by >3, /L, - L,,.

Lemma 2.5. 23,71 Ly, Ly, =0 implies 33,7, {y;, 2 >=0.

Proor. Let © be the intersection of the domains of L,,-L,;, and L,(i=1,2,---,m).
O is strongly jp—dense, and therefore there exists a sequence of projections P,€ L
such that P,HCD, P, is metrically finite and P~ | 0. Since P, is a least upper

bound of metrically finite projections, we can take a maximal orthogonal system
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{e.} of self-adjoint idempotenis such that eHCD. 33,7 {y;, x*>=>7, {y.e, x:*e.)
=31, L, * Lye,e0=>3. {3);L.;* Lye., e)=0. The proof is completed.
Derinirion 2.2, WD) =232y, x*) for T=33;"L,; + L,; is called the integral
of T. |
Lemma 2.5 shows that x(T) is independent of the particular expression of 7.
If T is a projection PE€ L., then (P) coincides with the old one. And if 7' L%,
then w(T)=T). It follows from Lemma 2.4 that a positive measurable .operator

oo 1 S
T:S ME, is an element of £, if and only if T%€¥,, that is, S i ED)dN< + o0,
o 0

In this case ,A<T)=S°°,L(EAL)dx= ——wadﬂ(E,\—J~).
[¢] 0 N

We remark that ¥; is an H-system isomorphic with H by the mapping x—L..
This follows from the facts that (1) if xy is defined and equals z, then L.-L,=L,,
and (2) if L.+ L, equals L., then xy is defined and equals z. To prove (1) let ©
be the intersection of domains L, and O1,-1,, D is strongly p—dense. For
any u€ D, we have L.+ Lu=x(yu) and Lu=(xy)u. It follows from a result of
Ambrose [2] that x{yu)=(xy)u. Since measurable operators L,-L, and L, agree
on a strongly p—dense domain ©, we must have L,=L,-L,. Now we show (2).
Let a be any element of 4. (z,ap=<a* z*)={La*, (Li+L,)">=p(L»+L,+L,)=
(Lgry + L) ={a*x, y*)={x, ay*). Hene xy is defined and equals z. Ambrose [2]
defined T to be commutative if so is its bounded algebra. It is easy to see that this

definition is cquivalent to say that £, is commutative.

Lewma 2.6.  The integral 1 has the following properties ;

(i)  p s linear.

() p(T=wuT).

(iii) w(T)=>0 for T>0. The equality holds if al;(l only if T=0.

(iv) For every A€ L, (A+L,+L)=p(L,+ A+ L)=p(L.+ L, A)y={Ax, y*). In
particular p(A-T)=p(T'4).

™) Lub. [p(dD)] =p(| T]).
4] =1

(vi) For a fixed T, p(A+T)=>0 for every A€ L* if and only if T>0.

(vii) L., L,>0 imply p(L,-L,)=0.

Proor. (i)—(iii) are evident. .

() ¢ A LoDy = g L) =y ()=, 3= Ly A L) = (L 4)- L)
=u(L,+L,+A). Since any T is of the form L.+ L,, we have u(4+T)=pu(TA).

(v): Let T=W|T| be the polar decomposition of T. u(W*T)=pu(|T|)=¢(|T]).
On the other hand, let |T|=LZ, x€H*, then |[p(A-T)|=|pA-W L, L)|=
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[{AWx, x)| || AWx| ||l <|lx|[*=$(|T]).
1
(vi): p(A+T)>>0 for every A>>0 if T>>0, since u(A-T)=p(4%-T+ 4%) and
A%-T-A%}_O. Conversely assume that u(4-7T)=0 for every A>0. p(4-T)=

w(T* « A)y=pu(A +T*). Since any element of L. is a linear combination of positive

ones, it follows from (v) that T=T*k. Let T=r ME, be the spectral resolution of

0 0
T. ,,,(S NE) = 1 (B T) > 0, whileg

ME, <0. Therefore from (iii) we have

0
g A\dE,=0 that is, 77>0.

(vit) (L, Ly)=<x, y). Let Lyzgfn?ndE)\‘ be the spectral resolution of L,.
(1—Eo)y=y and (E,—EL)y—>y as n-—»OOf) (E,—E1)y is approximated by an expres-
sion D);®iN\e€, A; >0, as .near as we want, where & is a self-adjoint idempotent.
oy DN =2\, e;>=>\;{we;, ¢,>>>0. Hence <{x,y>>0. This completes the
proof. _

Lemma 2.7. If T>>8>0 for T,S<€ &y, then T%ZS%.

' 1L 1 (e ’
Proor. Suppose the contrary. Let Sz—T”:S ME, be the spectral resolution

of SS=T%  Then for some A>8>0, (Bx—E) (S'—=T%)>8(E,—Ey)>0. Pt
E=FE,—FE;, then E=L, for some ¢€B. Then by (vii) of the above lemma,
pESE=TY) (S TH) > 8u(L, - (SS4T7)) =0, while on the other hand u(E(SE —7%)
(S 1) = p B (S=1)) + (B8 TH) = (Bo1E S = (B (S=T) 4 p(7H E-S)
—u(ST-E-T?) and W(T?-E-S) is conjugate to u(SE-E-T?), and thereforep(E(SE —71)
(S 1Y) = (B~ (S=T)) <0. Hence j(Lo(ST+T%)=0, that is, E-(ST4+75)E=0,
This implies that E-S*E=—E-T*E and therefore E-S®E=—E-T*E=0. Using
these equalities, we have E+(S*—=77%)=E-(S* =THE= E.S*E— ET*E—0, and
therefore E=0, since E+(S®—=T%)>>8E. This is a contradiction. The proof is
completed.

Added in proof. This lemma is a special case of a theorem due to F. Heinz,
Math. Ann. 123 (1951), p. 425, Satz 2. Cf. also [22].

2.3. Now we are ready to show that in the left ring I. of a Hilbert system,
(a) ultraweak and weak topologies, and (b) ultrastrong and strong topologies coin-
cide respectively. The following theorem is wellknown [15]. But it would seem

that much interest lies in the method of proof given here.
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Tueorem 3. Let I be the left ring of e Hilbert system. Then
(a) uwltraweak and weak topologies of L. coincide ;
(b) ultrastrong and strong topologies of L. coincide.

Let @(A) be any linear functional continuous in the weak (equivalently strong, ultraweak
or ultrastrong) topology, then @(A) is of the form {Ax,y) and if moreover @ is positive
we can write D(A)=Ax, %).

