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ABSTRACT. In the present paper, we study the pseudo-Hermitian almost CR structure
of unit tangent sphere bundle 77 M over a Riemannian manifold M. Then we prove
that if the unit tangent sphere bundle 7'M is pseudo-Einstein, that is, the pseudo-
Hermitian Ricci tensor is proportional to the Levi form, then the base manifold M is
Einstein. Moreover, when dim M = 3 or 4, we prove that 71 M is pseudo-Einstein if
and only if M is of constant curvature 1.

1. Introduction

It is well-known that the unit tangent sphere bundle T7M over a
Riemannian manifold M admits a pseudo-Hermitian, strictly pseudo-convex,
almost CR structure (, L) (or (#,J)), where L is the Levi form associated with
an endomorphism J on D(= kernel of #) such that J> = —id. Here, J defines
an almost CR structure # = {X —iJX : X e ['(D)}, that is # N# = {0}.
We say that the almost CR structure is integrable if [#, #] C #. For com-
plex analytical considerations, it is desirable to have integrability of the almost
complex structure J (on D). If this is the case, we speak of an (integrable)
CR structure and of a CR manifold. Indeed, S. Webster ([16]) introduced
the term pseudo-Hermitian structure for a CR manifold with a non-degenerate
Levi-form. In earlier works [3], [5], [7], we started the intriguing study of
the interactions between the contact metric structure and the contact strictly
pseudo-convex almost CR structure. In the present paper, we treat the
pseudo-Hermitian structure on 77M as an extension to the case of non-
integrable 7.

There is a canonical affine connection in a non-degenerate CR manifold,
the so-called pseudo-Hermitian connection (or the Tanaka-Webster connection).
S. Tanno ([15]) extends the Tanaka-Webster connection for strictly pseudo-
convex almost CR manifolds (in which # is in general non-integrable). We
call it the generalized Tanaka-Webster connection.
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We define the pseudo-Hermitian Ricci curvature tensor in a strictly pseudo-
convex almost CR manifold (M;#,J) by

p(X,Y) =trace of {V+— R(V,X)Y},

where X, Y and V7 are any vector fields on M.

If the pseudo-Hermitian Ricci curvature tensor is proportional to the Levi
form in a strictly pseudo-convex almost CR manifold, then it is said to have
the pseudo-FEinstein structure. In Section 3, we obtain the pseudo-Hermitian
curvature tensor and the pseudo-Hermitian Ricci curvature tensor (of gener-
alized Tanaka-Webster connection) on 7;M. In Section 4, we prove that
T)M is pseudo-Einstein, then M is Einstein (Theorem 4). Moreover, when
dim M =3 or 4, we prove that T\ M is pseudo-Einstein if and only if M is of
constant curvature 1 (Corollary 5 and Theorem 6).

The authors are thankful to the referee for a careful reading of the
manuscript and useful comments.

2. Preliminaries

First, we review some fundamental facts on contact metric manifolds.
We refer to [1] for more details. All manifolds are assumed to be connected
and of class C*. A (2n — 1)-dimensional manifold M is said to be an almost
contact manifold if its structure group of the linear frame bundle is reducible to
U(n—1) x {1}. This is equivalent to the existence of a (1, 1)-tensor field ¢, a
vector field £ and a 1-form # satisfying

n@=1 and ¢ =-id+n®¢ (1)

Here (¢,¢&,7n) is called an almost contact structure. Then one can always find
a compatible Riemannian metric §:

g(¢X,¢Y) =g(X,Y) —n(X)n(Y) 2)
for all vector fields X and Y on M. Such a metric is called an associated
metric and (M, ¢,&,n,g) is said to be an almost contact metric manifold. The
Sfundamental 2-form @ is defined by ®(X,Y)=g(X,4Y). If M satisfies in
addition dy = @, then M is called a contact metric manifold, where d is the

exterior differential operator. We call the structure vector field & the Reeb
vector field or the characteristic vector field. From (1) and (2) it follows that

¢&=0, nod=0  nX)=g(X,9%). 3)

