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Abstract. In this paper, we prove some uniqueness results which improve and

generalize several earlier works. Also, we prove a value distribution result concerning

f ðkÞ which is related to a conjecture of Fang and Wang [A note on the conjectures of

Hayman, Mues and Gol’dberg, Comp. Methods, Funct. Theory (2013) 13, 533–543].

1. Introduction

Throughout, by a meromorphic function we always mean a non-constant

meromorphic function in the complex plane C.

We use the notations of Nevanlinna value distribution theory [2] such as

mðr; f Þ, Nðr; f Þ, Tðr; f Þ and Sðr; f Þ defined as follows:

mðr; f Þ ¼ mðr;yÞ :¼ 1

2p

ð2p
0

logþj f ðreiyÞjdy;

where r > 0 and logþ x ¼ maxflog x; 0g;

Nðr; f Þ ¼
ð r
0

nðt; f Þ � nð0; f Þ
t

dtþ nð0; f Þ log r;

where nðt; f Þ denotes the number of poles of f in fz : jzja tg, each pole is

counted according to its multiplicity;

Tðr; f Þ ¼ mðr; f Þ þNðr; f Þ;

and Sðr; f Þ is any quantity satisfying

lim
r!y

Sðr; f Þ
Tðr; f Þ ¼ 0;

possibly outside a set of finite linear measure.
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By Eða; f Þ, we denote the set of zeros of f � a counting multiplicities

(CM) and by Eða; f Þ, the set of zeros of f � a ignoring multiplicities (IM).

Two meromorphic functions f and g are said to share the value a CM if

Eða; f Þ ¼ Eða; gÞ and to share the value a IM if Eða; f Þ ¼ Eða; gÞ. Further,

by EkÞða; f Þ, we denote the set of zeros of f � a with multiplicities at most k

in which each zero is counted according to its multiplicity. Also, by EkÞða; f Þ,
we denote the set of zeros of f � a with multiplicity at most k, counted once.

We denote by A, the class of meromorphic functions f satisfying

Nðr; f Þ þN r;
1

f

� �
¼ Sðr; f Þ:

Clearly, each member of class A is a transcendental meromorphic function.

Also for any a A C, we define

N1 r;
1

f � a

� �
¼ N r;

1

f � a

� �
�N r;

1

f � a

� �

and

N2 r;
1

f � a

� �
¼ N r;

1

f � a

� �
þNð2 r;

1

f � a

� �
;

where Nðkðr; 1=ð f � aÞÞ is the counting function of those zeros of f � a whose

multiplicity is at least k, and Nðkðr; 1=ð f � aÞÞ is the one corresponding to

ignoring multiplicity. Finally, by Sð f Þ, we denote the set of small functions

of f ; that is,

Sð f Þ :¼ fa j a is meromorphic and Tðr; aÞ ¼ Sðr; f Þ as r ! yg:

The uniqueness theory of meromorphic functions has perfected the value

distribution theory of Nevanlinna and has a vast range of applications in

complex analysis. For recent developments in the uniqueness theory of mero-

morphic functions (sharing, weighted sharing and q-di¤erence sharing of poly-

nomials), one may refer to [6, 8, 11].

In the present paper, we prove some uniqueness results which improve

and generalize the works of Yang and Yi [9] , Wang and Gao [5], and Huang

and Huang [3]. Also, a result related to a conjecture of Fang and Wang [1]

concerning value distribution of f ðkÞ � a, where k A N and a ð2 0;yÞ is a

small function of f , is obtained.

2. Main results

Yang and Yi [9, Theorem 3.29, p. 197] proved the following result for

class A:
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Theorem A. Let f ; g A A, and a be a non-zero complex number. Fur-

thermore, let k be a positive integer.

( i ) If E1Þða; f Þ ¼ E1Þða; gÞ, then f 1 g or fg1 a2.

(ii) If E1Þða; f ðkÞÞ ¼ E1Þða; gðkÞÞ, then f 1 g or f ðkÞgðkÞ 1 a2.

A function f is said to share a value a partially with g IM if Eða; f Þ �
Eða; gÞ. We use the notation N1Þðr; 1=ð f � aÞjg0 aÞ, to denote the simple

zeros of f � a, that are not the zeros of g� a. Using this notation and the

notion of partial sharing, we improve Theorem A as

Theorem 1. Let f ; g A A, a be a non-zero complex number and k be a

positive integer.

