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Throughout this paper we shall be only concerned with Banach *.algebras with
complex scalars. A topological ring is said to be dual [4] provided that for every closed
right (left) ideal I we have R(L(I))=I and L(R(I))=I respectively, where L and R
denote the left and right anmihilators. I. Kaplansky [7] has shown that the following
statements are equivalent for a B*.algebra A: (1) 4 is dual. (2) 4 is a B*(c0)-sum of
C*.algebras each of which is the algebra of all completely continuous operators on a Hi‘lbert
space. (3) A has a faithful *-representation by completely continuous operators on a
Hilbert space. (4) The socle of A4 is dense in A. In an earlier paper [12] one of the
present authors proved that a completely continuous operator on a Hilbert space § is
characterized as a w.c.c. (= weakly completely continuous) element of the algebra of operators
on O. This leads us to show that (1)—(4) are equivalent to that (5) 4 is w.c.c. (§3).

Kaplansky [5] also studied the structure of c.c. B*-algebras and obtained the result:
A c.c. B*algebra is a B*(co)sum of full matrix algebras of finite orders over the
cgmplex field. This will also follow from our above-mentioned result since the algebra of
completely continuous operators on a Hilbert space is finite-dimensional if and only if it is
c.c. [12]. Various group algebras of a compact group studied by Kaplansky [4] are dual
A*-algebras. We show (§4) that every semi-simple c. c. Banach *-algebra in which x*x=0
implies x=0 is an A*.algebra considered as a dense subalgebra of a c.c. B™-algebra.
The fundamental theorem [9] of almost periodic functions in a group is to say that the
algebra of a.p.f. is a c.c. dual A™-algebra. In any c.c. dual A*.algerbra every closed
right ideal is the closure of the union of minimal right ideals contained in it (§4). Any
dual B*.algebra is c.c. if and only if it is strongly semi-simple, or the annihilator of the
center is zero (§4).

In §2 we treat the uniqueness problem of an auxiliary norm of A™-algebras. We say
that an A4™-algebra 4 has a unique auxiliary norm in case any two auxiliary norms |x|,
|%|, are equivalent, that is, |x,|—0 if and only if |x,|,—>0. Whether or not every
A*-algebra has a unique auxiliary norm is open for us. We show under certain conditions

that an 4*.algebra has a unique auxiliary norm.
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We show (§5) that any dual A™-algebra can be embedded as a dense subalgebra of
a unique (to within *-isomorphism) dual B*-a]gebra A. There then arise two possible
cases: A is an ideal of U and is called a dual A™-algebra of the 1st kind, otherwise of
the 2nd kind. Any proper H™.algebra of Ambrose [1], if we introduce in it an auxiliary

norm |x|=Lu b.'xyll, is a dual 4*-.algebra of the 1st kind. A necessary and sufficient

condition for ya —;iual A*-algebra to be of the 1st kind is given (§6). The condition is
that |xli; =11' u. b. [lxyll is an auxiliary norm of A4, that is, !x||,><lklx™x], for every
x and a posih{rg _ci)nstant k. Any dual A4*-algebra A of the 1st kind is w.c.c. and has
the properties: (1) For any maximal family of orthogonal self -adjoinf idempotents {e,}, > xe,
is summable to x in the norm. (2) Every closed *-subalgebra is of the 1st kind. (3)
Every closed right ideal is the closure of the union of minimal right ideals contained in
it (§6,7).

‘In §7 we give certain properties of dual A4*-algebras, in intimate connection with the
theory of group algebras of compact groups studied by Kaplansky [4]. We show that
the group algebras C and L of a compact group G are of the 2nd kind unless  is finite.

We conclude the last section §8 with a short discussion on a commutative dual

A*-algebra.

§ 1. Preliminaries

A Banach algebra A4 is called a Banach *-algebra provided there is defined in 4 an
involution x—x* with the following properties: (i) (x™)*=w. (i) (xy)*=y*s*. (iii) If
N\, p are complex numbers, then (\x+ py)* =\x™+uy*. If A satisfies also the condition
(iv) llzi*=llx*x[| for every xEA, then A is called a B*.algebra. Furthermore if x*x
has a quasiinverse for every x € A4, then A is called a C*-algebra. We shall say that
two Banach *-algebras A, B are equivalent provided there exists a *-isomorphism ¢ of A
onto B such that ¢ and its inverse are continuous.

Certain fundamental properties of B*-algebras have been discussed by Kaplansky [5].
Some of them are still valid with modifications for somewhat general Banach x-algebras
with the condition :

(B llxl><klx*x|l, k being a positive constant.

Among them we shall state the following two theorems for our later use. Since they
can be proved along the same line as in [5], their proofs will be omitted.

Turorem 1. Let A be a Banach *-algebra in which (3,) holds for some constant
k. Let 1 be a closed ideal of A, then 1 is self-adjoint, and A/I is a Banach *.algebra
satisfying (By) for a positive constant v, which may be chosen to depend only on k
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continuously and reduces to 1 for k=1.
Tacorem 2. Let A, B be Banach x-algebras satisfying (3,), (By.) respectively. If
there exists an algebraic *-isomorphism ¢ of A into a dense subset of B, then ¢ maps A

onto B and A, B are equivalent, more precisely,

1 . e
i 1l <o) || <Al

§ 2. Auxiliary norms of A*-algebras

A Banach *-algebra A4 is- called an A*.algebra [13] provided there exists in 4 an
auxiliary norm |x| (not necessarily complete) which satisfies, in addition to the usual
multiplicative pr;Jperty, the condition (8,) for some constant k. It is noted that a
homomorphism ¢ of a Banach algebra into an A™algebra A is continuous if its image
¢(B) is self-adjoint [15]. An A*-algebra is said to possess a unique auxiliary norm in
case any two auxiliary norms [x| and |x|,, satisfying the above stated conditions, are
equivalent ; that is, |x,|—0 if and only if |x,/,—0. Whether or not every A4*-algebra
has a unique auxiliary norm is open for us. We will now prove that under certain con-
ditions an A*.algebra has a unique auxiliary norm. Before doing this, some lemmas will
be considered.

Lewma 1. Let A, B be Banach x-algebras satisfying (/3,), (B,) respectively. Let ¢
denote a *-homomorphism of A into B, which is isomorphic on a dense *-subalgebra A of
A. Then ¢ maps A *-isomorphically into B if any of the following conditions is satisfied ; .

(1) 4" is an ideal of A.
(2) If Iis any closed ideal of A with INA =0, then [4'=0. _

Proor. (1) implies (2) since J4'CINA'=0. Suppose that (2) holds. Let I
denote the kernel of ¢. Then INA'=0 since ¢ is isomorphic on A', and R(I), the
right annihilator of , contains A'. A’ being dense in A, we have R(I)=A. Owing to
(By), x*x=0 implies x=0. Therefore I must be 0, completing the proof.

Lrevwa 2. ILet A, B be Bonach x-algebras satisfying (;3,), (B,:) respectively. Let
A, B' be dense x-subalgebras of A, B respectively. Assume that A’ satisfies any of the
conditions (1), (2) of Lemma 1. If ¢ is a continuous *-isomorphism of A’ onto R', then
¢ is uniquely extensible to a *-isomorphism of A onto B, and A, B are equivalent.

