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Abstract. In this paper, we define a new class of Riemannian submanifolds which

we call arid submanifolds. A Riemannian submanifold is called an arid submanifold

if no nonzero normal vectors are invariant under the full slice representation. We see

that arid submanifolds are a generalization of weakly reflective submanifolds, and arid

submanifolds are minimal submanifolds. We also introduce an application of arid

submanifolds to the study of left-invariant metrics on Lie groups. We give a su‰cient

condition for a left-invariant metric on an arbitrary Lie group to be a Ricci soliton.

1. Introduction

Let X be a Riemannian manifold, and Y be a Riemannian submanifold

in X . Denote by IsomðX Þ the group of isometries of X , and let NðYÞ �
IsomðXÞ be the subgroup which normalizes the Riemannian submanifold Y .

That is,

NðYÞ :¼ fj A IsomðXÞ j jðY Þ ¼ Yg:

The group NðYÞ is sometimes called the extrinsic isometry group of Y , and an

element of NðYÞ is called an extrinsic isometry of Y .

Definition 1.1. Take any subgroup H of NðY Þ, and fix a point p A Y .

Denote by T?
p Y the normal space of Y at p. The action of the stabilizer

Hp :¼ fj A H j jðpÞ ¼ pg on T?
p Y by di¤erential

g:x :¼ ðdgÞpx ðg A Hp; x A T?
p YÞ

is called the H-slice representation of Y at p A Y . We also call the NðYÞ-slice
representation the full slice representation.

Remark 1.2. The above definition of slice representations seems to be

slightly di¤erent from the usual one; the notion of slice representations is
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usually defined for an isometric action on a Riemannian manifold. Recall that

the slice representation of an isometric G-action at a point p is the action of

the stabilizer Gp on the normal space of the orbit G:p at p by di¤erential. We

remark that the notion of usual slice representations is contained in our H-slice

representations. In fact, the slice representation of a G-action at a point p

is nothing but the G-slice representation of the Riemannian submanifold G:p

at p.

The following Riemannian submanifold is the one which we consider in

this paper.

Definition 1.3. Take any subgroup H � NðYÞ. A Riemannian sub-

manifold Y is called an H-arid submanifold if the H-slice representation of Y

at any point has no nonzero fixed points. We call an NðY Þ-arid submanifold

just an arid submanifold.

Remark 1.4. A Riemannian submanifold Y is an H-arid submanifold

for H � NðYÞ if and only if Y satisfies the following condition: for all p A Y

and for all 00 x A T?
p Y , there exists j A Hp such that j:x0 x.

An arid submanifold holds an interesting position in the theory of

Riemannian submanifolds. One can see that the notion of arid submanifolds

is a generalization of weakly reflective submanifolds. On the other hand, any

arid submanifold is a minimal submanifold. For more details on the position-

ing of arid submanifolds in the submanifold theory, see Section 2. For simple

examples of arid submanifolds, see Section 3.

In general, a homogeneous arid submanifold can be characterized as

follows:

Theorem 1.5. Let Y be a closed homogeneous submanifold in X. Then

the followings are equivalent:

(1) Y is an arid submanifold.

(2) There exists some closed subgroup G � IsomðXÞ such that Y is an isolated

orbit of the G-action.

In Section 4, we prove this theorem. In particular, Theorem 1.5 says that

any isolated orbit of any isometric proper action is an arid submanifold.

Hence, isolated orbits provide many examples of arid submanifolds.