Given a contact metric manifold M, we define the structural operator h by
h=1L:p, where L: denotes Lie differentiation for ¢. Then we may observe
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that % is self-adjoint and satisfies
=0 and h¢ = —ph, 4)
Vil =—¢X — ¢hX, (5

where V is the Levi-Civita connection on M. From (4) and (5) we see that
each trajectory of ¢ is a geodesic. For a contact metric manifold M one may
define naturally an almost complex structure J on M x IR;

~(— d - = d
X, L) = (¥ - e
where X is a vector field tangent to M, ¢ the coordinate of R and f a function

on M x R. If the almost complex structure J is integrable, M is said to be
normal or Sasakian. It is known that M is normal if and only if M satisfies

(¢, 9] +2dn @< =0,

where [¢, @] is the Nijenhuis torsion of ¢. A Sasakian manifold is charac-
terized by a condition

Ved)Y = g(X, Y)E —n(Y)X (6)
for all vector fields X and Y on M.

Next, we recall the natural relation of contact metric manifolds with CR
manifolds ([3], [5], [7]). For a contact metric manifold M, the tangent space
T,M of M at each point pe M is decomposed as the direct sum T,M =
D, ®{¢},, where we denote D, ={veT,M|n(v)=0}. Then D:p— D,
defines a (2n — 2)-dimensional distribution orthogonal to &, which is called

the contact distribution. For a given contact metric manifold M = (M;7,g),
its associated almost CR-structure is given by the holomorphic subbundle

# = (X —iJX:XeD)

of the complexification TM® of the tangent bundle TM, where J = 4|, the
restriction of ¢ to D. We see that each fiber #;, xe M, is of complex
dimension n— 1, #NA# = {0} and CD=H# @ K.

We define the Levi form L by

L:DxD—Z(M), LX,Y)=—dyX,JY),

where 7 (
dU(A_’, Y) =
So, the pair (7
structure on M.

denotes the algebra of differential functions on M. Since

g(X,9Y) on M, the Levi form is Hermitian and positive definite.
,L) is a strictly pseudo-convex (pseudo-Hermitian) almost CR
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The associated CR structure is integrable if [#, #) C #. This property
does not hold for a general contact metric manifold. In terms of the structure
tensors, integrability is equivalent to the condition 2 = 0, where Q is the (1,2)-
tensor field on M defined as

QX,Y)= V)Y —g(X +hX,Y)E+n(Y)(X +hX) (7)

for all vector fields X and Y on M (see [14, Proposition 2.1]). In this case, the
pair (,L) is called a strictly pseudo-convex (integrable) CR structure and
(M;n, L) is called a strictly pseudo-convex CR manifold. From (6) and (7), we
see that the associated CR structure of a Sasakian manifold is strictly pseudo-
convex integrable. The same is true for the associated CR structure of any
three-dimensional contact metric space.

We review the generalized Tanaka-Webster connection V ([14]) on a con-
tact strictly pseudo-convex almost CR manifold M = (M;n,L). 1t is defined
by

VY =V ¥ +n(X)¢Y + (Ven)(Y)E —n(Y)Vié
for all vector fields X and Y on M. Together with (5), V may be rewritten

as

VoY =

Y +AX,Y), (8)

<

where we put
AX,Y) =n(X)¢Y +n(Y)($X + $hX) — G(4X + ¢hX, Y)E. ©)
We see that the generalized Tanaka-Webster connection V has the torsion
T(X,Y) = 29(X,$Y) +n(Y)phX — n(X)phY. (10)
In particular, for a K-contact manifold we get
AX,Y) =n(X)¢Y +n(Y)$X — g(¢X, Y)<. (11)

The generalized Tanaka-Webster connection can also be characterized
differently.

ProposITION 1 ([14]).  The generalized Tanaka-Webster connection V on a
contact metric manifold M = (M;1,g) is the unique linear connection satisfying
the following conditions:

(i) Vp=0, VE=0;

(i) Vg=0;
(iti-1) T(X,Y)=2L(X,JY) X,Y eD;
(iii-2) T(&,¢Y)=—¢T(Y), YeD;
(iv) (Vyp)Y =Q(X,Y), X,Y e TM.
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We note that the Tanaka-Webster connection ([13], [16]) was originally
defined for a non-degenerate integrable CR manifold, in which case condition
(iv) reduces to V.J = 0.