Proor.  Since ¢ is continuous, ¢ can be uniquely extended to a *-homomorphism ¢’
of A into B. It follows from Theorem 2 and Lemma 1 that the statement of our lemma
is true.

Lemma 3. - Let A be an A*-algebra with an ausxiliary norm in which |lax||<lc||a|| |x|

for every a, x € A, c being a constant. Let A denote the completion of A by |x|, then
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A is an ideal dense in 4.

Proor.  Consider the linear mapping x—>ax from a *-subalgebra 4 of A to A4 with
its own norm flx||. It is uniformly continuous, and therefore is uniquely extensible to a
linear mapping z—>az from A to A with |laz||<c|lal||z|. This shows that 4 is a right
ideal dense in . On the other hand the involution is continuous in both 4 and U [15],
and therefore Hxai}g'c']xl llal| for every x,a€ A4, ¢’ being a constant. In like manner A
is a left ideal of A. This completes the proof.

Lewma 4. Let A’ be a dense ideal of an A*.algebra A with norm |x|l. If A is
a Banach algebra with norm |\xll,, then |lax|,<clall\lixll, |xal,<cllxl|llall, for every
a€ A and x € A, ¢ being a constant.

Proor. By the closed graph theorem [2,p.41] it suffices to show that the mapping
x—>ax (a—>ax) from A to A (from A to itself) is closgd. Let |lx,—x]|—0 and
llax,—yll,>0. The mapping a—>a from A to A is continuous [15], and therefore
lax,—y||—>0. Hence ax=ry. In like manner we can show that a—ax is closed. Thus
we have the conclusion.

Making use of these lemmas we will prove the following uniqueness theorem of
auxiliary norm of an A*.algebra.

Turorem 3. Let A be an A™-algebra with an auxiliary norm |x|. A has a unique
auxiliary norm if any of the following conditions is satisfied :

(@) jlax||<cllall|x| for every a,x€ A, c being a constant.
() The socle (=the union of minimal right ideals of A) of A is dense in A.

Proor. Let |x|, be any auxiliary norm of 4. Put [x|,=]|x|+|x|,. It is
obvious that 4 becomes a normed algebra under |x |, Let |x|><k|x*x| and |x|}<Fk [x*x],

k and %, being positive constants. Then
w%x ] y= x|+ [, =L e L x ) (a4 0] )P =1 w2
k. k, k, ks

where k,=2max (k, k,). This shows that |x|, is also an auxiliary norm of 4. Let
A, A, A, denote the completions of A by [x|, |x|,, |x]|, respectively.

Case («). Lemma 3 shows that A is an ideal dense in both 2 and U,. It follows
from Lemma 2 that A, A,; A, W, are equivalent respectively. Hence A, A, are
equivalent, that is, 4 has a unique auxiliary norm.

Case (/3). Since x*x=0 implies x=0, every minimal right ideal R of A is generated
by a uniquely determined self-adjoint primitive idempotent e of A4 [14]. Let I be any
closed ideal of U, such that INA=0. We show that J4=0. For otheswise there exists
an R such that IR==0, and therefore Ie==0. Take z& I with ze3=0. Since ede=/{the
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complex field) xe [3], we have ez*ze=X\e (A=0). Hence e&l, which contradicts
INA=0. Lemma 2 shows that ¥, A,; A, A, are equivalent respectively, and therefore
A, A, are equivalent, that is, two norms |x|, |x|, are equivalent. ,

Let 4 be a proper H*-algebra, that is, a Banach *-algebra whos2 underlying Banach
space is a Hilbert space with inner product (x,y) such that (xy, z)=(y, x*z)=(x, z2y™)
and x4=0 implies x=0 [1,4]. If we put [x| =1 u. b.llxyll. Then |x|?=|x™x] [12],
and ||xy||<|x|||yl. Thus 4 is an A™-algebra sat‘i‘s}f!}’ri;lé (a). Therefore 4 has a unique
auxiliary n(;rm, in other words, A can be embedded in a unique (to within *-isomorphism)
B*.algebra U as its dense ideal.

Tueorem 4.  Let A be an A*-algebra with an auxiliary norm |x| satisfying () or
(B) of the preceding Theorem 3. ILet B be a Banach *-algebra with condition (3,) and ¢
be an algebraic *-homomorphism of A into B. Then ¢ can be uniquely extended to a
continuous *-homomorphism ¢’ of the completion W of A by |x| into B and ¢'(A) is a
closed *.subalgebra of B. If ¢ is x-isomorphism of A into B, then ¢’ is also a *-isomor-
phism of A into B and A, ¢'(A) are eéuivalent. :

Proor. Put |x|,=|x]| +{loG)]. It is ‘easy to see from the proof of Theorem 3
that |x|, is an auxiliary norm of 4. Since A4 has a unique auxiliary norm, two norms
[x|, |x|, are equivalent, and therefore [/d(x)||<lc|x| for some constant c. Hence ¢ can
be uniquely extended to a continuous *-homomorphism ¢' of ¥ into B. Theorem 2 shows
that ¢'(A) is a closed *-subalgebra of B. Suppose that ¢ is a *-isomorphism of 4 into
B. Let I be any closed ideal of A with INA=0. From the proof of Theorem 3 we

see that 74=0. Then Lemma 1 shows that ¢’ is a *-isomorphism and %, ¢'(U) are
equivalent.

Consider a commutative Banach algebra B. Its Gelfand representation B is an algebra
of complex-valued continuous functions vanishing at oo on a locally compact Hausdorff
space £ (=the set of regular maximal ideals of B). Every homomorphism of B onto the
complex numbers is continuous with norm <1, and the correspondence between such a
homomorphism and its kernel determines a one-to-one mapping from the set of such
homomorphism onto £. B is called regular provided, for every closed set FC & and
Po€ £ —F, there exists x€ B such that £(F)=0 and x(p,)=1. Rickart [16] has shown
that if B is a semi-simple regular Banach algebra which is algebraically embedded in a
second Banach algebra B, then every homomorphism ¢ of B into the complex numbers can
be extended to a homomorphism of B into the complex numbers. Making use of this
result we show the following

Tueorem 5.  Let A be an A*-algebra in which every maximal commutative *-subalgebra

is regular in the above sense. Then A has a unique auxiliary norm.
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Proor.  Let B .denote any maximal commutative *-subalgebra of A. Let |x|, |x],
be two auxiliary norms satisfying (83,), (/3;,) respectively and B, B, be the completions
‘of B by |%|, |x|, respectively. By a theorem of Rickart’s [16] we may assume that
B, B, B, has the same representation space £. Let B, %1 denote the algebrayof con-

tinuous functions on £. Theorem 2 shows that kikllxlglx]lékk, |#|. Now consider
any x€ A and let B be a maximal commutative *-subalgebra of 4 which contains x*x.
Then ilx*x]glx*xllgkkl [x*x| which in turn implies that kLkl[xISIx’llSkk’ |x]|.
This completes the proof.