( i ) If E1Þða; f Þ � E1Þða; gÞ and N1Þðr; 1=ðg� aÞj f 0 aÞ ¼ Sðr; gÞ, then

f 1 g or fg1 a2.

(ii) If E1Þða; f ðkÞÞ � E1Þða; gðkÞÞ and N1Þðr; 1=ðgðkÞ � aÞj f ðkÞ 0 aÞ ¼ Sðr; gÞ,
then f 1 g or f ðkÞgðkÞ 1 a2.

Example. Consider f ðzÞ ¼ ez and gðzÞ ¼ e2z. Then f ; g A A, E1Þð1; f Þ �
E1Þð1; gÞ and N1Þðr; 1=ðg� 1Þj f 0 1Þ0Sðr; gÞ, and the conclusion of Theorem

1 does not hold. Thus, the condition ‘‘N1Þðr; 1=ðg� aÞj f 0 aÞ ¼ Sðr; gÞ’’ in

Theorem 1, is essential.

In 2011, Huang and Huang [3, Theorem 3, p. 231] improved a result of

Yang and Hua [7, Theorem 1, p. 396] as

Theorem B. Let f and g be two meromorphic functions and nb 19 be

an integer. If E1Þð1; f nf 0Þ ¼ E1Þð1; gng 0Þ, then either f ¼ dg for some ðnþ 1Þ-th
root of unity d or f ðzÞ ¼ c1e

cz and gðzÞ ¼ c2e
�cz, where c, c1, c2 are constants

satisfying ðc1c2Þnþ1
c2 ¼ �1.

In this paper, we improve Theorem B for functions of class A as

Theorem 2. Let f ; g A A, nb 2 be an integer and að0 0Þ A C. If

E1Þða; f nf 0Þ ¼ E1Þða; gng 0Þ, then either f ¼ dg for some ðnþ 1Þ-th root of unity

d or f ðzÞ ¼ c1e
cz and gðzÞ ¼ c2e

�cz, where c, c1, c2 are constants satisfying

ðc1c2Þnþ1
c2 ¼ �a2.

Concerning sharing of small functions, Wang and Gao [5, Theorem 1.3,

p. 2] proved:

Theorem C. Let f and g be two transcendental meromorphic functions,

að2 0Þ A Sð f Þ \ SðgÞ, and let nb 11 be a positive integer. If f nf 0 and gng 0

share a CM, then either f nf 0gng 0 1 a2 or f ¼ dg for some ðnþ 1Þ-th root of

unity d.
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Definition. Let f and g be two non-constant meromorphic functions,

and a is a small function related to both f and g. We say that f and g share

the small function a CM if f � a and g� a assume the same zeros with the

same multiplicities.

Here in this paper, we partially extend Theorem C to a more general class

of di¤erential polynomials as

Theorem 3. Let f and g be two transcendental meromorphic functions,

að2 0Þ A Sð f Þ \ SðgÞ, and let n, m, k be positive integers satisfying n > kmþ
3mþ 2k þ 8, and m > k � 1. If f nð f mÞðkÞ and gnðgmÞðkÞ share a CM, then

either

f nð f mÞðkÞgnðgmÞðkÞ 1 a2 or f nð f mÞðkÞ 1 gnðgmÞðkÞ:

For m > k � 1, we have n > k2 þ 4k þ 5 so that by substituting k ¼ 1,

we get n > 10. Thus Theorem 3 reduces to Theorem C.

Concerning the value distribution of k-th derivative of a meromorphic

function, Fang and Wang [1, Proposition 3, p. 542] proved the following result:

Theorem D. Let f be a transcendental meromorphic function having at

most finitely many simple zeros. Then f ðkÞ takes on every non-zero polynomial

infinitely often for k ¼ 1; 2; 3; . . . .

Definition. A meromorphic function f is said to take a function h

infinitely often if f � h has infinitely many zeros.

Further, Fang and Wang [1, Question 2, p. 543] asked the following

question:

Question. Let f be a transcendental meromorphic function having at most

finitely many simple zeros. Must f ðkÞ take on every non-zero rational function

infinitely often for k ¼ 1; 2; 3; . . . ?

Here, we obtained a result related to the above question involving small

function as

Theorem 4. Let f be a transcendental meromorphic function having at

most finitely many simple zeros and Nðr; 1=f 00Þ ¼ Sðr; f Þ. Let að2 0;yÞ A
Sð f Þ, then f ðkÞ � a has infinitely many zeros for k ¼ 1; 2; 3; . . . .