The curvature tensor R of generalized Tanaka-Webster connection V is
defined by RX,Y)Z =V, V;|Z - ﬁ[)?, 7 Z for all vector fields X, Y and Z
on M. First we have quite generally

PROPOSITION 2.

The first identity follows trivially from the definition of R. Since the con-
nection is metrical with respect to its associated metric g, Vg =0, the second
identity is proved in a similar way as for the case of Riemanian curvature
tensor. Since the generalized Tanaka-Webster connection is not torsion-free,
the Jacobi- or Bianchi-identies do not hold, in general. Before we study the

curvature tensor R, from (4), (8) and (9) we have
(Veh)Y = (Veh)Y + A(X,hY) — hA(X, Y)
= (Vgh)Y +21(X)$hY + g((¢h + ¢h*) X, Y )&
+37(Y)(phX + ph*X). (12)

We denote by R the Riemannian curvature tensor of M. Then, from the
definition of R, together with (8), taking account of %7 =0,VE=0,Vg=0
and (12), straightforward computations yield

R(X,Y)Z=R(X,Y)Z
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+n(A(X,Z))(¢Y + ¢phY) — n(A(Y,Z))(¢X + ¢hX)
+ G(pX + ¢hX, A(Y,Z)) — G(¢Y + ¢hY , A(X, Z))¢, (13)

where we put P(X,Y)= (Vyh)Y — (Vyh)X. By using (3), (4) and (9), we
have

—2g4(¢X.Y)$Z (15)
for all vector fields X, ¥ and Z on M. The pseudo-Hermitian Ricci curvature
tensor p is given by

2n—1

i=1

=

where {E;} (1 <i<2n—1) is an orthonormal basis on M and p denotes the
Ricci curvature tensor of the Levi-Civita connection.

DerINITION 1 ([6]). Let (M;n,J) be a strictly pseudo-convex almost CR
manifold. Then the pseudo-Hermitian structure (#,J) is said to be pseudo-
Einstein if the pseudo-Hermitian Ricci tensor is proportional to the Levi form,
namely,

H(X,¥) = 2L(X, Y),

where X,Y eI'(D) and A =#/(2n—2). Here # is the scalar curvature of
generalized Tanaka-Webster connection.

3. Unit tangent sphere bundles

The basic facts and fundamental formulas about tangent bundle and
unit tangent sphere bundle are well-known ([2], [7], [8]). Let (M,g) be an
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n-dimensional Riemannian manifold and V the associated Levi-Civita connec-
tion. The tangent bundle over (M,g) is denoted by TM and consists of pairs
(p,u), where p is a point in M and u a tangent vector to M at p. The
mapping n: TM — M, n(p,u) = p, is the natural projection from TM onto
M. For a vector field X on M, its vertical lift X" on TM is the vector field
defined by X’w = w(X) on, where @ is a 1-form on M. For the Levi-Civita
connection V on M, the horizontal lift X" of X is defined by X'w =Vyw.
The tangent bundle TM can be endowed in a natural way with a Riemannian
metric g, the so-called Sasaki metric, depending only on the Riemannian metric
g on M. 1t is determined by

JX" Y =g(X",Y)=g(X,Y)on, GX"Y")=0

for all vector fields X and Y on M. Also, TM admits an almost complex
structure tensor J defined by JX”"= X" and JX'=—X". Then § is a
Hermitian metric for the almost complex structure J.

The unit tangent sphere bundle 7: 7'M — M is a hypersurface of TM
given by g,(u,u) =1. Note that 7 = moi, where i is the immersion of 71M
into TM. A unit normal vector field N = u’ to T\ M is given by the vertical
lift of u for (p,u). The horizontal lift of a vector is tangent to 73 M, but the
vertical lift of a vector is not tangent to 77 M in general. So, we define the
tangential lift of X to (p,u) e T\M by

X(”‘p’u) =X —gX,u)u)".
Clearly, the tangent space 7|, ,)T1 M is spanned by vectors of the form X" and
X', where X e T,M. We now define the standard contact metric structure of
the unit tangent sphere bundle T} M over a Riemannian manifold (M,g). The
metric g’ on Ty M is induced from the Sasaki metric § on TM. Using the
almost complex structure J on TM, we define a unit vector field &', a 1-form 7’
and a (1, 1)-tensor field ¢’ on T\ M by

&'=—JN, ¢ =J-5®N.