Proor. Let {x,} be any sequence of elements of H such that >}|x]|><co.
We can write >);% L.+ LY =L}, for some y,€ H'. |y.[[*=>4 )2  For
m>n, L2, >L2 and therefore L,,>>L,, by Lemma 2.7. Therefore [ly.—y./*=
[ymll® + yall® = <Yms Y2 = YsYm? KNyl + [yall = yall* = yull*=1ymll* = [|ya]* since
Yy = 1¥all?={Ym = ¥20=>0. Hence ||yn— .l <10 ]2 ]P0 as m>n— oo,
that is, {y.} converges to an element x€ H. 33,2 {Aw;, 2:>=2>3;"1w(A4 - L,;+ L,})=
WA+ L2)={Ayu yo). Therefore >3,2,{Ax,, x,)=<{Ax,x). From this equation we
see that (a) and (b) hold.

If @(A) is continuous in the weak topology, we can write @(A4)=>1;2, {(Ax;, y;>
for some x;,y: (i=1,2,:--,n). Let T'=L,-Lx=>)"L,-L,* Then &)=
{ Ax, y>:;z‘('A-T). If @(A4) is positive for every A>>0, then 7>0 and therefore
we can write T=LZ for some x€H", that is @#(4)=<{A4x,x)>. This completes the
proof. '

We shall consider some consequences of this theorem.

For every T€Q, we define||T|;=p(|T[). Then | [, has the norm property
by Lemma 2.6 (v) since [p(AT)| is a pseudo-norm and w(|T|)=0 implies T=0.
We show that &, is complete with respect to this norm, thal is, &, is a Banach
space.

Cororiary 3.1.  Let @ be any lincar functional on L. continuous in the ultraweak
topology (=normal), [9], then there exists a TE & such that P(A)=p(A+T) for every
A€l And

(1) T is uniquely determined by @.

(ii) @ is positive linear if and only if T2>0.

(iii) @ is central if and only if T€ L

Proor. By Theorem 3 we can write &(4)={dx,y>=p(A+L,+Ly)=u(d-T)
for every A€ L, where x,y€H and T=L,- L€ ¥ (i) follows from Lemma 2.6
(v). (ii) follows from (iii) of the same lemma. @ is called central if @(AR)=®(BA)
for every 4, B€L. This condition is written as u(4-(B+T=TB))=0 for every
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A,B€L. By Lemma 2.6 (vi) this condition is equivalent to that B+«7T=TB for
every BE L, that is, T€ L.

Dixmier [9] proved the following theorem: “Let M be a ring of operators and
denote by M the Banach space of all normal linear functionals @. If we
identify A4 with the continuous functional {4, #>={®@, A>==0(A4) then M is the
conjugate space of My”. Therefore (i) of the above Corollary shows that £, is
complete with respect to || [l1, that is, &; is a Banach space. Theorem of Dixmier

just stated shows that [[4 =L u.b. |®#(A+T)| and L is the conjugate space of ¥;.
' IT) <
By this reason we write L=g,.

Cororrary 3.2. Let {T.} bc « monotone increasing sequence of posittive operators € 1.

‘There exists a TEX™ such that T, <T and nlim w(Tw)=(T) if and only if lim u(T,) < +co.
00 n—oo

In this case T is the 1. u. b. of {T,} and is the p—n. e. star convergence limit of {T,}.

Proor. If lim w(T,)= + oo, there exists no T stated above. We assume
that lim (7)< +oo. Let T,=L% ,y.€cH'. We define L2 =12 —I2

¥n Yn~—1
Yo=0. Then T, =L} =>1." L, and, p(T,)=|ly.[[*=>3:21 |x:[*> From the proof of
Theorem 3, {y.} converges to some yEH and limp(d-7T,)={Ay,y)=p(4-7T)

n—-co

where

where T'=L]. For every A€ L, w(d-T,)=(A-T). This implies, by Lemnma 2.6
(vi), T,<<T. If we let A=I, we have lim u(7,)=u(T). Such T is unique. For

n—-0o0

otherwise, let 7’ be such that 7,<<T’ and lim (T.)=p(T’). Then |[|T'=T, =

n—-oo

(T =T,)—0. Thus 7" is the limit of {T',} with respect to || |l;. Thus 7 is unique.
That 7 is the L u.b. of {T,} is clear from the discussion just given above. To
show that {7} star converges p-n.e. to T, it suffices to show that there exists a
sequence of integers n; such that {Ta;} converges pg-n.e. to 7. To this end it
suffices to show under the conditions HT-===T,LHl2-4ln' that {T,} converges z—n.e. to

T. Let T-—:T,,-_—_S ME{” be the spectral resolution of T=T,. 7}:1—,1@;;;;);(

0

2-» n o0
Sz_(m)#(li&"u)d)ngg (EPD) dy=||T="T,|, _<_% Therefore p(E'P-L) < 2,}_] . Put
. : JO ! on”
Po= A2 ES. Then PA=U % ED " and p(P,0) gzk:@,}jziﬂlﬁ. Therefore

P,~10 and P,/-€m.. H(T'“Tn)PnHS“le (n=1,2,3,). Thus {T,} converges s-
n. e. to 7.
The method of proof used in this lemma is applied to show that if a'sequence

{T.} of elements of £, converges to T with respect to the norm || [/}, then {7}
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converges pu-n.e. in the star sense to 7. The details are omitted.

Cororrary 3.3. Let 0T, <To< -+ be a sequence of elements of ¥y such that
{IT,'} is bounded. Then there exists the l.u.b. T of {T.}, IT.—Tl|s—>0 as n—>oo,

and T is the p-n.e. star convergence limit of {T.}.