For example, consider a group algebra L, of commutative locally compact group. To
each element x of L, corresponds the operator on Ly-space of this group which is defined
~as left multiplication by x, where multiplication means the convolution. Thus L, is an

A*.algebra. It is known that L, is regular. Therefore L, has a unique auxiliary norm.

§ 3. w.c.c. B*algebras

We say that a Banach algebra A4 is w. c. c. (=weakly completely continuous) provided
the right- and left-multiplications by any element of A4 are weakly completely continuous
operators on A. If A is a B*.algebra, i.e., a Banach x.algebra satisfying (8,), the left
or right multiplication is sufficient to define a w. c. c. algebra. Kaplansky [5] has shown
that the dual B*.algebra is a B*(co)-sum of C*-algebras, each of which is the Banach
*-algebra of all completely continuous operators on a Hilbert space. He has also shown
[7] that the followings are equivalent for a B*.algebra A :

(1) A4 is dual. _ '

(2) A4 has a faithful *-representation by completely continuous operators on a Hilbert
space.

(3) The socle of A is dense in A.

Since every C*-algebra of completely continuous operators on a Hilbert space is w.c.c.
[12], we are led to a characterization of a dual B*.algebra as a w.c.c. B*-algebra. To
show this we need the following

Lemma 5. Let & be a locally compact Hausdorff space and C(£2) be the Banach
algebra of complex-valued continuous functions vanishing at oo on £. C(£) is w.c.c. if
and only if £ is discrete.

Proor. Let G' be any relatively compact open subset of £. Let C(G) denote the
subalgebra of C(£) consisting of the functions vaﬂishing outside . C(@) is a closed
subalgebra of C(£). Let k€ C(£) be a function equal to 1 on (. Then kx=x for every
x€ C(@). It follows that if C(£) is w.c.c., then C(G) is locally weakly compact, there-
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fore (¢ is finite [11,p87), so that & is discrete. The converse is evident since C(£)
“becomes c.c. when £ is discrete. This completes the proof.
By making use of this lemma we can show
Tueorem 6.  The following statements are equivalent for a B*-algebra A :
1) Aisw.coec..
(2) A is a B*(co)-sum of C*-algebras, each of which consists of the set of all com-
pletely continuous operators on a Hilberi space.

Proor. (1)>(2). Let B be a maximal commutative *-subalgebra of 4. B is
necessarily a closed subalgebra of A and is isomorphic with C(&) considered in the
preceding lemma. - Since B is closed in the w.c.c. algebra 4, B is w.c. c. as well.
Lemma 5 shows that £ is discrete. Let e, be the elements of B corresponding to the
characteristic functions of the points €€ £. Then {e,} is an orthogonal family of self-
adjoint primitive idempotents of B ‘such that, for every x€ B, we can write 2= N8y
where the right hand series is summable in the norm i.e., for any given positive number
& the number of @’s such that |\,| ==& is finite. Conversely if D \,e, is summable, it
clearly represents an element of B. We show that e,4 is a minimal right ideal of A.
Let a be any self-adjoint element of A. e,ae, is self-adjoint and commutative with every
eg and therefore e,ae, € B so that e,ae,=N\e,, N being real. It follows from this e,de,=
(the complex field) X ¢,. Since- 4 contsgins no nilpotent ideal, e,4 is a minimal right ideal.

If, for any given z€ A4, ¢,2=0 for every e,, then z=0. For e,z=0 implies
e,zz*=0 and therefore zz*e,=0. Since B coincides with its commuter, zz* € B. Hence
2z%e,=0 for every e, implies ¥ =0 so that z=0. Let us consider the directed set of
finite sums e,,+ -+ +e,, of mutually orthogonal e,. Let z be any element of 4. Since
A is w.c.c., the unit sphere of A4 is transformed by right multiplication b}f z into a rela-
tively weakly compact subset of 4. Let 2z’ be any limitting point (in the weak topology)
of a directed set {(e,,+---+€,,)z}. It is clear that e,z=e,z’ so that z=2". This implies
that {(e,,+ - +e,,)z} converges weakly to z. In like manner we ean show that if, in
this discussion, e, is confined to any subfamily, {(e,,+---+e,,)z} converges weakly to an
element of 4. By a theorem of Orlicz’s [2, p. 240] > e,z is summable to z. That is,
e,z 0 for only a countable number of e,’s, and {(e,,+ ... +e,,)z} converges to z in the
norm.

For any given closed ideal I of A4, e,ANI=0 or e,ACI ~ Indeed, e, ANIZ0
implies 0=Fe,a€ for some a€ A and therefore e,aa*e,=X\e, (\=0) implies e, €1 so
that e,4 CI. Let {e,} be the set of e,’s with e, 4CI and {e,..} the rest of e,’s. Denote
by H', H' the closed subspaces of A spanned by {e, .4}, {e, A} respectively. Then A
is a direct sam of H and H'. Evidentlly H' CI. We show that H'=1I and H'=L(I).
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Let z be any element of I. z=D e,z where €,z==0 implies e,z€ 1. Hence H'=1
g Al CeyrnANI=0 implies H’ CL(I). Conversely if z is any element of L(I), then
z*€ L(I) since L(I) is a closed ideal of A and therefore it is self-adjoint. ~ This implies
that z*e,,=0 so that e,z=0. Hence z€ H’, so that H' =L(I ) Thus any closed ideal
is a direct summand with the supplementary ideal L(I). Let I be any primitive ideal of
A. L(I) is then a primitive algebra [3] with minimal right ideals since L(/) is isomorphic
with 4/I. Take an e, such that e, € L(I). We have Ae,A+AegA==0 for any ey € L(I)
since Ae,A and AegA are non zero ideals of L(I). We can take a€ A4 such that eqaeg 0.
Hence ega™e,ae,=Ne; (N:0). This shows that e;€ de,4 so that Ae,A is the socle of
L(I) and L(I) is the closure of Ae,A. Conversely for any e, it is easy to see that the
closure J, of Ae,A is L(I) for a primitive ideal I. Consider the maximal set {J,} chosen
in such a way that J,NJ;=0 for a=B. The direct sum of J,’s is dense in A. Since
Jo is *-isomorphic with a C*.algebra of all éompletely continuous operators on a Hilbert
speace [5,14], it is easy to see that A is *-.isomorphic with a B*(co)-sum of C*-algebras
stated in (2). ' .

(2)—>(1). This is evident from the fact that a C*.algebra of completely continuous
operators on a Hilbert space is w.c.c. [12]. :

Cororrary 1. Let A be a w.c.c. B*-algebra. Let {e,} be an orthogonal family
of self-adjoint idempotents of A. Then Y e,z is summable in the norm for every z€ A.

Proor.  Consider a maximal commutative *-subalgebra B containing {e,}. It is then
clear from the proof of Theorem 6 that each e, is a sum of finite number of primitive
idempotents of B, and therefore D e,z is summable in the norm.

CoroLLary 2. Let A be a w.c.c. B*-algebra. Let e denote a self-adjoint idempotent
of A. Then ede is *-isomorphic with a direct sum of full matrix algebras of finite orders
over the complex field.