Since ¢'(X,4'Y) =2dn'(X,Y), (n',g',4',&') is not a contact metric structure.
If we rescale this structure by

/ 71/ Y 771/
é*zév 77*5777 ¢7¢7 97497

we get the standard contact metric structure (#,d,¢,¢). Here the tensor ¢ is
explicitly given by

gx' = —XM%g(X,u)@ ox" =X, (17)
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where X and Y are vector fields on M. From now on, we consider 71 M =
(T'M,n,g,¢,&) with the standard contact metric structure. The Levi-Civita
connection V of T\ M is described by

Vi ¥' = —g(¥,0)X",

Vi Y= %(R(m X))y,

= 1 A (18)
Vi Y'=(VyY) + 5 (R(, Y)X)",

Vi Y= (Vyy) —%(R(X, Y)u)'

for all vector fields X and Y on M. The Riemann curvature tensor R of Ty M
is given by

RX',YNZ'=—(9(X,Z) —g(X,u)g(Z,u))Y"
+9(Y,2) = g(Y,u)g(Z,u)) X",
R(X', YHZ" = {R(X — g(X,u)u, Y — g(Y,u)u)Z}"

+ 7 AR, X), R, )| Z}",

R(X" Y")Z' = ——{R(Y — g(Y,u)u, Z — g(Z, u)u) X }"

Bl= NI= A=

{R(u, Y)R(u, Z) X }",

R(X" yhz" = %{R(X, Z)(Y —g(Y,u)u)}' — %{R(X, R(u, Y)Z)u}' (19)
3 (TR, )2},

RX" YNZ' = {R(X, Y)(Z — g(Z, u)u)}'
+ % {R(Y,R(u,Z)X)u — R(X,R(u, Z) Y)u}'

F VR 2)Y — (VyR)(w Z2)X)",

ROX, YMZ" = (R(X, V)2)" + 3 {R(u R(X, V) 2)"
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- % {R(u, R(Y,Z)u)X — R(u, R(X,Z)u) Y}"

3 (V2R (X, V)’

for all vector fields X, Y and Z on M.
Now, using (14) and (15), we calculate the curvature tensor R of gener-
alized Tanaka-Webster connection of T7M. Then we have

R(X', YHZ'=R(X', Y"Z',
R(X', YHZ"
=R(X',Y")Z"-g(X,Z) <Yh ——g(Y,u)é — % (R, Y)h>

+9(Y,2) (X” - %g(X, u)é — % (RL,X)I’) + %g(RuX, Z) <Y” - % (R,Y) h)

4R, Z) <X" - (Rm”)

~ o2 { (R V)" = (R XORY) + 3 (R VIRX

1
4
—g(X,u)(Y”——RY ) (Xh—%(RX))}

+{50(R V. 2) = GolR )R, Y. 2) +
3
1

g —g(R(u, Y)R,X,Z)

1
8

+300C00(R,Y. 2) 0V (R .Z)

ﬁ(Xh’ Yt)Zt
n(yvh 7t 1 1
= ROCY)Z' 4 (oY) - g g (V) (2~ Ja(Z¢

1

+ 20X 0{(RW, Y)2)" + g(Z,u)(R,Y)")

| —

+59(RX, Z){2Y" — g(Y,u)é — (R,Y)"}

29

[u—

+ - {g(R(X, u) Y7 Z) + g(Z, u)g(RuX7 Y) - g(Yau)g(Rqu Z)

B

- 3000, Y. Z) 4 30RO R ) Z) (20)
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R(Xh, Yt)Zh
= RO, Y)Z! 2 (9K, V) — (X w)g(¥ ) Z' + 3o(X,)(Rw, V)2)'

=3 {2 o gz - Sory. 2) oy

- ZQ(Z7 u){z(R(X>u) Y), + (R(X, RuY)u)t - Q(Xvu)(Ru Y)t
2V R)(Y, )"}~ gV R)(Y, w 2)¢.