Proor. {T.} is a Cauchy sequence in £, In fact, for m>n, [|T,=T,l.,"=

1 Tnll2* = {Toms Tap =Ty Tup+ | Tulle <[ Tolla* = | Tull2” since {Tu T) =Ty Ty 2| Tl 2”

by Lemma 2.6. hm;'T |2 exists and is finite. This-implies that lim |7, —T.,[l;=0.
n,m—>oo

Let 7= lim T,. For any S€ &, {§,T=T,)=1im (S,7T,—7,>>>0. Hence T>T,
m— 00

n->00
(n=1,2,83,--). Let T; be any measurable operator such that T>T,>T, (n=
1,2,3,--). Then To€ &, and || To—T.[s*<||[T=T,||.> by Lemma 2.6.  Therefore
we have T,=7. The last part of the statement of this corollary follows by the same

reasoning as in Cor. 3.2, and details are omitted. The proof is completed.
Let T be any positive measurable operator and let T=Sm,\dE)\ be the spectral re-
0

solution of T. Define ,u(T)=l w b. p(S)=1.u.b. w(A). w(T) is finite if and only
Se&*, ST Acme*, AT

if 7€ %,"; and then we have w/(T)=u(T). The “if” part is evident. Now we
A

show. the “only if” part. E,\T=S ME €L, w(ET) < 1/(T)< + oo. Then
B 4]

wW(E\T)=¢(E\T)< 4o and therefore E,T€Lj by Lemma 2.1. Then {E, T} is a
monotone increasing sequence of elements of &, and lim pu(E\T) < (T)< +oo. {E,T}

n—o0
converges p-n.e. to I. Then by Cor. 3.2, 7€ €;. Thus &," consists of measurable
operators 7" such that /(7)< + oo,

Let @ be any linear functional of I continuous in the ultraweak topology. @
is uniquely expressed as @=@;+i®,, where @ and @, are of real type. With
regard to @ of real type we have the following

Lemva 2.8. Let @ be a linear functional on 1. of real type continuous in the ulira-
~ weak topology. @ can be expressed uniquely as a difference of two functionals of positive
type @, and D such that P=@,—@_, |@|=||D.||+||P_]|.
0

Proor. @(A)=p(A-T), where T is self-adjoint. Let T’ :erE,\, T = —S \dE,,
0

co

- where T:S ME, is the spectral resolution of 7. Put @,(A)=p(4-T,), O_(A)=

w(AT.). Then @=@,—@. and |@||=p(|T|)=p(Ts)+(T-)=|D,| +|l@-]l. Next
we show the uniqueness of such representation. Let @=7,—¥,, where ¥, and ¥,

are of positive type. F(A)=u(4:S), ToA)=p(A-S;) where $;,S.€2;". Let
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31=Sw7»dF,\ and Sz=r>»d6)\ be the spectral resolutions of S; and S, respectively.
0 JO

DB = (T2) = 1By 80) — wlB* + S2) B+ 81) < (S1)= (171, and therefore |2.|
<||#,]| similarly ||@_|| <[/7,||. Hencs if we require that ||@||=|¥|+|[|7.| then
we have p(Eyl+S))=u(S;) and therefore FEy+S,+E;=0. Therefore E,+S;=0. This
is equivalent to Fol <E,L. Similarly Gy <E,.. Then @, (A)=u(A-T,)=u(A-Ey"--T)
=0(AEy" ) = p(AEy-+S1) — (AEy-+ Sp) = (A +S,) =¥1(A). Similarly @_(4)=¥»(A). The

proof is completed.

2.4. Some applications to the structure of the left ring L of an H-system H
are given here. An element x€H is called central if xa=aa holds for every a €B,
that is, L,gL' A central element x is also characterized by the property :
{x,aby={x,bay for every a,b€B. Let H' stand for the set of central elements of
H. It is clear that H" is a closed linear manifold of H, since ax and xa are
continuous functions of x for each fixed a. Let x* denote the projection of x on
H'. Let K, be the convex closure of {UU’x; U€ LU}. By an ergodic theorem of
G. Birkhoff [3], x" is just the unique element common to K, and H', or the element

" is approximated by forms

of K, whose norm is minimum (cf. [3], [12]). «
SlnmaU;U7x as close as we want, where U, € Ly, a;>>0 and Dla;=1. It follows
then from this remark that if x>>y>>0, then {x'a, a)>>{y'a,ay>>0 for every «€ B,
that is, ' >>y">>0. For cvery B=L,, x€ B, we define, after Godement [13], B'=1L,:.
It is easy to see [13] that x'€B and [B'|<{||B|l. B—>B" has the following

properties (cf. [4], [13]):

(a) if B€ LgnL¥, then B'=B;

(b) B—B" is a positive linear mapping from Ly to L';
(¢) (AB)*=(BA)" for every A€ L and BE Ly;

(d) if A€ LY, then (AB)'=AB" for every BE Lg;

(¢) B—B' is normal ;

(f) ||B¥| <|B]| for every BE L.

(a), (b) and (f) are clear from the above. To prove (c) it suffices to show that
(UBU*)'=B" for every UE Ly. This is evident from the defining property of x'.
(d) follows from AUU’x=UU’Ax. There remains only to show (e). Let {Bs} be a
directed set CLg with B as its L. u.b. Put B=I, and B;=L,,. From Lemma 2.6
(vii) we have |xs| <[l=]. li;n {x5,ab) = li;n {xsb*, ap= li;n {Bsb*, a)=<Bb*, a)=

<{x,ab). Since B’ is dense in H, it follows that lim (x;, z>=<(x, z> for every z€H.
5
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Then lim {x;'a, a>= lim (x5, (aa*)">=<x, (aa*)">=<{a", aa*>={x"a,ap. This means
5 3

that B—>B" is normal. Next we show that B—B' is determined by (a)-(e). To this
end let B—>B" be another mapping with (a)-(e). For any B=L,€ Lg, there exists
a sequence {D);" o,U;U;’ x} converging to x'. {3171 a;U;L.U*} converges to B!
in the weak topology. By Theorem 3 the weak and the ultraweak topologies
coincide. Therefore from a theorem of Dixmier ({9], Cor. 1 of Theorem 3) it follows
that (O3, U; BU*)" converges to B' in tha wak topology. Sinc: (3JaU;BU; *)V=
BY, therefore BY=B"' (note that (f) follows from other properties). B —B' is
uniquely extended to a nmormal application §: A—>A" of L to IL* [7], since (f) holds.
It is clear from the manner of extension that [[4'|<(||4| for every A€ L. We
shall say that A—A4" is the canonical application § of H. It is a normal application
§ with B'=B for BE LgN L', and is faithful if and only if so is B—B"
for BELy [7]. We show that I'L and (J-I')L are finite and properly infinite
respectively. €, D€ L' imply C'D'=(C'D)'=(CD)""=(CD)", since B" = B"
holds for every B € Iz and therefore A"™=A"' holds for every A€L. This
implies that if P is a central projection € L*, then P' is also central and P'<P.
Put I;=1I' and I,=I-I". Restriction of A—>A" to L;=ILL has the property that
if A€ L, is ceniral, then A"=4 sincs A'=(46L)'=AI,*=A. Therefore L, is finite
“[4]. Let Q, and Q. be c2ntral projectons such that Q1 +Q.=1, QL is finite and
QL. is properly infinite. Iix'=I'x"=(Ix)'=x" and Q;>>/. Hence Q.L contains no
non-zero element of LaNL" Take the canonical application § of QL. and extend
it to a normal application § of L in such a way that 4"=0 for 4 € Q,L. This
is also a mnormal application § with the property that B'=B for B € Ly L.
From the uniqueness of such application it follows that ;=0;. Next we show that
ITH=[LH"']. Let P.=PrLH}". It is easy 1o see that P, is central and P,<CI,. In
the above discussion if we take Q,=P;, then we see from the same reason that