Proor. ede is a w.c.c. B*-algebra with a unit e. Hence ede is weakly complete.
This implies [12] that the conclusion of this lemma is valid. ’

In this corollary if e is primitive in the center of A, ede is *-isomorphic with a full
matrix algebra of finite order over the complex field.

w. c.c. B*.algebras contains c.c. B*-algebras as a special case. The C*-algebra of
completely continuous operators on a Hilbert space ) contains a non trivial c.c. element
if and only if 9 is finite-dimensional [12]. From the proof of Theorem 6 we see that
every closed ideal of a w.c.c. B*algebra A is the closure of the union of minimal closed
ideals J contained in it. On account of Corollary 2 it is Tlear that the following conditions
for J are equivalent :

(1) J has a unit.
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(2) J is a full matrix algebra of finite order over the complex field.
(3) J is finite-dimensional.

(4) J contains a non-zero central element.

(5) Jisec.e .

A Banach algebra is said strongly semi-simple [18] provided the intersection of regular
maximal ideals is the zero element. Among w.c.c. B*.algebras c.c. B*-algebras are
characterized by various algebraic properties as stated in the following

Tueorem 7. Let A be a w.c.c. B*-algebra. A is c.c. if and only if any of the
following conditions is satisfied :

(1) 4 is a B*(co)-sum of finite-dimensional B*-algebras.
(2) A is strongly semi-simple.
(3) The annihilator of the center of A is O.

Proor.  Proof is omitted since it is clear from the above discussion.

We remark that a w.c.c. B*-.algebra is finite-dimensional if and only if it is regular
in the sense of J.v. Neumann [10]. We recall the definition: A ring is regular if every
element x has a relative inverse x’ such that xx’x=x. This is a special case of a result
obtained by Kaplansky [6] to the effect that a Banach algebra is finite-dimensional provided
it is regular. :

It follows from a theorem due to Kaplansky [7] concerning the structure of dual
" B*.algebras that a B*.algebra A is dual if and only if it is w.c.c.. We shall give here
a direct proof that a w.c.c. B*-algebra is dual. To this end we need a '

Lemma 6. Let I be a closed right ideal of a w.c.c. B*.algebra A and {e,} be a
maximal family of orthogonal self-adjoint pn'mi'tivé idempotents contained in 1. Then for
every z€ 1 we have z=2 e,z

Proor.  Put z'=)le,z, where the right hand series is summable by Corollary 1
to Theorem 6. e,.(z—z")=0 and therefore e,.(z—z')(z—z')*=0. The closed subalgebra
B generated by (z—z')(z—2')* and {e, } is a closed commutative *-subalgebra contained »
in I and therefore it is generated I)y self-adjoint idempotents by Lemma 5 since it is
w.c.c.. {e,} being a maximal family of orthogonal self-adjoint primitive idempotents
contained in B, we have (z—2z')(z—2z')*=0 so that z=7/, completing the proof.

Let {e,.} be a maximal family of orthogonal self-adjoint primitive idempotents
orthogonal to {e, } in the above lemma. It is clear that {e, } together with {e,.} becomes
a maximal family of orthogonal self-adjoint primitive idempotents in 4. It follows from
Lemma 6 and the proof of Theorem 6 that L(I) is spanned by {A4e,.} and R(L(I)) is
spanned by {e, A4}, that is, R(L(I))=I. This shows that 4 is dual. The converse will
be treated in the next §.
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We remark also that it follows from Lemma 6 by the translation by duality that
every closed right ideal of a dual B*-algebra is the intersection of regular maximal right
ideals containing it [7].

Our discussion hitherto given in this § will be applied with slight modifications to
Banach *-algebras satisfying (/3,) as well. Hence we have

Turorem 8.  The following statements are equivalent for a Banach *-algebra A
satisfying (3)) :

(a) Ais w.ce..

(B) A is equivalent to a B*(co)-sum of C*.algebra each of which is the set of all
completely continuous operators on a Hilbert space. '

(v) A is dual.

As a closed subalgebra of a w.c.c. algebra is w.c.c., we have the following gener-
alization of a result due to Kaplansky [5].

Corotrary. A closed *-subalgebra of a dual Banach *-algebra satisfying ((3;) is
dual.

§ 4. c.c. Banach *-algebras

First we shall be concerned with the conditions under which a c. c. Banach *-algebra
becomes an A™-algebra. '

Tueorem 9. The following statements are equivalent for-a c.c. Banach *-algebra A.

(1) A is semi-simple and x*x=0 implies x=0.
(2) A is a dense subalgebra of a c.c. B*-algebra .
(3) A is an A*-algebra.

Proor.  (1)—>(2). First we show that A is symmetric [5], that is, xx™ has a
quasi-inverse for every x€ 4. To this end ‘suppose that the contrary holds for some
x€A. —1 is then a proper value of the c.c. operator defined by the left multiplication
by xx*, and its proper space, being finite-dimensional [2, p- 160], contains & minimal
right ideal R. Non existence of nilpotent ideals in A allows us to writt R=ed [14],
where e is a self-adjoint primitive idempotent. As xx*e= —e, xx* commutes with e.
Since ede=(the complex field) x e [14], and ewe, ex*e are mutually conjugate complex

*= k% for

multiples of e, the identities —e=zz"+exex™e, z=ex —exe show that zz
some x«>0. This turns out to (z+ «e) (z-+xe)*=0, and therefore z= — xe and zz*=«7%,
a contradiction. Thus the symmetry of A is assured. Let M be a primitive ideal. It is
self-adjoint, since A4 is symmetric [5]. Moreover 4 is a direct sum of M and a full

matrix algebra B of finite order over the complex field, which is a self-adjoint simple
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ideal of {1 Denote the B-component of x by x, and its factor space norm by [lxpll 4 u-
Since B is *-isomorphic with a C*.algebra with C*norm |x|, the *-homomorphism
%—>%p is continuous from A onto B with norm |x;| [15]. We are now to show that
the involution x—x™ is continuous. Assume that ||x,—x|[—>0 and [x}—y[[—>0. Put
x,=b,+m, x=b+m and y=b'-¥:m’, where b,, b, ¥ € B and m,, m, m'€ M. b,—b,
by—b" by continuity of x—>xp and therefore 6*=>5" and y —x* € M. This being true
for every primitive M, we have y=x* since A is semi-simple. It follows from the

closed graph theorem [2,p.41] that x—x™ is continuous.  Therefore we may assume

that |lx[|=|lx*||, since, if necessary, we may take an equivalent norm ||x/ -+ llx*|| instead
of ”x” Put ”xslll:]' u. b-“xB}’B”a ”xB”rzl' u. b-”}’BxB” and [lxpll= ”xB”l"‘ ”xsilr;
llypll=1 llysll=

From the minimal character of the usual norm in an algebra C(£) [5], we have
ll gl * =N j ll = [ 2425 | = |x5|%  Suppose that there exists an infinite number of B’s,
such that |x;| >& and, a fortiori, llx;ll>&, & being a given positive number. Then we
may assume that |!x3n||,>—§—, n=1,2,3, . Choose ¥.€ B, such that {[xy,|| =% .l
>§, flyall=1. Since A is c.c., there exists a subsequence {xy, )} converging to an
element x' € A and |2/l Zé—. But xy,y5=0 for B,%B since B’s are simple ideals.