In Section 5, we introduce an application of the notion of arid sub-

manifolds. Namely, we give a su‰cient condition for a left-invariant metric

on a Lie group to be a Ricci soliton. This su‰cient condition comes from

a framework to study left-invariant metrics via the action of the group of

automorphisms and scalings on the set of all left-invariant metrics. Now

we describe the framework. Let G be a simply connected Lie group with
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Lie algebra g. Denote by MðgÞ the set of all positive definite inner products

on g. Recall that a left-invariant metric on G is canonically identified with an

inner product on g. Hence, we can regard MðgÞ as the set of all left-invariant

metrics on G. Also, GLðgÞ acts on MðgÞ by base changing:

g:h ; i :¼ hg�1; g�1i ðg A GLðgÞÞ: ð1:1Þ

We also note that the GLðgÞ-action on MðgÞ is transitive, and MðgÞ endows

with a GLðgÞ-homogeneous Riemannian structure. In fact, by choosing a

basis of g, one can identify MðgÞ with the Riemannian symmetric space

GLðn;RÞ=OðnÞ. Denote by AutðgÞ the group of automorphisms of g. Let

R� AutðgÞ be the subgroup of GLðgÞ given by

R� AutðgÞ :¼ fcj A GLðgÞ j c A Rnf0g; j A AutðgÞg;

and consider the isometric action of R� AutðgÞ on MðgÞ given in (1.1). We

note that, for any left-invariant metric h ; i, the orbit R� AutðgÞ:h ; i is a

submanifold in MðgÞ. Now we state a su‰cient condition for obtaining left-

invariant Ricci solitons as follows:

Theorem 1.6. Let h ; i A MðgÞ be a left-invariant metric on G. If the

orbit R� AutðgÞ:h ; i is an AutðgÞ-arid submanifold in MðgÞ, then the left-

invariant metric h ; i is a Ricci soliton.

Left-invariant Ricci solitons on Lie groups have been studied actively by

many geometers (e.g. [14, 15, 24]). In particular, left-invariant Ricci solitons

on solvable Lie groups have been deeply studied. On the other hand, it seems

that little result is known for left-invariant Ricci solitons on general Lie groups.

We note that one can apply Theorem 1.6 for any Lie group.

Theorem 1.6 gives a kind of extension of works by Hashinaga and Tamaru

in [7]. They have been studying left-invariant Ricci solitons via studying the

minimality of the orbits of R� AutðgÞ-actions. They have proved that

Theorem 1.7 ([7]). Let G be a three-dimensional simply connected solvable

Lie group, and g be the Lie algebra of G. Then for any left-invariant metric

h ; i A MðgÞ, the followings are equivalent:

(1) the metric h ; i is a solvsoliton. That is, there exists some l A R and some

D A DerðgÞ such that

Rich;ið ; Þ ¼ l � h ; iþ hD; i:

(2) the orbit R� AutðgÞ:h ; i is a minimal submanifold in MðgÞ.

Note that a solvsoliton is in fact a left-invariant Ricci soliton ([15]). The

above theorem makes us expected that left-invariant Ricci solitons can be
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characterized by the minimality of the R� AutðgÞ-orbits. Unfortunately, it

has shown that the expectation is wrong: both ‘‘minimal ) Ricci soliton’’ and

‘‘minimal ( Ricci soliton’’ fail in general cases ([6]). Theorem 1.6 asserts that

if one strengthen the assumption from ‘‘minimal’’ to ‘‘AutðgÞ-arid’’, then the

implication ‘‘)’’ holds for general Lie groups at least.

2. The positioning of arid submanifolds in the theory of submanifolds

The positioning of arid submanifolds in the theory of Riemannian sub-

manifolds is organized as follows.

reflective submanifold ) totally geodesic submanifold

+ +
weakly reflective submanifold ) austere submanifold

+ +
arid submanifold ) minimal submanifold

ð2:1Þ

A Riemannian submanifold Y in X is called a reflective submanifold if

there exists some s A IsomðXÞ with s � s ¼ id such that Y is the connected

component of the set of fixed points of s. The isometry s is called a reflection

of Y . The notion of reflective submanifolds has been introduced in [16].

Note that a reflective submanifold is totally geodesic.

A Riemannian submanifold Y is called an austere submanifold if Y satisfies

the following property; for all p A Y and for all v A T?
p Y , the set of eigenvalues

with multiplicities of the shape operator Av is invariant under the multiplication

by �1. The notion of austere submanifolds is motivated by the study of

special Lagrangian submanifolds ([5]). Clearly, a totally geodesic submanifold

is an austere submanifold.