I;=P,. Thus we have the following theorem due essentially to Godement [13].
Tueorem 4. Let L be the left ring of an H-system M. Then L is semi-finite and
() L is finite if and only iy H=[LH'], or x—x" for x€B (or H) is fuithful
in the sense that x>0 and x"=0 imply x=0.
(i) L is properly infinite if and only if H'=0.
Remark.  We can also prove this theorem along a similar line as Godement

[13] by using the fact that a normal trace @ of L is expressed as @(4)=<Axx>

for some x€ H™. (the correspondence @—>x is one-to-one. This follows from Cor.

1
3.1 (iii) by putting L,=T"%). The details are omitted.
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L is finite if H has the unit. This follows from (i). It is easy to see that L.
is a finite factor if and only if H has the unit and H' is of one-dimension. These
are all proved by Godement [13].

Turorem 5. Let L. be the left ring of an H-system H. Then the following conditions
(1)-(iv) are equivalent:

G Lisan algebra;‘

(i) L is an algebra:

(iii) H is essentially an H*-algebra ;

(iv) There exists a positive unmber 8 such that ||e]| =8 for every non-zero self-adjoint
idemptent e€ H.  And if any of these conditions is satisfied, then L is a direct sum of
(generally uncountable number of) factors of type L.

Proor. (i) and (ii) are evident from Theorem 2. Owing to the remark
given in 2.2, €, and H are isomorphic and therefore (ii) and (iii) are equivalent.

If (iii) holds, there exists a positive number & such that [[xy|| <k||x|/||y] for every

%,y €H, and therefore Heﬂz% for every non-zero slef-adjoint element e of H,

that is, (iii) implies (iv). We note that the bound of L. is L u.b. %I” For, -if
. ex=0

% 2
We.letg ME), be the spectral resolution of L.x-L,., then ‘IIH;‘Z’HL > for L.=E,1-%0.
. JO :

If (iv) holds, then Lllﬁlu g% and therefore L, is bounded, that is, (iv) implies (ii).

There remains to show that last statement of our theorem. In an H™algebra every
non-zero self-adjont idempotent contains a primitive one e that is, eHe=(complex
field) xe ([1], [17]). This means that L, is a primitive abelian projection [17].
Then L. is a direct sum of factors of type I. The proof is completed.

Cororrary 5.1. L is a factor of type I if and only if H is simple and consists of

bounded elements.

Proor. The “if”” part is evident from the preceding theorem. As remarked
later in 3.5, if L. is a factor of type I, then every measurable operator is bounded
and therefore H consists of bounded elements. For any closed ideal I of H, the
projection P with the range I is a central projection €L, and therefore P=0 or
I, that is, I={0} or H. The proof is completed.

Godement (cf. [13] Chap. II, II) gave another characterization for I to be a
factor of type I: L. is a factor of type I if and only if H is *-isomorphic with the
algebra of operators of Hilbert-Schmidt-type on a Hilbert space. We remark that

this follows from Cor. 5.1 and the structure theorem of Ambrose [1].
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Cororrary 5.2, In order that every measurable opzrator € L is bounded if is necessary
and sufficient that L is a direct sum of finite number of factors of type L

Proor. The “if” part is evident sincz in a factor of type I every measurable
operator is bounded. If every measprable operator 7L is bounded, the ¥, is an
algebra, and therefore I, is a direct sum of factors of type I from the precsding
theorem. The number of thess factors is finite, for otherwiss, we can construct an
unbounded measurable operator nl.. The proof is completed.

Corxorrary 5.3. The following conditions are equivalent :

iy =%,

(i) L is finite-dimensional ;

(i) M is finite-dimensional.

Proor. It is evident that (ii) and (iii) are equivalent and imply (i). If (i)
holds, ¥; C¥; implies that £, is is an algebra, and therefore L is a direct sum
of factors of type I from Theorem 5. Unless each of these factor is finite-dimens-
ional and the numbsr of these faclors is finite, we can construct an element of
Q; but not in &;. Therefore L is finite-dimensional. The proof is completed.

We have shown (Lemma 1.9) that an invariant linear system ¥ is commutative
if the set & of self-adjoint operators of ¥ is a vector lattice by the ordering of
- operators. The converse is evidently true. Owing to this fact, the following statements

are equivalent :
(a) any of 21% or . is commutative ;
(b) any of 21%/ or L/ is a vector lattice.
In particular, it follows from the isomorphism between £, and H that H is com-

mutative if and only if H’ is a vector lattice.

3. Integrals with respect to a regular gage.

3.1. Let M be a semifinite ring of operators on a Hilbert space 9, and let
m be a regular gage of M [26]: (a) m is a non-negative valued function defined
on Mp; (b) m(P)=0 if and only if P=0; (c¢) m(P+Q)=m(P)+m(Q) if P+Q&Mp;
(d) m(P)=m(UPU*) for every.UE My; (e) m is countably additive; (f) if-
m(P)= + co, there exists Q such that 0<<Q<{P and m(Q)< +co. It is shown [7]
that m is a restriction on Mp of a uniquely determined faithful, essential, normal
pseudo-trace yr, and vice versa. Let a be the maximal ideal associated with +,
that is, the set of A€M with (| 4|)< +oco. r is extended to a faithful normal
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trace of a [7]. For any two B,CEaq, we define (B, C)>=+(C*B). It is easy to see
that a becomes a unitary algebra with inner product {(B,C). Its completion H is
an H-system as stated in 2.1. For any A€M, the mapping a >B—>4B is continu-
ous since {AB, AB)<_||A||*B, B> holds. This mapping is uniquely extended to an
operator #(4) on H. Let I be the left ring of H. It is easy to see that 9(4)€ L,
and that 6 is a *-isomorphic normal mapping. By a theorem of Dixmier [9], 6(M)
is a ring of operators on H. And it coincides with L since it contains all 6(B),
Bea. Let {E} be a maximal orthogonal system of projections €a. Then it is
clear that I='J.E,. Dixmier [8] proved that J/(4)=>] (E AE,) for A€ M", and
therefore Y(4)=>).<{AE,E)>. I we put $(0(4)=+(4) for A€M, ¢ is the
canonical pseudo-trace of H (Lemma 2.1 and Def. 2.1). Let B be the bounded
algebra of H. By Lemma 2.1 we see that 6(a) is the maximal ideal associated
with ¢, and that 6(@)=L3 That is, 6(a>)=La. If we put u(6(P))=n(P), then
is the canonical gage of H. This shows that M is *-isomorphic with the left ring
L of H by means of the mapping 6 and the regular gage m corresponds to the
canonical gage p. It follows from Theorem 1 that 6 is uniquely extended to a-
*-jsomorphism & between measurable operators with respect’ to M and L. The
theory of integrals with respect to the canonical gage i developed in the precsding
section is mow translated into the theory of integrals with respect to the regular