This implies x'y,=0. Hence x;x;*=0, and therefore x;=0 for every B, that is,
%' €M for every M. This implies x'=0, a contradiction. It follows that {x} is an
element of the B*(co)-sum U of B*-algebras B with norm |xz|. A is mapped by x—{x}
into a dense subalgebra of the B™.algebra U which is c.c.. This completes the proof
of (1)—(2).
(2)—>(3) is obvious since the B*-norm of U serves as an auxiliary norm of A.
(3)>(1) follows from a theorem of Rickart’s [15].
Thus we have proved the theorem.

If 4 is a c.c. B*algebra (Banach x-algebra satisfying (/3,)), then the map x—{x,}
becomes automatically isometric (bicontinuous) from A onto . Hence we have incidentally
a theorem due to Kaplansky [5] concerning the structure of c.c. B*-algebras.

CoroLrary. A c.c. A*-algebra has a unique auxiliary norm.

Proor. Let 4 be a c.c. A*algebra. Let B denote any maximal commutative
*-subalgebra of 4. The structure space £ after the manner of Gelfand is discrete [5]
and it is clear from our proof of Theorem 6 that for any point p,€ £ the characteristic
function of a single point set {p,} is a Gelfand representation of a self-adjoint idempotent
of B. Hence B is regular in the sense described in § 2. Theorem 5 shows that A4 has
a unique auxiliary norm.

Next we consider the conditions under which a c. c. A*.algebra becomes dual.
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Tueorem 10. Let A4 be a c.c. A*.algebra. A is dual if and only if the socle is
dense in A and, for every x€ A, the closure of xA contains x.

Proor. If A is dual, the socle of 4 is dense in 4 and the closure of xA4
contains x [4]. Suppose that the converse holds. It follows from the proof of the
preceding Theorem 9 that the socle of A is the direct sum of dual simple algebras B,
and therefore dual in relative topology induced by A [4]. Moreover it is clearly a
dense ideal of 4. Hence by a theorem due to Kaplansky [4] we see that A is dual.
Thus the proof is completed. )

We remarked in the preceding § that every closed right ideal of a dual B*.algebra
is the intersection of regular maximal right ideals containing it. We shall show that this
property holds also for a c.c. dual 4*-algebra.

Tueorem 11.  Let A be a c.c. dual A*-algebra. Then every closed right ideal of
A is the intersection of regular maximal right ideals of A contuining it.

Proor. A4 is a dense subalgebra of a c.c. B*.algebra U as stated in the proof of
Theorem 9. Denote by E the closure of a subset ECU. Let.M be any regular maximal
right ideal of 4. We show that M is a regular maximal right ideal of . L (M), the
left annihilator of M in 4, is a closed minimal left ideal generated by a self-adjoint
primitive idempotent e€ A, and M={x; ex=0, x€ A}. It is clear that M ={z; ez=0,
z€ A} and We is a minimal left ideal. Therefore M is a regular maximal right ideal of
A. Conversely if M is a regular maximal right ideal of U and e is a self-adjoint
primitive idempotent generating L(M), then clearly e€ 4 and MNA={x; ex=0,x € A}.
Since ¢ is a self-adjoint primitive idempotent of A, IMNA is a regular maximal right .
ideal of 4. Let N be any closed right ideal of 4. N=R,(L,(N))=R,{L(N)NA}
:—:R{L(N)F\A} NADRI(N)NA=NNA. Hence N=NNA. As remarked above, N
is the intersection of regular maximal right ideals M of A containing N. Therefore
N=(nIM)NA=N(IMMNA), that is, N is the intersection of regular maximal right ideals
of A containing N. This completes the proof.

We remark here that if 4 is a c.c. dual A™algebra and A is dense in a B*-algebra
A, then the correspondence N— N establishes a one-to-one mapping between the families of
closed right ideals of 4 and .

Tueorem 12. Let A be a c.c. A*-algebra. A is Sfinite-dimensional if and only if
A has a unit.

Proor. It is ‘well-known that if 4 is finite-dimensional, then 4 has a unit since it
is semi-simple. Conversely suppose that A has a unit e. A c.c. B*algebra A in which
A is dense has ¢ as a unit, and therefore U is finite-dimensional. This implies that A is

finite-dimensional, completing the proof.
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§ 5. Dual A*.algebras

The following theorem will play an important role in our further study of dual
A*-algebras.

Tueorem 13. Let A be a semi-simple dual Banach. x-algebra in which x*x=0
implies x=0. If A satisfies any of the following conditions : .

(1) Every primitive ideal of A is a direct summand.

(2) x—x™* is continuous.
Then A is an A*-algebra and a dense subalgebra of a dual B*-algebra U which is
uniquely determined up to *-isomorphism.

Proor.  Every minimal right ideal of A4 is generated by a unique self-adjoint
primitive idempotent of 4. Using a result of Kaplansky (4] concerning the structure of
semi-simple dual ring, we see that A4 is the closure of its socle which is a direct sum of
simple dual ideals S, of the form Ae,4 where e, is a self-adjoint primitive idempoent.
Suppose first that (2) holds. The closure S, and its left annihilator M, are closed self-
adjoint ideals and M, is & primitive ideal of 4. Since S,+ M, is dense in 4 [6], so
is the image of S, in 4/M,. Let [x], stand for the coset x+ M, and [[[x],| the factor
space norm. We can introduce in [e,A], an inner product ([x],, [¥].,) by the relation
(%]as [y)a) [ea)a=[eawy™ess [14]. The operator Tp,,: [x],—>[%z)s; [x].€[esd]s is
continuous in the norm defmed by the above inmer product [14]. Denote by |[z],| the
operator norm |7 14{l. We may assume that x| =|lx*||. 4/M, may be considered as
an A*-algebra with an auxiliary norm |[x],], and therefore |lx||*>>|x*x[|=i/[x*x],]|
=|[x*x],| = |[x]s]® It is easily seen that we may ‘regard A/M,, as a dense subalgebra
of the C*-algebra K, of all completely continuous operators on the Hilbert space obtained
by completing [¢,4],. Consider the B*(co)sum A of all K,’s. x—[x], is continuous
and the image of the socle of 4 by this mapping is dense in . Since x—{[x],} is a
*-isomorphism into, we may consider 4 as a dense subalgebra of A. Theorem 3 shows
that ¥ is uniquely determined up to *-isomorphism. v

Next we turn to the case (1). Then 4=3S,+ M (direct sum), and M, is self-adjoint
since M,=L(S,)=R(S,), S, being self-adjoint. Similarly S, is self-adjoint. By the
same argument as in the proof of Theorem 9, we can show that x—x™ is continuous,
and therefore A4 satisfies the statement of the theorem to be proved.

In an A*.algebra any s.subalgebra is semi-simple, x—x™* is continuous and x*x=0
implies x=0 [15]. This together with Theorem 13 gives

Turorem 14.  Any dual A*-algebra has a unique auxiliary morm and is a dense
subalgebra of a dual B*-algebra which' is uniquely determined up to *-isomorphism.
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Next we consider the conditions under which a dual A4™-algebra becomes c.c. - To
this end we need a lemma.