Next, we recall the notion of weakly reflective submanifolds.

Definition 2.1 ([9]). A Riemannian submanifold Y is called a weakly

reflective submanifold if Y satisfies the following property; for all p A Y and

x A T?
p Y , there exists some isometry j A IsomðX Þ such that

jðpÞ ¼ p; jðY Þ ¼ Y ; ðdjÞpðxÞ ¼ �x:

In other words, a weakly reflective submanifold is a submanifold whose

full slice representation can invert any normal vector. Also, a reflective sub-

manifold with a reflection s is a weakly reflective submanifold, since any

normal vectors are inverted by s at the same time. It has been shown in [9]

that a weakly reflective submanifold is an austere submanifold.
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Recall that a minimal submanifold is a Riemannian submanifold whose

mean curvature vector vanishes identically. One can easily see that austere

submanifolds are minimal submanifolds.

We now prove the parts in (2.1) relating to arid submanifolds:

Proposition 2.2. One has

(1) A weakly reflective submanifold is an arid submanifold.

(2) An arid submanifold is a minimal submanifold.

Proof. By the definition of weakly reflective submanifolds, the first asser-

tion is obvious. The second assertion follows from the fact that the mean

curvature vector is invariant under the full slice representation. r

Remark 2.3. It is easy to see that any codimension one arid submanifold

is weakly reflective. However, there exist arid submanifolds which are not

weak reflective. We see an example in Section 3. Also, there exist minimal

submanifolds which are not arid. For examples, one can see that the catenoid

surface in R3 is not arid.

The right three submanifolds appeared in (2.1) are defined by curvature

properties. Reflective submanifolds are the special case of totally geodesic

submanifolds, which are defined by extrinsic symmetry. Also, weakly reflective

submanifolds are ‘‘extrinsic symmetry version’’ of austere submanifolds. In

this paper, we defined a class of submanifold which is corresponding to mini-

mal submanifolds.

3. Simple examples of arid submanifolds

In this section, we introduce simple examples of arid submanifolds which

are not weakly reflective. Denote by SkðrÞ � Rkþ1 the k-dimensional sphere

with radius r. Fix two integers m; nb 2. Let us denote by X :¼ Smn�1ð
ffiffiffiffi
m

p
Þ.

Set Y � X be the m-times direct product of Sn�1ð1Þ. That is,

Y :¼ fðx1; . . . ; xmÞ A Rmn j Ei A f1; . . . ;mg; xi A Sn�1ð1Þg:

Remark that, in this section, we always regard an element of Rmn as an m-tuple

of elements of Rn. Note that Y is a submanifold of X with codimension

ðm� 1Þ. We claim that

Proposition 3.1. One has

(1) Y is an arid submanifold in X,

(2) Y is not austere if mb 3. In particular, Y is not weakly reflective if

mb 3.
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Now we introduce some extrinsic isometries of Y � X which play key

roles to prove Proposition 3.1. Firstly, denote by H :¼ OðnÞ � � � � �OðnÞ the

m-times direct product of OðnÞ. Then H acts on Rmn by

g:x :¼ ðg1x1; . . . ; gmxmÞ ðg :¼ ðg1; . . . ; gmÞ A H; x :¼ ðx1; . . . ; xmÞ A RmnÞ:

Then one has H � NðY Þ. Secondly, denote by Sm the symmetric group on

f1; . . . ;mg. Then Sm acts on Rmn by

s:x :¼ ðxsð1Þ; . . . ; xsðmÞÞ ðs A Sm; x :¼ ðx1; . . . ; xmÞ A RmnÞ:

Hence, Sm is also a subgroup of NðY Þ. Among the elements of Sm, we

especially use transpositions. For i; j A f1; . . . ;mg, let us denote by sij A Sm

the transposition with respect to i and j. That is,

sijðiÞ ¼ j; sijð jÞ ¼ i; sijðkÞ ¼ k ðk0 i; jÞ:

Denote by e1 :¼ tð1; 0; . . . ; 0Þ A Rn, and put p :¼ ðe1; . . . ; e1Þ A Rmn. Note

that the stabilizers Hp and ðSmÞp act on TpY and T?
p Y by di¤erential. Our

strategy to prove Proposition 3.1 is to analyse these actions. One can see that

TpX ¼ fv A Rmn j hv; pi ¼ 0g ¼ ðv1; . . . ; vmÞ A Rmn

����X
i

hvi; e1i ¼ 0

( )
:

Here, h ; i is the canonical inner product on the Euclidean space. The tangent

space TpY is given by

TpY ¼ fðw1; . . . ;wmÞ A Rmn j Ei A f1; . . . ;mg; hwi; e1i ¼ 0g:

Also, the normal space T?
p Y is obtained as follows:

T?
p Y ¼ fðx1e1; . . . ; xme1Þ A Rmn j x1 þ � � � þ xm ¼ 0g:

Next, we determine the stabilizers of the actions of H and Sm, and describe

the actions. One can see that

Hp ¼ fðg1; . . . ; gmÞ A H j gie1 ¼ e1gGOðn� 1Þ � � � � �Oðn� 1Þ;

and the actions on TpY and T?
p Y by di¤erential are given by

g:v ¼ ðg1v1; . . . ; gmvmÞ ðv :¼ ðv1; . . . ; vmÞ A TpX Þ; ð3:1Þ

where g :¼ ðg1; . . . ; gmÞ A Hp. On the other hand, the actions of ðSmÞp ¼ Sm

on TpY and T?
p Y by di¤erential are

s:v ¼ ðvsð1Þ; . . . ; vsðmÞÞ ðv :¼ ðv1; . . . ; vmÞ A TpXÞ; ð3:2Þ

where s A Sm. Now, we are in the position to prove the first assertion of

Proposition 3.1.

6 Yuichiro Taketomi



Proof (of (1) of Proposition 3.1). Since H acts on Y transitively, the full

slice representation at each x A Y is H-equivalent to the full slice representation

at p ¼ ðe1; . . . ; e1Þ. Hence, one has only to prove that for all x A T?
p Ynf0g

there exists g A NðY Þp such that g:x0 x.

Take any x ¼ ðx1e1; . . . ; xme1Þ A T?
p Ynf0g. Since x0 0 and x1 þ � � � þ xm

¼ 0, there exist i; j A f1; . . . ;mg such that xi 0 xj. Let us put g :¼ sij A NðYÞp.
By Equation (3.2), one has

g:x ¼ ðx1e1; . . . ; xje1; . . . ; xie1; . . . ; xme1Þ0 x;

which completes the proof. r

Next, we prove the second assertion of Proposition 3.1. For all

i A f1; . . . ;mg, let us define

T i
p :¼ fðx1; . . . ; xmÞ A TpY j Ej0 i; xj ¼ 0g � TpY :

Then one has an orthogonal decomposition TpY ¼ T 1
p l � � �lTm

p . Denote by

pi : TpY ! T i
p the natural projection

piðx1; . . . ; xmÞ ¼ ð0; . . . ; 0; xi; 0; . . . ; 0Þ ððx1; . . . ; xmÞ A TpY Þ:

Also, for all i A f1; . . . ;mg, we define hi A T?
p Y by

hi :¼ ðe1; . . . ; e1;�ðm� 1Þe1; e1; . . . ; e1Þ:

Here, the i-th component of hi is �ðm� 1Þe1, and the other components are e1.

Firstly, we claim that

Lemma 3.2. Let a : TpY � TpY ! T?
p Y be a symmetric bilinear map.

Assume that a is equivariant under the Hp-action and Sm-action. Then there

exists some l A R such that

aðx; yÞ ¼ l
Xm
i¼1

hpiðxÞ; piðyÞihi ðx; y A TpYÞ:

Proof. Take any symmetric bilinear map a : TpY � TpY ! T?
p Y which

is equivariant under the actions of Hp and Sm. This proof consists of four

steps. Firstly, we claim that

Step 1. For all i; j A f1; . . . ;mg with i0 j, aðT i
p;T

j
p Þ ¼ f0g.