3. Some lemmas

We recall the following results which we shall use in the proof of main

results of this paper:
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Lemma 1 [7, Theorem 3, p. 396]. Let f and g be two non-constant

entire functions, nb 1 and að0 0Þ A C. If f nf 0gng 0 ¼ a2, then f ðzÞ ¼ c1e
cz and

gðzÞ ¼ c2e
�cz, where c, c1, c2 are constants satisfying ðc1c2Þnþ1

c2 ¼ �a2.

Lemma 2 [9, Lemma 1.10, p. 82]. Let f1 and f2 be non-constant mero-

morphic functions and let c1, c2 and c3 be non-zero constants. If c1 f1 þ c2 f2 1
c3, then

Tðr; f1Þ < N r;
1

f1

� �
þN r;

1

f2

� �
þNðr; f1Þ þ Sðr; f1Þ:

Lemma 3 [9, Lemma 3.8, p. 193]. If f A A and k is a positive integer, then

f ðkÞ A A.

Lemma 4 [9, Lemma 3.9, p. 194]. If f ; g A A and f ðkÞ ¼ gðkÞ, where k is a

positive integer, then f 1 g.

Lemma 5 [9, Lemma 3.10, p. 194]. If f A A and a is a finite non-zero

number, then

N1Þ r;
1

f � a

� �
¼ Tðr; f Þ þ Sðr; f Þ;

where N1Þðr; 1=ð f � aÞÞ denotes the simple zeros of f � a.

Lemma 6 [9, Theorem 1.24, p. 39]. Suppose f is a non-constant mero-

morphic function and k is a positive integer. Then

N r;
1

f ðkÞ

� �
aN r;

1

f

� �
þ kNðr; f Þ þ Sðr; f Þ:

Lemma 7 [5, Lemma 2.3, p. 3]. Let f and g be two meromorphic func-

tions. If f and g share 1 CM, then one of the following must occur: i)

Tðr; f Þ þ Tðr; gÞa 2fN2ðr; 1=f Þ þ N2ðr; 1=gÞ þ N2ðr; f Þ þ N2ðr; gÞg þ Sðr; f Þ þ
Sðr; gÞ, ii) either f 1 g or fg1 1.

Lemma 8 [1, Lemma 1, p. 537]. Let f be a transcendental meromorphic

function, let kb 2 be an integer, and e > 0. Then

ðk � 1ÞNðr; f Þ þN1 r;
1

f

� �
aN r;

1

f ðkÞ

� �
þ eTðr; f Þ:

4. Proof of main results

We divide this section into four subsections as follows:
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4.1. Proof of Theorem 1. Since E1Þða; f Þ � E1Þða; gÞ,

N1Þ r;
1

f � a

� �
aN1Þ r;

1

g� a

� �
:

Since (by Lemma 5)

N1Þ r;
1

f � a

� �
¼ Tðr; f Þ þ Sðr; f Þ

and

N1Þ r;
1

g� a

� �
¼ Tðr; gÞ þ Sðr; gÞ;

therefore,

Nð2 r;
1

f � a

� �
¼ Sðr; f Þ;

Nð2 r;
1

g� a

� �
¼ Sðr; gÞ

and

Tðr; gÞbTðr; f Þ þ Sðr; f Þ: ð1Þ

Define a function h : C ! C by

hðzÞ ¼ f ðzÞ � a

gðzÞ � a
: ð2Þ

Since E1Þða; f Þ � E1Þða; gÞ, we have

Nðr; hÞaNðr; f Þ þNð2 r;
1

g� a

� �
þN1Þ r;

1

g� a

���� f 0 a

� �
¼ Sðr; gÞ ð3Þ

N r;
1

h

� �
aNðr; gÞ þNð2 r;

1

f � a

� �
¼ Sðr; gÞ ð4Þ

and

Tðr; hÞaTðr; f Þ þ Tðr; gÞ þOð1Þa 2Tðr; gÞ þ Sðr; gÞ:

Let f1 ¼ ð1=aÞ f , f2 ¼ h, f3 ¼ ð�1=aÞhg. Then,

X3
j¼1

fj 1 1: ð5Þ
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Combining (2), (3) and (4), we get

X3
j¼1

Nðr; fjÞ þN r;
1

fj

� �� �
¼ Sðr; gÞ:

Clearly, f1, f2 and f3 are linearly dependent and so there exist three constants

c1, c2 and c3 (at least one of them is not zero) such that

X3
j¼1

cj fj ¼ 0: ð6Þ

If c1 ¼ 0, then from (6) we see that c2 0 0, c3 0 0, and

f3 ¼ � c2

c3
f2: ð7Þ

Substituting (7) into (5) gives

f1 þ 1� c2

c3

� �
f2 ¼ 1: ð8Þ

From (7) and (8), we get

Tðr; f3Þ ¼ Tðr; f1Þ þOð1Þ

and thus

TðrÞ ¼ Tðr; f1Þ þOð1Þ; ð9Þ

where TðrÞ ¼ max
1aja3

fTðr; fjÞg.
Since f1 is not a constant, it follows from (8) that 1� c2=c3 0 0. From

(8), (9) and Lemma 2, we deduce that

TðrÞ < N r;
1

f1

� �
þN r;

1

f2

� �
þNðr; f1Þ þ SðrÞ ¼ SðrÞ;

where SðrÞ ¼ oðTðrÞÞ, which is a contradiction and so c1 0 0, and then (6) gives

f1 ¼ � c2

c1
f2 �

c3

c1
f3: ð10Þ

Now, from (5) and (10), we get

1� c2

c1

� �
f2 þ 1� c3

c1

� �
f3 ¼ 1: ð11Þ

We consider the following three cases:
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Case 1: 1� c2=c1 0 0 and 1� c3=c1 0 0: In this case, (10) and (11)

give

f1 ¼
c2 � c3

c1 � c2
f3 �

c2

c1 � c2
: ð12Þ

From (11) and (12), we have

Tðr; f2Þ ¼ Tðr; f1Þ þOð1Þ

and hence

TðrÞ ¼ Tðr; f1Þ þOð1Þ: ð13Þ

Applying Lemma 2 to (11) and using (13), we obtain

TðrÞ < N r;
1

f2

� �
þN r;

1

f3

� �
þNðr; f2Þ þ SðrÞ ¼ SðrÞ;

which is a contradiction.

Case 2: 1� c2=c1 ¼ 0. From (11), we have 1� c3=c1 0 0, and

f3 ¼
c1

c1 � c3
: ð14Þ

Since 1� c2=c1 ¼ 0, we obtain c1 ¼ c2. Thus from (10) and (14), we

obtain

f1 þ f2 ¼ � c3

c1 � c3
: ð15Þ

If c3 0 0, then by applying Lemma 2 to (15), we obtain

TðrÞ < N r;
1

f1

� �
þN r;

1

f2

� �
þNðr; f1Þ þ SðrÞ ¼ SðrÞ;

which is a contradiction. Hence c3 ¼ 0 and so from (14), it follows that

f3 1 1.

Case 3: 1� c3=c1 ¼ 0. From (11), we have 1� c2=c1 0 0, and

f2 ¼
c1

c1 � c2
: ð16Þ

Since 1� c3=c1 ¼ 0, we obtain c1 ¼ c3. Thus from (10) and (16), we

obtain

f1 þ f3 ¼ � c2

c1 � c2
: ð17Þ
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If c2 0 0, then by applying Lemma 2 to (17), we obtain

TðrÞ < N r;
1

f1

� �
þN r;

1

f3

� �
þNðr; f1Þ þ SðrÞ ¼ SðrÞ;

which is a contradiction. Hence c2 ¼ 0 and so from (16), it follows that

f2 1 1.

Thus if f2 1 1, then by (2), we get f 1 g. If f3 1 1, then (2) gives

fg1 a2: This proves (i).

From Lemma 3, we see that f ðkÞ; gðkÞ A A. Using the conclusion of (i),

we get either

f ðkÞ 1 gðkÞ

or

f ðkÞgðkÞ 1 a2:

If f ðkÞ 1 gðkÞ, then from Lemma 4, we have f 1 g. This completes the proof

of (ii). r

4.2. Proof of Theorem 2. Let the functions F and G be given by

F ¼ f nþ1

nþ 1
and G ¼ gnþ1

nþ 1
:

By hypothesis, E1Þða; f nf 0Þ ¼ E1Þða; gng 0Þ, therefore

E1Þða;F 0Þ ¼ E1Þða;G 0Þ:

Now

Nðr;FÞ þN r;
1

F

� �
¼ N r;

f nþ1

nþ 1

� �
þN r;

nþ 1

f nþ1

� �

¼ Nðr; f Þ þN r;
1

f

� �

¼ Sðr; f Þ

¼ Sðr;FÞ:

Similarly by replacing F by G in above equation, we have

Nðr;GÞ þN r;
1

G

� �
¼ Sðr;GÞ:

Thus F ;G A A and so by the Theorem 2.1, it follows that either

F 0G 0 1 a2 or F 1G:
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Consider the case F 0G 0 1 a2, that is,

f nf 0gng 0 1 a2: ð18Þ

Suppose that z1 is a pole of f of order p. Then z1 is a zero of g of order say

q and so from (18), we find that

nqþ q� 1 ¼ npþ pþ 1:

That is, ðq� pÞðnþ 1Þ ¼ 2, which is not possible as nb 2 and p, q are posi-

tive integers. Thus f and g are entire functions and so from Lemma 1, we

get f ðzÞ ¼ c1e
cz and gðzÞ ¼ c2e

�cz, where c, c1, c2 are constants satisfying

ðc1c2Þnþ1
c2 ¼ �a2.

Next consider the case when F 1G. This gives

f nþ1

nþ 1
¼ gnþ1

nþ 1

or

f nþ1 ¼ gnþ1:

Hence f ¼ dg for some ðnþ 1Þ-th root of unity d. r

4.3. Proof of Theorem 3. Let the functions F and G be given by

F ¼ f nð f mÞðkÞ

a
and G ¼ gnðgmÞðkÞ

a
:

Since f nð f mÞðkÞ and gnðgmÞðkÞ share a CM, F and G share 1 CM. Since (by

Lemma 6 and Tðr; aÞ ¼ Sðr; f Þ),

N2 r;
1

F

� �
þN2ðr;FÞaN2 r;

1

f nð f mÞðkÞ

 !
þN2ðr; f nð f mÞðkÞÞ þ Sðr; f Þ

aN2 r;
1

f n

� �
þN2 r;

1

ð f mÞðkÞ

 !
þ 2Nðr; f nð f mÞðkÞÞ þ Sðr; f Þ

a 2N r;
1

f

� �
þN r;

1

ð f mÞðkÞ

 !
þ 2Nðr; f Þ þ Sðr; f Þ

a 2N r;
1

f

� �
þN r;

1

f m

� �
þ kNðr; f mÞ þ 2Nðr; f Þ þ Sðr; f Þ

¼ 2N r;
1

f

� �
þmN r;

1

f

� �
þ kNðr; f Þ þ 2Nðr; f Þ þ Sðr; f Þ
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¼ 2N r;
1

f

� �
þmN r;

1

f

� �
þ ðk þ 2ÞNðr; f Þ þ Sðr; f Þ

a 2Tðr; f Þ þmTðr; f Þ þ ðk þ 2ÞTðr; f Þ þ Sðr; f Þ

¼ ðk þmþ 4ÞTðr; f Þ þ Sðr; f Þ;

therefore,

N2 r;
1

F

� �
þN2ðr;F Þa ðk þmþ 4ÞTðr; f Þ þ Sðr; f Þ: ð19Þ

On the similar lines we can write (19) for the function G as

N2 r;
1

G

� �
þN2ðr;GÞa ðk þmþ 4ÞTðr; gÞ þ Sðr; gÞ: ð20Þ

Since

nTðr; f Þ ¼ Tðr; f nÞ ¼ T r;
f nð f mÞðkÞ

a
� a

ð f mÞðkÞ

 !

aTðr;F Þ þ T r;
1

ð f mÞðkÞ

 !
þ Tðr; aÞ þ Sðr; f Þ

aTðr;F Þ þ T r;
1

ð f mÞðkÞ

 !
þ Sðr; f Þ

aTðr;F Þ þ ðk þ 1ÞT r;
1

f m

� �
þ Sðr; f Þ

¼ Tðr;F Þ þ ðkmþmÞT r;
1

f

� �
þ Sðr; f Þ;

therefore

ðn� km�mÞTðr; f ÞaTðr;FÞ þ Sðr; f Þ: ð21Þ

Similarly,

ðn� km�mÞTðr; gÞaTðr;GÞ þ Sðr; gÞ: ð22Þ

Adding (21) and (22), we get

ðn� km�mÞfTðr; f Þ þ Tðr; gÞga fTðr;FÞ þ Tðr;GÞg þ Sðr; f Þ þ Sðr; gÞ: ð23Þ

Suppose that
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Tðr;FÞ þ Tðr;GÞa 2 N2 r;
1