Lemma 7. Any dual A™-algebra with a unit is finite-dimensional and a direct sum
of full matrix algebra over the complex field.

Proor.  We can prove this lemma in the same manner as in the proof of
Theorem 12. ’

Turorem 15.  Let A be a dual A*-algebra and let A be a B*-algebra in which A
~ is dense. Then the following conditions are equivalent :

1) Adiscec.

(2) There exists in A a femily of orthogonal self-adjoint central idempotents
{en} such that no non zero elements are orthogonal to {e,}.

3 Uisgec..

(4) A is strongly semi-simple.

Proor. (1)—(2) follows from the proof of Theorem 9.

(2)—>(3). A4 is generated by {e,}. If z€¥ is orthogonal to {e,}, then z is
orthogonal to 4 and therefore to U. This implies 22*=0, thet is, z=0. Hence
Theorem 7 shows that (2) implies (3). .

(3)>(4). Let M be any primitive ideal. From the proof of Theorem 13 we see
that a completion of A4/M by a certain auxiliary norm is a B*-.algebra and a closed
simple ideal of . Since A is c.c., this completion has a unit and therefore 4/M is
finite-dimensional and has a unit. Therefore 4/M is simple. Consequently M is a regular
.maximal ideal. Since this is true for every primitive ideal, 4 is strongly semi-simple.

(4)—>(1). Let M denote any ‘regular maximal ideal and S its left annihilator. Since
A/M is simple and has a unit, S is isomorphic with 4/M. Therefore S has a unit e.
It is easy to see that e is a self-adjoint central idempotent. Lemma 7 shows that S=Ae
is finite-dimensional and therefore c.c.. The closure of the union of all such S
coincides with A since A is strongly semi-simple. Clearly every element of S is c.c. in
A. Hence A is c.c.. Thus the theorem is completely proved.

If 4 is a commutstive A*-algebra, then a dual B*-algebra A is commutative, and
therefore c.c. by Theorem 7. This together with Theorem 15 gives

Cororrary,  Any commutative dual A*-algebra is c.c. .

§ 6. w.c.c. A*algebras

We start with
Levma 8. Let B be a Banach *-algebra which is a dense ideal in a dual

/
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’r :
A*-algebra A. Let I denote any closed right ideal of B and T its closure in A. Then
(1) INB=RKLKI)), the right annihilator of the left annihilator of I in B.
(2) IBCIL
(3) B is dudl if and only if, for every x€ B, the closure of xB in B contains

Proor. (1) L(A)=LUI)>LyI)=L{I)NBDBL(). Since x€ Ax for every x€ A
(4], it follows that BL(J)=AL(I)=L(I), and therefore Ly(I)=L(7). This implies that
Ry(Ly(1))=R(Ly1)"B=RI(I))NB=INB since A is dual [4].

(2) Let z be any element of I. Choose a sequence {z,} from I in such a way
that |lz,—z||,~0. By Lemma -4, [zb—zb|;<lcliz,—z||,[lbilz for every bE B, where
[ li4and || iz stand for norms in 4 and B respectively. Hence [jz,b—zbl/z—0, that
is, zb€ I

(3) If B is dual, then the closure of xB in B contains x [4]. Therefore it is
sufficient to prove the converse. Let I be any colsed right ideal of B. Take any
x€JNB. Since the closure of xB in B contains x and I is closed, it follows from (2)
that x€ I, that is, IN\BD I, and therefore IAB=1. (1) implies thet I=Ry(Ly(I)). By
means of the *.involution we see that, for every closed left ideal J, we obtain J=_L,(Ry(])).
Therefore B is dual. The proof is completed.

Levma 9. Let B be a Banach x-algebra which is a dense ideal in an A*-algebra
A. Then

(1) Ais w.c.c. if Bis w.c.c. and A® is dense in A.
(2) Bis w.c.c. if Ais w.c.c. and B® is dense in B.

Proor. (1) Let b, be any element of B. Let {x,} be any sequence from A
such that [lx,|,=1 (»n=1,2,---). By Lemma 4, {#'x,} is bounded in B, and therefore
there exists a subsequence {x,} such that {bb'x, } converges weakly to an element in B.
Since the mapping x—>x from B into A is continuous [15], {bb'x, } converges weakly
to an element in A, that is, bb’ is a w.c.c. element of A. Tt is easy to see that B? is
dense in A. This completes the proof of (1) since the set of w.c.c. elements is closed
2] |

(2) Let b, be any elements of B. Let {x,} be any bounded sequence from B,
which is also bounded in A [15]. There exists a subsequence {x,} such that {b'x, }
converges weakly to an element z of 4 in 4. Let ¢ be any continuous linear functional
on B. If we put V(x)=¢(bx), x< A, then ¥ is a continuous linear function on A.
Since B is an ideal of A4, bz B. Tt follows from ¢ (bb'x,, —bz)==V(b'x, —z)—0 that
b is a w.c.c. element of B. But B? is dense in B. Therefore B is w.c. c.,

completing the proof.
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It is to be noted that the lemma is valid with c.c. instead of w.c.c. in the
statement of the lemma.

Lemma 10.  If A is a Banach *-dlgebra satisfying ([3)), then A=A~

Proor. Let x be a self-adjoint element with non-negative spectrum. Using the
Gelfand representation we can find y € 4 such that x=y" that is, x€ A% Since any
element of 4 is a linear combination of such x’s, we have our conclusion, completing
the proof.

Now we shall show

Turorem 16. Let A be a w.c.c. A*-algebra with an auxiliary norm x| such
that |zy||<clx| |lyll for every x,y€ A, where c is a constant. Let one of the following
conditions be satisfied :

(1) The closure of xA contains x for every x€ A.

(2) A4 is reflexive. : _
Then A is dual and is a dense ideal of the completion U of A by |x|. U is equivalent
to @ w.c.c. B*algebra. For any family of orthogonal self-adjoint idempotents {e,} of
A, Dlex is summable in the norm of A, and especially when {e,} is a maximal family,
%= \e,x holds for every x€ A.

Proor. U is a Banach *-algebra satisfying (8,) and therefore, by Lemma 10,
A=A’. Lemma 9 shows that A is w.c.c.. It follows from Theorem 8 that we may
assume that A is a B*.algebra with morm |x|. Let (1) be satisfied. A is dual by
Lemma 8. We shall show the summability of > e,x for every x € A. >e,x is summable
in the norm of A by Corollary 1 to Theorem 6. Moreover, when {e,} is maximal in 4,
it is also maximal in ¥ and x=7 le,x by the same theorem. Since the mapping z—>zq,
a€ A being fixed, from A into 4 is continuous, it follows that, for every y € 4, Ze“xy
is summable in the norm of A. Using (1) we can take y, such that Hx-xy,,H<—’17
(n=1, 2, ---). Except for a set of at most countable e,, exy,=0 (n=1, 2, --).
(e, + - Feg )2l <[[(eq, + - +e5 )2y, +cllx—xy,[[. It is easy to see that > le,x is
summable in the norm of 4. This implies that »je,x is summable in the norm of A.
Next suppose that (2) is satisfied. It follows from Lemma 8 that 4 is dual since it is
locally  weakly corhpact. Except for a set of at most countable e, , ex=0.
[[(eq,+ - +e, ) x||<clx||, that is, {(es,+--+e,)x} is bounded. Since A is locally
weakly compact, {(em-%— +e,,n)x} has a weakly convergent subsequence in A It is easy
to see that D e,x is summable in the norm of 4. Therefore D le,x is summable in A.
Moreover, if {e,} is maximal, we have x=>e,x. Thus the proof is completed.