gage m. This will be carried out in the sequel.

3.2. Let m be a regular gage of a semi-finite ring M of operators on a Hilbert
space £, and let 6, u have the same meaning as described in 3.1. Let . be the
set of all measurable operators 7M. For every T& *, we put

1) m(T) = Lu b. ¥ (4).

Aza*, AT
From the the discussions given in 2.3, m(T)=u(@(T)) and, if we let L,;, denote the
set of all T such that m(|7])<+oo, then O(L;)=%; the set of all integrable

measurable operators 7L with respect to u, and therefore m is uniquely extended

to a linear functional on L.

Dermvition 3.1. A measurable operator 7 is said to be integrable with respect to
m if m (|T]|)<+4oo. Let L, stand for the set of all integrable operators 7M,
and let m be the extended linear functional on L, as described above. m(1") is

called the integral of 7€ L, with respect to the gage m.

From lemmas given in 2, we have the following theorem.

Tucoren 6. Let Ly be the set of integrable measurable operators M. Then L is
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an invariant linear system of M satisfying the conditions (L)1 and (K)2.  And the follow-

ing statements hold.

(i) Li is a Banach space with norm ||T|i=m(|T|), a is dense in L, and has
the following properties :

(a) if Th, To€LT, then [|[TvToli=T1)1+ T2

(b) if 0T <Ty<---, and {lIT,|\} is bounded, then there exists the 1.u.b.
TeLl of {T.} and lim|[T—=T,[;—>0. {T.} converges m—n.e. to T in the star sense;

(ii) the integral m is a positive linear functional on L., with the following properties :

() m(T*)=m(T);

(b) m(T)>0 for TEL!. The equality holds if and only if T=0;

() m(4-T)=m(TA) foo- AEM and T€L,. If AeM., T€L?, then m(A-T)>0;

(b) For a fixed T, m(A-T)>0 for every AEM* if and only if TEL} ;

(e) For a fixed A, m(A-T)>0 for every TELY if and only if A€ M*;

(i) [|[Th= L ub. [m(4-T)], and ||All= 1. u.b. |m(4-T)|.
I4|<1, AeM ITh<1,Tel,

(iv) @r(A)=m(A-T) is a linear normal functional defined on M, and conversely

every normal linear functional @ is an @7, T€L,. M is a conjugate space of La.

(v) A positive measurable operator T:SdeE,\ is integrable if and only if
. 0

S” m(Ex--)dN< +oo.  Then this value equals the integrals of T.
0

(vi) If lim [|[T,=T}1=0, then {T.} converges m-n.e. to T in the star sense.

00

Segal [26] cited (i), (b) the Lebesgue convergence theorem and the second part
of the first statement of (iv) the Radon-Nikodym theorem. We remark that the
Radon-Nikodym theorem of Dye [11] follows from that of Segal.

Cororrary. Let M be a semi-finite ring of operators cn a Hilbert space. Let @ and
¥ be positive normal linear functionals such that @(P)=0, PEM, implies ¥(P)=0. Le
0o be the canonical representation of M defined by @ and < , >¢ denote the inner produci
of the representation space o. Then ¥(A) is represenied as ¥(A) ={0s(A)z, z)s for
some z € He.

Proor. We may assume without loss of generality that M is a left ring L. of
an H.system. We use the notations in 2. We may write @(4)={4x, x), and
¥(A)y={Ay,y> where x,y are positive elements of H. @(P)=0 is equivalent to
Px=0, and in turn to P’x=0. This implies P/[Lx]=0. Put P/=P{rLal}-. Then
since Z(P)=0 and therefore by the same reason as the above P/y=0. It follows
that y€[Lx]. By a theorem of Murray and v. Neumann (BT-Theorem called by
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Dye {11, [16]), y=BTx where BE L. and T is a closed operator nL. We may take
T>>0. Let T:SNMZE)\ be the spectral resolution of I" and put T,L:Sn NE,. || Tx—
0 0

Tx||—>0 as n—>oco. Since @(B*A)=<{4, B)o=<{Ax, Bx), there exists u€ £y such that
{u—Twu—Too—>0. It follows therefore ¥(A)={0s(A)z, z)q, where z =Bu. The
proof is completed.

In the above corollary, if M is finite, then y is written as y=Tx since B-T
is a closed measurable operator L. Let T=W]|T| be its polar decomposition.
And consider the spectral resolution SdeE,\ of |T| and put [Tf,ngn)»dEA and
T,=W|T|., A{T.} converges m-n.e. 0to T. It is easy to see that GT(A):nLiorg
D(T,*AT,) which is defined as @&(T*-A-T) [11].

Derinirion 3.2. A measurable operator T7M is called square-integrable with
respect to the gage m if T*T€L,. Let L, be the set of all square-integrable
operators. For any two S,T€L, we defme {S,T)=m(T*-S) and HTH2=m.(T*T)%.

It is clear from the discussions giver in 2 that @(Ly)=%. Therefore we
have the following theorem.