F

� �
þN2 r;

1

G

� �
þN2ðr;F Þ þN2ðr;GÞ

� �

þ Sðr;FÞ þ Sðr;GÞ ð24Þ

holds. Then from (19), (20), (23) and (24), we have

ðn� km�mÞfTðr; f Þ þ Tðr; gÞg

a 2 N2 r;
1

F

� �
þN2 r;

1

G

� �
þN2ðr;F Þ þN2ðr;GÞ

� �

þ Sðr; f Þ þ Sðr; gÞ

a 2ðk þmþ 4ÞfTðr; f Þ þ Tðr; gÞg þ Sðr; f Þ þ Sðr; gÞ

¼ ð2k þ 2mþ 8ÞfTðr; f Þ þ Tðr; gÞg þ Sðr; f Þ þ Sðr; gÞ;

which implies that

ðn� km� 3m� 2k � 8ÞfTðr; f Þ þ Tðr; gÞgaSðr; f Þ þ Sðr; gÞ;

a contradiction since n > kmþ 3mþ 2k þ 8, where m > k � 1.

Thus, by Lemma 7, it follows that either

FG1 1

or

F 1G:

That is, either

f nð f mÞðkÞgnðgmÞðkÞ 1 a2

or

f nð f mÞðkÞ ¼ gnðgmÞðkÞ: r

4.4. Proof of Theorem 2. Since

m r;
1

f

� �
¼ m r;

f ðkÞ

f
� 1

f ðkÞ

� �

am r;
1

f ðkÞ

� �
þm r;

f ðkÞ

f

� �

¼ m r;
1

f ðkÞ

� �
þ Sðr; f Þ;

358 Kuldeep Singh Charak and Banarsi Lal



therefore,

Tðr; f Þ �N r;
1

f

� �
aTðr; f ðkÞÞ �N r;

1

f ðkÞ

� �
þ Sðr; f Þ;

and so

N r;
1

f ðkÞ

� �
aTðr; f ðkÞÞ � Tðr; f Þ þN r;

1

f

� �
þ Sðr; f Þ: ð25Þ

Applying the second fundamental theorem of Nevanlinna [2, Theorem 2.5,

p. 47] to the function f ðkÞ, we get

Tðr; f ðkÞÞaNðr; f ðkÞÞ þN r;
1

f ðkÞ

� �
þN r;

1

f ðkÞ � a

� �
þ Sðr; f ðkÞÞ:

That is,

Tðr; f ðkÞÞaNðr; f Þ þN r;
1

f ðkÞ

� �
þN r;

1

f ðkÞ � a

� �
þ Sðr; f Þ: ð26Þ

Since Nðr; 1=f 00Þ ¼ Sðr; f Þ, it follows from Lemma 8 with k ¼ 2

that

Nðr; f Þ þN1 r;
1

f

� �
aN r;

1

f 00

� �
þ eTðr; f Þ

¼ eTðr; f Þ þ Sðr; f Þ:

Thus, from (25), (26) and the fact that f has finitely many simple zeros,

we get

Tðr; f ÞaN r;
1

f ðkÞ � a

� �
þNðr; f Þ þN r;

1

f

� �
þ Sðr; f Þ

aN r;
1

f ðkÞ � a

� �
þNðr; f Þ þN r;

1

f

� �
þ Sðr; f Þ

¼ N r;
1

f ðkÞ � a

� �
þNðr; f Þ þN1 r;

1

f

� �
þN r;

1

f

� �
þ Sðr; f Þ

aN r;
1

f ðkÞ � a

� �
þ eTðr; f Þ þ 1

2
N r;

1

f

� �
þ Sðr; f Þ
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aN r;
1

f ðkÞ � a

� �
þ eTðr; f Þ þ 1

2
Tðr; f Þ þ Sðr; f Þ

¼ N r;
1

f ðkÞ � a

� �
þ 1

2
þ e

� �
Tðr; f Þ þ Sðr; f Þ;

which implies that

1

2
� e

� �
Tðr; f ÞaN r;

1

f ðkÞ � a

� �
þ Sðr; f Þ: ð27Þ

Taking e ¼ 1=4 in (27), we get

Tðr; f Þa 4N r;
1

f ðkÞ � a

� �
þ Sðr; f Þ:

Hence f ðkÞ � a has infinitely many zeros for k ¼ 1; 2; 3; . . . : r
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