R(Xh, Y/I)zl

ROV YZ 4 200V ) {(R(w X)2)' — g(Z,u)(RuX)')

90X W){(R(w, V)Z)! ~ g(Z,u)(R,Y)'} ~ 7(RX. Z)(R,Y)'

g(RY,Z)(R.X)" ~ %{g((VXR)(Y, uu, Z) — g(Vy R) (X, u)u, Z) }<,
ﬁ(Xh, Yh)Zh

R(X" y"z"+ %g( Y, u)(R(u, X)Z)" — %g(X, u)(R(u, Y)Z)"

_ % 9(2, u){2(R(X, Y)u)" = (RW(R(X, Y)u))" — % (R(u, R, Y)X)"
+ % (R(u, R,X)Y)" + %g(X, u)(R,Y)" — %g( Y, u)(R,X)"

(VxR (Vo) + (VyR)(X, u>u>f}

+ % {4g(R(X, Y)u,Z) — g(R(u, R, Y)X,Z) + g(R(u, R, X)Y,Z)

—29(Ru(R(X, Y)u), Z) + g(X,u)g(R, Y, Z) — g(Y,u)g(R.X, Z) }¢

for all vector fields X, ¥ and Z on M. From (19) and (20), we have the
pseudo-Hermitian Ricci curvature tensor p of 7'M

P 1) = (=3 ) 00X, ¥) = gXeag(Y,0) + 3 a(RGe X, Rl Ve
i=1
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PO YY) = (W)X, V)~ (Vap) e, 1))
9LV (X, ) — (V) w0} 3 g(RLX, ),
P YY) = L{Vap) (X, Y) — (Vyp) e X)) — 3 9(RLX. V),

FOXT Y1) = p(X, ¥) 439X, ¥) — (X, 0)g(Y 1) — g, uhp(X )

n

I3 (R )X Rw.e) V) + g(Y.) S g(Ru.e) X, Ru.eu)
=1

i=1
1 1,

for all vector fields X, Y and Z on M.

4. Pseudo-Einstein unit tangent sphere bundles

In this section, we study the pseudo-Einstein structure of unit tangent
sphere bundle 77M. First, we prove

THEOREM 1. Let M = (M,g) be an n-dimensional Riemannian manifold of
constant curvature ¢ and let T\M be the unit tangent sphere bundle with the
standard contact metric structure (n,g,¢,&) over M. Then T\M is pseudo-
Einstein if and only if M is a 2-dimensional manifold or a space of constant
curvature 1.

Proor. Let M be a space of constant curvature ¢ and 77 M has pseudo-
Einstein structure, ie., p(X,Y) = Ag(X,Y) for any vector fields X and Y
orthogonal to . Then from the definition of pseudo-Einstein and (21), we
have two equations;

3 1 4
CH—EC-FE—Z—O. (23)

From the above two equations, we obtain n =2 or ¢=1. Using (21), the
converse is easily proved. O

THEOREM 2. Let M be an n(> 3)-dimensional Riemannian manifold and
let T\M be the unit tangent sphere bundle with the standard contact metric
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structure (17,G, ¢, &) over M. If T\ M admits a pseudo-Einstein structure, then M
is Einstein.

PrOOF. Suppose that 77 M admits a pseudo-Einstein structure. Then
from (21), we obtain two equations;

(n_j j)((x Y) - <X,u>g<Y,u>>+i;g<R<u,X>ei,R<u,Y)e»

% (RuX, Y)—%g(RX Y) =0, (24)
<_ _ _) %g(X, Wg(Y,u) — g(Y,u)p(X,u)
—Ei:lg(R(u Le) X, R(u,e)Y) + = gYu Zg (u, €)X, R(u, e;)u)
_%g(Rux, Y) +%g(R3X, Y) =0. (25)