Tueorem 7. L is an invariant linear system of M satisfying the conditions (), and
(L2, and Li=Ly. Ly has the following properties : , -

(i) Ly is an H-system with inner product {S,T)=m(T*+S). The bounded algebra
of Ly is a%;

(i) (a) <S,T>>0 for S,T€L3,

(b) if <S,T>>0 for every TE Ly*, then S>>0,
(¢) if S:T*=0, then |[SHT|>=|S|>+ ||T|ls%

(A i |SIZITL, then [[SI<T{T1,

@ |Tla=U-TUs for every UMy,

) |m(S-T)| <m(|S-T|) <[ S]lal T2

() 14-T)a< [ 4] T} for ASM and TE Ly

(iif) Let 0T, <T><_-- be a sequence of elements of Ly such that {||T.|s} is
bounded. Then there exists the L.u.b. T of {T.} and ||T,=T|2>0 as n—roo. {T.}
converges m-n. e. to T in the star sense ;

(iv) if |T.=T3—>0 as n—>oo, then {T.} converges m-n.e. to T in the star sense;

(v)  Let T be a positive measurable operator nM.  Let T ZS:kdE;\ be the spectral
resolution of T. Then TE€ L, if and only if S:’7Z<E»"X)dx< 400 and ||T2° equals this

value.
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Cororiery. If T is a measurable operator such that T-S€ L, for every S€ L3,
then T € Ly.

Proor. Let T=W|T| be the polar decomposition of 7. Since |7T'|-S=W*T-Sc L,
for every S€ L, we may assume without loss of generality that 77>>0. Let 7=

S ME, be the spectral resolution of T. E,l is metrically finite for A>0. For
0

otherwise, E)l is metrically infinite for some o> 0 and we can write Ei;=>31,P,
where P, are metrically finite projections. We can choose a sequence {P.,} such

that >3,m(P.,)= +oco. Let {a,} be an arbitrary sequence of positive numbers such

o

that 3t m(P)< +0. Put S=31,0,Pu Clearly SEL{. Put A=S Lpem

A0

Then S=E\-S=A-T-SE€L,, and therefore 3),a,m(P.)< +oco. Since ,m(P.)=
1 1
{a.m(P.,)*}m(P.,)?, we can conclude that >).m(P.,)< +co, a contradiction. Let

S“——‘S @(\)dE, such tha? *r1¢(7h)[2(lm(E)\L)< + oo, where @(\) is a Baire funct-
0 Jo

ion of . T-Szgmk(p(h)dE,\ € L, This implies lgmhrp ) dm (Ey1)| < + oo,
0 0
It follows from a classical result concerning square-integrable functions that

'~S Mdm(Ey-y<oo. Hence TS€L,. The proof is completed.
JO

Similarly we can show that if T is a measurable operator such that 7-S€L,,
for every S€ L}, then T€ M.

3.3. We give some remarks on ‘“normed” operators. An operator A is called
normed ({19], [14]) if A€ LonM. Let M be a semi-finite ring of operator with a
regular gage m. I a sequence of normed operators 7, with bounded uniform norms
con'&erges to T in L, then, by the remark after Lemma 1.6, T is a normed operator
and {7,} converges sirongly to 7. If the converse of this statement holds, that is,
strong convergence entails Ly-convergence for every sequence of normed operators
with bounded uniform norms, then m(I)<<4oo.  To prove this, write I=>1.F
where E, are metrically finite projections. For any sequence {¢;} from {¢}, {}jj’iIELj}
converges strongly to >1;2, E;. Hence >1;7,E;€XL,nM and 2>;I, m(ELj) =
m(21;Z1E )< +oo. Tt follows from this that m(E.)>0 for atmost countable ¢ and
therefore m(I)<< 4-oco.  Conversely, let m(I)< + oo, then strong convergence entails
L,-convergence for every sequence of normed operators T, with bounded uniform norms.
We may assume that M is a left ring L. of an H.system, since two topologiés,
ultrastrong and strong, have the same effect on the sequential convergence. Then

(A, By=<{AI BI> for any operators 4, BEM. If {T,} converges strongly to T, then
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{T,—=T, T,—T>—>0 as n—>co. The proof is completed.
These facts are remarked by Dixmier [9] on a topological stand point, but the

method of our proof is different. See also [19], p. 106—.

3.4. Derinimion 3.3. A measurable operator T#M is said to be p” power
integrable with respect to m if |T|?€L;. Let L,(1<p< +co) stand for the set
_of p™ power integrable operators 7M. The L,norm of T€L, is defined as

m(lTl")% and designated by [[T]/,. If p=+oo, we shall identify M with L..
From this definition a measurable operator T belongs to L, (1 <p<+oo) if

and only if T is m-restrictedly measurable and —S AMdm(EvL) < + oo, where
0

kadE)\ is the spectral resolution of |T’|.

0

Lemma 3.1. (cf. [9]). Let %-{-%:1 where 1 <p, ¢<_-+oo. Then

i) m@S-T)=m(T-S) for SEL, and TE€L,. If furthermore S, T>0, then m(S-T)
=>0; and conversely, if m(S+T)>>0 for every T>0, then S_>0.
(ii) lm(TI'TZ"'”Tn)lgm(‘Tl'Tz'”"Tnl)g”T1”P1“T2”P2”'“Tn”pn for TiELPi

with 2:‘51 ; =1, Pizl (i:l, 2, ,71>

iii) [ISll,= Lu.b. |m(S:T)| for SEL, where the 1. u. b. is attained by some T
TELg, [Tl,<1 .

if 1<p<+oo;
(iv) L, is a normed linear space, and ||T|,=||T*||,=|U-T-U*|, for TEL, and
UeMy. |T),<||S||, for S, T€L, such that |T|<]|S]|.
W) mS- D)2 m(|S*|-[T)m(|S|-|T*]) <m(|S-T[)m(|T-S|) for SEL, and
TeL,

Proor. The lemma will be proved with necessary modifications along the
similar lines as Dixmier [9], and the details are omitted.

1_1

Lemma 3.2. Let T be an m—restrictedly measurable operator nM and %-{— p .

where 1<p, g, r<_+oo. If T-SE€L, for every SEL], then TEL,.

Proor. The proof will be carried out along the similar line as Cor. of Theorem
7 and the details are omitted.

Tueorem 8. L, is complete.

Proor. Let {7,} be any Cauchy sequence of elements of L,. It is easy to see

that {T,} converges m-n.e. in the star sense to an m-restrictedly measurable operator
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T. Let S be any element of L, with —};—i——}[:l, then by Lemma 3.1 [T, -S—

TS| <||Tw=T.l, IS]l;, which implies that {7,-S} converges m-n.e. in the star
sense to IS and ||T,-S—T-S
shows that 7€ L,  Let & be any given positive number. Choose n; such that
| Tn—T.|[, <& for every m>n_>n.. If ||S||,<1, then H(T—-Tn)-Sng"}_i)rgo (T =

[i—0 as n—oo since L, is conplete. Lemma 3.2

T.):S.li<<& Hence by Lemma 3.1 we have ||[T=T,,<<& for n>>n., that is,
lim ||7—T,[,=0. The proof is completed. »
-0

As Dixmier [9] did, we can show that L, is reflexive if 1<p<+oo. Using
this fact we show ;

Turorem 9. If 0T\ <To <+ is a sequence of elements of L, (1<p< +o0)
such that {||T,| ,} is bounded, then there exists the 1. w.b. T of {T.} and || T—T,|,—~0
as n—>o. And {T,} converges m—n.e. to T in the star sense.