In a similar manner we have 7/
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Turorem 17. Let A be a w. c. c. /B*-algebra and A be a Banach *-algebra which is
a dense ideal of U. Let A satisfy (1) or (2) of the preceding theorem. Then A is dual
and w.c.c. . )

Let 4 be a dual 4*-algebra with an auxiliary norm [x|. Let A be the completion
of 4 by {x|. If A is an ideal of A, we say that A is of the I kind. Otherwise we
" say that 4 is of the 2nd kind. Now we give a necessary and sufficient condition for a
dual A*.algebra to be of the 1st kind.

Tueorem 18.  For a dud A*-algebm to be of the It kind it is necessary and
sufficient that ||x|] 1*1 u b eyl satisfies (B).

Proor. Let A be a dual A™algebra of the 1st kind. A is a dense ideal of a
B*.algebra U with norm [x|. Lemma 4 shows that ||xyl<c|x| |ly]| for every x,y€ A

and for some constant ¢. This implies [|x||,<(c|x|. [|»{], has the usual norm properties
(except for the completeness) and the multiplicative property. Let U, stand for the
completion of 4 by lxll;. The mapping x—>x from A with norm |/x!| onto 4 with norm
llxl]; can be extended to a continuous homomorphism ¢ of ¥ into ;. The kernel J of
¢ is a closed ideal of ¥ with the property JNA=0. From the proof of Lemma 1 J
must be a zero ideal, that is, ¢» is an isomorphism. Using the minimal character of the
usual norm in the algebra C(£2), we have |x|°= [x™x| <|lx* x|, <|la*[, /x|, <c|x] ljx,.
Thus two norms [x| and ||x]|; are equivalent, and therefore ||x||, satisfies (/3;).
Conversely let us suppose that |lxjj, satisfies (3,). 4 is a dual A™-algebra with an
auxiliary norm !lx/l;. This implies that 4 is a dual 4™-algebra of the 1st kind. Thus
the proof is completed.

Let A be a proper H*-algebra as indicated in §2. A is reflexive and an A™-algebra

with an auxiliary norm |x | =L 1}1 b. [xyli. Hence A is a dual A™.algebra of the 15t kind.
=1
Any closed *-subalgebra of a dual B*.algebra is dual. We shall show that the

same is true for a dual A™.algebra of the 1st kind. Namely

Tueorem 19. Let A be a dual A*-algebra of the 15t kind. Then any closed
*-subalgebra B of A is a dual A*-algebra of the Ist kind.

Proor. Let ¥ be a dual B*™.algebra with norm |[x| of which 4 is a dense ideal.
Let B denote the closure of B in A. B is a closed *-subalgebra of U, and therefore a
dual B*-algebra. Using the inequality |lxyll<lc|x|fly|| it is easy to see that B is a
dense ideal of B. The proof is completed if we show that the closure of xB in B
contains x for every x€ B (Lemma 8). Let {e,} be a maximal family of orthogonal
self-adjoint idempotents e, in B. Since B is a dense ideal of B, we can easily see that
€,€ B. By Theorem 16 > xe, is summable in 4 for every x € B, and therefore in B.
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Since {e,} is maximal in B, it follows that x=1lxe,, and therefore the closure of xB
in B contains %, completing the proof.

Cororrary. Let A be an A*-algebra which is a dense ideal of a dual A*-algebra
A, of the 15t kind. A closed *-subalgebra B of A is dual if the closure of xB contains
x for every x€ B.

Proor.  Theorem 19 shows that the closure B, of B in A, is dual. B is a dense
ideal of B,. It follows from Lemma 8 that B is dual.

§ 7. Some properties of dual A*-algebras

Let G be a compact group and L,(1<_p<(co) be the algebra of complex-valued
measurable functions on (, whose p'h powers are integrable with respect to the Haar -
measure on (7, and with convolution as multiplication. We shall also write C for the
algebra of continuous functions on (¥, normed by the maximum of the absolute value. C
is a dense ideal of L, and is c.c.. L, is dual since it is a proper H*.algebra. It
follows from Lemma 8 (3) that C is dual. Moreover C is of the 2nd kind unless G is

finite. For, {lx|;=L u. b. L u b. ISx(gh‘l)y(h)dh[ =1. u. b. [Sx(h)y(h)dh] :Slx(h,) | dh,
l¥y]=1 - ge€ =1
so that the completion of C by the norm |x!/; is L;. L, is weakly complete. Hence L,

satisfies (/3,) if and only if L, is finite-dimensional [12], or equivalently (7 is finite. In
case of an infinite G we can even prove that L; is of the 20d kind. To this end a
notion due to Segal [17] is useful : an approximate identity of a normed algebra 4 is a
Moore-Smith directed system {u,} of elements of A such that [ju,[|<{1 and lim xu,=x
for every x€ A. .

Lewwa 11. Let B be a dual Banach *-algebra which is a dense ideal of an A™-
algebra A. 1f B has an approximate identity {u,}, then A is dual. '

Proor.  Let a be any element of 4. Consider bE B such that la—bj] ;<& Then
lla—au,| ;<lla—blj 4+ [[b— ual] +[[bug — auy|| <E+cllb— buy[| +¢'l|b—al| 4liuall 5, Where c,
¢’ are constants. This follows from the continuity of the mapping x—x from B into A
[15], and the assumption that B is a dense ideal of 4 (Lemma 4). lim|ja—au,[j<<é(1+¢')
and therefore lim|la—au,!!=0. This implies that a€ad for evea;y ac A. Tt follows
from a theorem wof Kaplansky (4] that A4 is dual, since B is, a fortiori, still dual in the
relative topology on B induced by A.

Lemva 12, Let A be a dual A™*-algebra with an approximate identity and B a
Banach *-algebra which is a dense ideal of A. Then, if B is reflexive, B is dual.

Proor. B is locally weakly compact, and for any }CEB {xu,} is bounded in B

(Lemma 4). Hence {xu,} contains a cofinal set converging weakly to an element z€ B.
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Since Hx\—xudll +—0, and every continuous linear functional on A4 is continuous on B
[1‘5], we have z=x. Hence x is contained in the closure of xB. Lemma 8 shows that
B is dual, completing the proof.

By making use of these lemmas we shall show the following

Tueorem 20. Let A be a dual A*-algebra of the 27 kind with norm |x||. Put
flxll;=).w b. lxy| for every x€A. If |lx*||;=|lxl;, and A has an approximate
identity ”%’u,:}l with respect to the new norm ||x|| |, then the completion A, of A by the norm
lx!l, is a dual A*-dlgebra of the 2nd kind. Moreover ;

(1) Any dual A*-algebra with A as a dense ideal is considered as a subalgebra
of A,. ) ]

(2) There exists no A*-algebra with A, as a dense proper ideal.