Combining (24) and (25), we have
p(X,Y)+ <n 1 E) X,Y) - (n -1 %)g(X,u)g(Y,u) —g(Y,u)p(X,u)

1
Zq (u, )X, R(u,e;)Y +2qYu Zg (u,e;) X, R(u,e;)u)

+%;Q(R(u, X)ei, R(u, Y)e;) = 0. (26)

Let {¢;} (1 <i<n) be an orthonormal basis of the tangent space of M at any
point pe M. Putting X =Y =e¢, and u=¢, (a #b) in (26), we get

1 <& 2
put (115 o =3 3 R 43 SR <0 @

where J,, denotes the Kronecker’s delta, Ry = g(R(e;,¢j)ex,e;) and p; =
plei,e)) for 1<i jklab<n Also, we put X =Y =¢, and u=e,
(a #b) in (26). Then we have

1 n
Pep + (n —-1- —>5bb —5 Z albj Z Z (Rabg'/')z =0. (28)
i,j=1

l]_
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Comparing (27) and (28), we obtain p,, = p,, for all a, b (a # b), that is, M is
Einstein. O

A 3-dimensional Einstein manifold has a constant curvature, by Theorem 1
and Theorem 2, we have the following.

COROLLARY 1. Let M = (M,g) be a 3-dimensional Riemannian manifold.
Then T\ M is pseudo-Einstein if and only if M is of constant curvature 1.

THEOREM 3. Let M = (M, g) be a 4-dimensional Riemannian manifold and
let T\M be the unit tangent sphere bundle with the standard contact metric struc-
ture (n,d,¢,&) over M. Then T\M is pseudo-Einstein if and only if M is of
constant curvature 1.

Proor. From the result of Theorem 2, we see that M is Einstein
(p =ag). Then we may choose an orthonormal basis {¢;} (1 <i<4) (known
as the Singer-Thorpe basis) at each point p € M such that

Ri21o = Rasza = A1, Riziz = Roana = 22,  Risis = Roapz = 73,
Rioza =y, Rizar = t, Riapz = ps, (29)
Rj =0 whenever just three of the indices
i,j,k,l are distinct (cf. [12]).
Note that
Mty +u3 =0 (30)

by the first Bianchi identity and

/11+/12+i3:*£, (31)

where 7 is the scalar curvature of M.
We put X =Y =¢;, u=e; in (26). Then we have
1

p
43 =S+ (= —15) = 0. (32)

Similarly, if we put X =Y =e;, u=e3 in (26), then we have

Al
43S+ — i —45) = 0. (33)

We put X =Y =e¢, u=e4 in (26) to have

A1
w43 =S5 (s — i —45) = 0. (34)

From (32)~(34) and (30), we obtain u; =, = u3 =0.
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On the other hand, if we put X =Y =ej, u=e;and X =Y =e¢|, u=e;3
in (25), we have

1 1 1 1
at 5= Tk =5 (5 +m) =0,
2 4 2 2
(35)
N 1( T+u3)=0
IR M A B
Similarly, put X =Y =e¢;, u=e4 in (25) to have
141, 1,
OC+§—1+§)»3—§(N1+#2)—0 (36)

Since u; = 1y = 3 =0, from (31), (35) and (36), we obtain 4y =1, =13 =
—7/12. Next, we put X =Y =¢;, u=e¢; in (24), we have

————— A+ E'ul =0. (37)

From (37), we obtain 1 =10+ 7/6 and from (36), we see that M is of constant
curvature 1. Conversely, if M is of constant curvature 1, then by Theorem 1,
we see easily that 77 M has the pseudo-Einstein structure. O

REMARK 1. Some authors adopt the pseudo-Einstein structure in almost
contact metric geometry by the condition p(X,Y)=ag(X,Y)+ Bn(X)n(Y)
for some functions o and B (cf. [11]). Indeed, the unmit tangent sphere bundle
satisfying the above condition ([4]) and the related condition ([9]) was studied.
Another notable notion is the so-called ¢-Einstein structure which is defined in
[10].  In this context, it is interesting to study the unit tangent sphere bundle with
¢-Einstein structure.
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