Proor. It is sufficient to show the theorem for 1<p<{+woo. Let S be any

operator €L, with IIT%—‘;*:I. It follows from Lemma 3.1 that O=m(T,-S) <

m (Tn+l * S) g

is a linear combination of positive ones €L, {7,} converges weakly (=in the

topology o(L,, L,)) to T€L,, that is, m(T-S)znligol m(T,S). m(T-S)>mT,-S) for

[Twir|l ISl <<E|S|l; for some constant £>0. Since every operator €L,

every SEL}. Therefore T>T,(n=1,2,3,:©) by Lemma 3.1. For every &£>0
there exist non-negative numbers «;(j=1,2,--,m) with >J;7;a;=1 such that
(T=>3 Tl <8 0L T=T,<T=2>);"1;T; for every n=>m. This implies
that [|T—T.|, <[|T—> a;T;|,<<& for n>>m, that is, [|[T—7T,||,~0 as n—>oo. The
other parts of the theorem will be proved by the same way as in Cor. 3.2.

3.5. Let M be an arbitrary ring of operators. There exists a central projec-
tion Q such that QM is semifinite and Q-M is of type III (cf. [17]). Any
measurable operator 7Q--M is bounded since there exists no non-zero finite projec-
tion in a ring of type III. It follows from 2.4 that every measurable operator M
is bounded if and only if M is a direct sum of a ring of type Il and a finite
number of factors of type I. In the rest of this section we assume that M is a

semi-inite ring with a regular gage m.
Levma 3.3. Let 1 <<p<r<+-oo. The following conditions (1)-(iii) are equivalent :

(i) L,DOL;
(i) MNL,DMnNL,;
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(iii) M is finite and m(I)<+ oo,
Proor. (i)—(ii) is evident. (ii)—(iii): We may assume that r<+oo. Put
q:%. MANL,>MANL, is equivalent to MNAL, > MNAL?=MNL, (Theorem 2). We

can write /=2 E, where E, are metrically finite projections. If, for some &£>0,
the set {E;m(E)>¢&)} is infinite, we can take a sequence {E,} from the set. Let {a,}
be a sequence of positive numbers such that >],a,'m(E,) < + oo, and put I'=>),a,FE,.
Evidently T€ MNL,, and therefore 7€ MNL,, that is, >, asm(E,)<+oo. Let
{B.} be an arbitrary sequence of positive numbers such that >3,8,7< +oo. We

1
‘can find {a,} satisfying the above condition and such that «a,m(E,)?=p,. Then

1
am(E,)=LRm(E)" for }T+7:]1f= 1. Hence we must obtain D), m(E,)<+oco, a

contradiction. Hence {E,} is at most countable. If >} ,m(E)=+ oo, we may assume
that m(E)>1. If we repeat the above discussion, we reach a contradiction. Hence
m(I)< +oo. iii)—>(i): We may assume r< + oo since the case r= 4 oo is evident.

;, =1.  Therefore from Theorem 2 we have L,=L, CLi.

I€L,, where —}]“-f-
The proof is completed.

Lemma 3.4, Let 1 <p<r<+oo. The following conditions are equivalent :

i) L,CL,;

(i) M is a direct sum of factors of type 1 and there exists a positive number 8, such

that m(E)>>8 for every non-zero projection EE M.

Proor. (i)—>(ii): Suppose that r<_ +oo. Put qz-;—. L,CL, is equivalent
to Ly (Ll%: ¢ (Theorem 2) and in turn we obtain L;CL,CL;C:-. We may
assume that ¢=>2. Let T be any measurable operator €L} andSdeE,\ be its spe-
ctral resolution. Put T'=TE, and 7T,=TE,l. Then 73,7, EOLI, and therefore
T,€L,. Ti€MAL; implies that TIELz.—SjMdm (E,\g\z_rx?dm(ﬁ‘g,) implies
that T, € L,. Hence we obtain 7€ L. Thué L,CLs,. If r=+oco, then for any
TeL{ we have T%’ELPCM and therefore 7€ M, which implies that that 7*€L,.

In any case we have Ly CL,. It follows from Theorem 5 that the left ring I

considered in 3.1 satisfies (ii), and therefore M satisfies (ii).

(i)—>(i) : Owing to Theorem 5 and. Cor. 5.2, the isomorphic mapping & con-
sidered in 3.1 shows that L; CM. Then it is clear that L, CL, for any 1 <p<r
< too.
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Using these lemmas we obtain the condition under which every measurable
operator is- integrable.

Tuvorem 10. Let M be a semi-finite ring with a regular gage m. The following
conditions (1)—(iil) are equivalent : ’ -

(i) M is finite-dimensional ;

(i) L,=L, for some p=¢r;

(iii) Every fnea,surable operator is integrable.

Proor. The preceding two lemmas shows that (i) and (ii) are equivalent. (i)—(iii)
is evident. (iii) implies that L, CL, and LiCL;. The latter is eqﬁivalent to
L; CL,. Thus we have L;=L,. The proof is completed.

Let @ be the ring of all bounded operators on a Hilbert space £, and let {f}
be a complete orthomormal system of $. If we put $(4)=>1, {Af, f.> for AC B,
it is easy to see that ¢ is a faithful, essential. normal pseudo-trace, and that any
other such pseudo-trace is a multiple of ¢ since B is a factor. The corresponding
gage m(P) is the dimension of P§). It follows that in a factor of type I every
measurable operator is bounded. Lj; (1 <{p <+o0) consists of positive operators,
the sums of the p* powers of whose proper values counted as their multiplicities
are finite. Therefore évery operator € L, (1 <p< 4 o0) is completely continuous, and
L,CL, f(;r p<gq. Since {(co) is not the union of ([,), 1 <p< +oo, we see that H
is finite-dimensional if and only if every completely continuous operator is integra-
ble. These considerations suggest the following generalization.