(3) Any reflexive Banach -algebra which is a dense ideal of A, is dual.

Proor. It follows from the definition of A, that {u,} is an approximate identity
of A, as well. First we show that 4, is semi-simple, that is, the radical R of 4, is a
zero ideal. For otherwise there would exist a self-adjoint primitive idempotent e€ A such
that Re=:0, since Re=0 for every e implies that RA=0 and therefore Ru,=0 and
R=0. Then eRe= (the complex field) x e. This implies that e€ R, which is a contr-
adiction since —e has no quasi-inverse. And it is easy to see that x*c=0 implies x=0
for every x€ A,. Therefore Theorem 13 shows that A14 is a dual A™algebra with a
unique (to within equivalence) auxiliary norm |x|,. |x|, is also an auxiliary norm of 4.
Now we show that 4, is of the 2nd kind. If it were of the 1st kind, then, for every
5y €A, [muyl|<lza syl <elw| fal Iy <elzl lyl, ¢ being a constant, nd
therefore |lxy|| <<c|x|,|ly|| which implies that A4 is of the 1st kind. This is a contradic-
tion. Ad(1): Let B be any dual 4*.algebra such that A is a dense ideal of B. Then
|y || 4=cllx| gyl for every x, y€ A4, c being a constant. This implies that x|/, <c|x|[.
Hence we have a continuous *-homomorphism ¢ of B into A, as a result of the extension
of the mapping x—x, x€ 4. It is easy to see that the kernel of ¢ is a zero ideal,
completing the“proof of (1). Ad (2): Let x be any. element of A,. As |xu,li;—|x|,

for every x€ A4,, we have [x[;=L u.b.llxy|,. Let 4, denote any A4™*-algebra with A,
fyllh=1
as a dense ideal. It follows from Lemma 11 that A, is dual. Hence case (1) shows

that A4, is mapped *-isomorphically onto 4, in such -a way that x <> x for every x€ 4,,
that is, 4,=A4,. This completes the proof of (2). Ad (3): This is a simple corollary
of Lemma 12.

As C satisfies the conditions indicated in the preceding Theorem, L, is of the 2nd

kind unless G is finite. Moreover it is c.c. (Lemma 9). Any element x€ L, is associated



34 T. OGASAWARA and K. YOSHINAGA

with an operator on L, defined as a left multiplication by x. The closure of the algebra
of all such operators on L, forms a dual B*-algebra associated with L,. L, is dual by (3).

Kaplansky [4] has shown that a Banach *.algebra 4 (CCACL) with certain
properties (such as to assure that A4 is an ideal of L and C is dense in 4) is dual.
This follows also from

Turorem 21.  Let B be a dual Banach *-algebra which is a dense ideal of a dual
A*-algebra A. Let B have an approxiﬁuzte identity {u,} with bounded {|u,!,} (Here we
do not assume that {|ju,||z} is bounded.). If A be a Banach x-algebra such that
BC A" CA where B is dense in A" and A’ is an ideal of A, then A’ is dual.

Proor. Let x be any element of 4’. Choose b< B such that [lx—b|, <& Then
Sl =Bl ar + 116 —busal| g + l[btta — 1] <E+C[| b—bug|| g+ || b2

where ¢/, ¢’ are constants. This inequality shows that ||x—xu,|—0, and therefore, by

”x—xuw uwIIA

a’ @
Lemma 8, A’ is dual, completing the proof.

The fundamental theorems on the theory of almost periodic ‘ functions on a group
[9, p. 47] are read as follows: (1) The algebra is a dual A*.algebra. (2) Every closed
right ideal of the algebra is the closure of the union of minimal right ideals contained in
it. But duality translates (2) into the statement (3) Any closed right ideal is the inter-
section of maximal regular right ideals containing it. In a c. c. dual A*-algebra the
statement (3) is always true (Theorem 11). Therefore various group .algebras of a
compact group have the property (2).

Tuecorem 22. Let A be a dual A*-algebra with the property (3) indicated above.
Any dual Banach *-algebra B which is a dense ideal of A has the property (3) as well.

Proor. Let I be any closed right ideal of B. Let I stand for the closure of / in
A. From the fact that B is dual we can see as in the proof of Theorem 11 that
I=INA. Since A has the property (3) we can write I=/\M,, where M, is a regular
maximal right ideal of 4. It follows from the duality of 4 that L(M,)=Ae,, where e,
is a self-adjoint primitive idempotent of 4, and M,= {z; e,z=0, z€ A}. Put N,=M,NA.
Since B is a dense ideal of A4 it is easy to see that e, € B and N,={x; e,x=0,x€B
which is a regular maximal right ideal of B. Hence we obtain /=/\N,. The proof is
completed.

We remark that in the proof of Theorem 22 the fact that B is an ideal of A is
only used to assure that e,€B. Lemma 6 shows that a dual B*-algebra has the property
(3) [7]. Therefore by Theorem 22 any dual A*.algebra of the 1st kind and any dual
A”-algebra contained in it as a dense ideal have the property (3) as well.

As to symmetry we remark that if 4 is a symmetric Banach x-algebra, every ideal

of A is symmetric. Using this we see that any dual A*-algebra of the 1st kind and its
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dense ideal are symmetric. For example a proper H™-algebra is symme;ric. Moreover
from the proof of Theorem 9 every c.c. A*-algebra is symmetric. Therefore the group

algebras considered by Kaplansky [4] are symmetric.

§ 8. Commutative case

We conclude this section with a short discussion on a commutative dual A4*-algebra.
We saw that any commutative dual A*-algebra is c.c. (Corollary to Theorem 15). Now
we show

Tueorem 23.  Let A be a weakly complete commuiative dual A™-algebra. Let {e,}
be a maximal family of orthogonal self-adjoint idempotents of A. Then A is of the
15t kind if and only if, for every x€ A, Sle,x is summable to x in the norm of A.

Proor. It is sufficient to prove “if” part. Let A be a commutative dual B*-algebra
in which 4 is dense. For any z€ U we have z=D u,e,, where the number of p,’s
such that |u,|>=&>0 is finite for every positive pumber & Let ¢ be any continuous
linear functional on 4. Then ¢(x)=3] )»,,d)(ew),» where x=Dle,x=> N\.e, and x<€ A.
Since |p(zxe,)| = |pal |P(xes)|, Dl p(axe,)| is convergent. This implies by a theorem
of Orlicz [2, p. 240] that > zxe, is summable to an element u€ 4 in A. On the other
hand 3] zxe, is summable to zx in A. Hence uw=zx. This shows that A is an ideal
of A, which is to be proved.

Consider the compact group of real numbers mod 1 and its group algebras L,, p>1.
The functions e, = exp (inwt) (n=1,2, ---) form a maximal family of orthogonal self-
adjoint idempotents of each L,. By a well.known result of M. Riesz [19, p.153]
{e,, ey, e_y,---} is a basis of L, provided p>1. But S. Karlin [8] has shown that if
p==2, this basis is not unconditional for L,. Therefore it follows from a result of the
preceding § and Theorem 23 that L, is of the 2rd kind unless p=2.
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