Tucorew 11. Let M bé a semi-simple ring with o regular gage m. The following
statements are epu[v(zlent:

(1) every operator €L,NM (1 <p< oo, p fixed) is a w.c.c. element of M ;

(i) M is a direct sum of factors of type 1 and there exists a positive number & such
that m(E)>8 for every non-zero projection E€ M.

If any of (i) and (ii) holds, and furthermore if every w. c. c. element of M is € L, for some
1 <p< oo, then M is finite-dimensional. 4

Proor. An operator A€M is called w.c.c. [23] if the right (or left) multip- ‘
lication by A4 is a completely continuous operator on M in the topology o (M, M™).
The set J of all w.c.c. elemenis of M forms a closed ideal of M. We note that
the second part of (ii) implies the first part of (i).

(i)—>(@i): Let a be the maximal ideal of M. associated with m, that is, a =L;\M.

1 Bt
a? =L,N"M. a and a” have identical uniform closure J which is an ideal of
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M contained in 4.  Therefore (i) holds for every p if so does for some p. J is
a w.c.c C*algebra. This shows [23] that every non-zero projection €J contains
a primitive one, that is, PJP=(complex field) x P.  Since a is dense in M in the
strong topology, it follows that PMP = (complex field) x P, and therefore P is
a primitive abelian projection € M.  Every non-zero projection €M contains a
non-zero metrically finite projection, and a fortiori a primitive abelian projection.
It follows that M is a direct sum of factors of type I. If the second part of (ii)

does mnot hold, we can choose a sequence of orthogonal primitive projections E, such

. By
that m(E,) g#». Put A=>".E,. Then A€a”, but not a w.c.c. element of M.

(ii)—>({): M is assumed to be a direct sum of @, where @, is the ring of
all bounded operators on a certain Hilbert space. A4 is determined by its components

A, and [[4]|=1 wb. [[4.]]. A w.c.c. element A is characterized by the properties

that each A, is a completely continuous operator on § and the set {a; || 4]/ >€}
is finite for every £€>0. The pseudo-trace of M in question uniquely determined
by m is of the form >},c.¢, where each ¢, is the ordinary pseudo-trace of Ba
cs is a positive number >8 and ¢(A)=DlucaPu(d) for AEM*. $(4,)< + o0
implies that each A, is completely continuous and {a; ¢a(4,)>&} is finite. Since
4.l <$.(4,) holds, we see that A is a w. c. c. element of M.

Now we show the rest part of the theorem. We follow the notations of the
proof of (ii)—>(i). Each 4, is finite-dimensional as remarked above. We have only
to show that the index set {a} is finite. Otherwise we can choose a sequence {/3,}
of positive numbers such that (3,0 and Zn,B,,Pd)a"(Ew‘n)z—l—OO, where E,, is a
primitive projection € B,,. Put 4=>1 8,FE,,. Then 4 is a w.c.c. element of M,
but ¢p(4P)=oco. The proof is completea.

Cororrary. L1 <p < 4 o0) coincides with the set of w.c.c. elements of M if
and only if M is finite-dimensional.
Let L/, be the set of self-adjoint operators €L,. If L) is a vector lattice by

the ordering of operators, L, is commutative by Theorem 2, and vice versa.

4. Analogies to (AL).

4.1. Let ¥V be a normed vector lattice with norm ||x|. We say [20] that V'
is an (AL) if

(@ if [x|<[y| holds, [[x]|<]lly!;

(b) if xNy=0 holds, [[x+y|=|lx]l+Iy;
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(¢) if 0<x;<{ap<{--- and {||x,||} is bounded, then there exists the l.u.b.
xE€V of {x,} such that ||x,—x||—>0 as n—>oo. Then it is shown [20] that ¥ is a
Banach lattice, and is representable as an L;-space on a measure space. The same

is true for a complex vector lattice [21].

4.2. Let £ be an invariant linear system consisting of measurable operators
nM, where M is an arbitrary ring of operators. Let € be a normed linear space
with norm ||T|| and have the following properties :

() if |S|<|T| holds, ||S| <||T|l. And |T||=[UTU*| for every UE My ;

(B) if S:T=0 for S,T€ 8", then ||S+T|=|S|+IT|;

(v) if 0O<Th<T,<--- be a sequence of mutually commutative operators € £
such that {||T,[]} is bounded, then there exists the' l.u.b. 7€ & of {T,} such that
|T,—T|—0 as n—co.

Let m be the ideal of M generated by the projections € L. m is the union of
PMP, Pc®. Let M, be the closure of 1 in the strong topology. It is known [7}
that there exists a central projection Q€ M such that M,=QM. Let 7€ 8" and

kadEA be the spectral resolution of 7. Put T,=>}71 Ekn—(E(k.,.l)/‘gn_Ek‘/er- Since
0

0T, <T, it follows that 7,€ & and E¢.1)20 —Ey2. € 8. It is clear that T is the
L. wb. of {T,}. Hence it is easy to see that QLT=0 since Q-7,=0. Therefore

we may assume Q-M=0, that is, Q=I And HT[]:I_im Z—%HE(“]HZ,Z-—EIS,”H.
From (a)—(v) we see that E,LeQ for erery A>(0, and HTH=&MHEALHdX. Conver-
0 .

sely if for a given positive measurable operator T'= r ME,, ELe8 for every A >0

J0

and V!,’E,»f—f]d?»<+00, then 7€ . The proof is easy. Put for any P& My,

v O

m(P)= L u.b. [[E|l. It is easy to see that m(P) is finite if and only if PEmyp,
ECP,Ecmp

and that m(P)=|P|| for P€mp. It follows easily from (a)—(7) that m is a regular
gage of M and that M is semi-finite. ~ Therefore from Theorem 6 (v) we conclude
that £ is the set of all integrable operators »M. Moreover it is clear from
Theorem 6 that any L; satisfies («)—(v).

Thus (a)—(7) are the characteristic properties for an £ to be L. Compare
(a)—(v) with (a)—(c) of 4.1. Let &" be a vector lattice, then QM and therefore
¢ is commutative. This is proved in 2. And (B) is reduced to (b). [|T||=[UTU*}}

is always satisfied, and therefore (@) is reduced to (a). Thus L, is considered as
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a non-commutative extension of (AL).

In like manner, we can state characteristic properties for L, and find an
analogy to (AL,). It suffices to replace (B) by (B),: if S-T=0 fer S, T'€ X", then
IS+ T P=||S||?+|T||?. The details are omitted.
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