Take any i; j A f1; . . . ;mg with i0 j. Also, take any Xi A T i
p and Xj A T j

p .

We show that aðXi;XjÞ ¼ 0. Denote by g ¼ diagð1;�1; . . . ;�1Þ A OðnÞ. Let

us define ĝg A H by

ĝg :¼ ðid; . . . ; id; g; id; . . . ; idÞ;
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where the i-th component of ĝg is g, and the other components are id. Since

ge1 ¼ e1, one has ĝg A Hp. Then Equation (3.1) and Hp-equivariancy of a yield

that

aðXi;XjÞ ¼ ĝg:aðXi;XjÞ ¼ aðĝg:Xi; ĝg:XjÞ ¼ að�Xi;XjÞ:

This concludes that aðXi;XjÞ ¼ 0.

By the assertion of Step 1, one has að ; Þ ¼
P

i aðpi; piÞ. Now we study

each ai :¼ ajT i
p�T i

p
. Next, we prove

Step 2. aiðT i
p;T

i
pÞ � spanRfhig for all i A f1; . . . ;mg.

Take any i A f1; . . . ;mg. By Equation (3.2), one can see that

sjk:v ¼ v ðv A T i
p; j; k A f1; . . . ;mgnfigÞ:

This and Sm-equivariancy of a yield that

sjk:aiðx; yÞ ¼ aðsjk:x; sjk:yÞ ¼ aiðx; yÞ

for all x; y A T i
p and j; k A f1; . . . ;mgnfig. Hence one has

aiðT i
p;T

i
pÞ �

\
j0i;k0i

fx A T?
p Y j sjk:x ¼ xg ¼ spanRfhig:

Then one can obtain a simple expression of ai as follows:

Step 3. For all i A f1; . . . ;mg, there exists li A R such that aið ; Þ ¼
lih ; ihi.

Take any i A f1; . . . ;mg. Let us put yið ; Þ :¼ ð1=hhi; hiiÞhaið ; Þ; hii. By

the assertion of Step 2, one can see that aið ; Þ ¼ yið ; Þhi. To prove Step 3,

we have only to show that there exists some li A R such that yið ; Þ ¼ lih ; i.
Now let us put

Hi :¼ fðg1; . . . ; gmÞ A H j gie1 ¼ e1; Ej0 i; gj ¼ idgGOðn� 1Þ:

Then Hi � Hp acts on T i
p GRn�1 irreducibly. On the other hand, Hi � Hp

acts on T?
p Y trivially. Hence one has

yiðg:x; g:yÞ ¼ ð1=hhi; hiiÞhaiðg:x; g:yÞ; hii ¼ ð1=hhi; hiiÞhg:aiðx; yÞ; hii ¼ yiðx; yÞ

for all g A Hi and x; y A T i
p. This concludes that yi is a symmetric bilinear

form on T i
p which is invariant under the irreducible representation of Hi.

Hence, by the Schur’s lemma, there exists some li A R such that yið ; Þ ¼ lih ; i.
Finally we study each constant li. We show that

Step 4. l1 ¼ � � � ¼ lm.
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Take any i; j A f1; . . . ;mg. We prove that li ¼ lj. Take any x A T i
p with

hx; xi ¼ 1. By the Sm-equivariancy of a, one has

sij :aðx; xÞ ¼ aðsij :x; sij :xÞ: ð3:3Þ

We firstly study the right hand side of (3.3). From (3.2), one has sij :x A T j
p

and hsij :x; sij :xi ¼ 1. This yields that

aðsij:x; sij:xÞ ¼ ajðsij :x; sij :xÞ ¼ ljhsij:x; sij:xihj ¼ ljhj:

Next we study the left hand side of (3.3). Equation (3.2) yields that sij :hi ¼ hj .

Then one has

sij:aðx; xÞ ¼ sij :aiðx; xÞ ¼ lihx; xisij :hi ¼ lihx; xihj ¼ lihj:

Since hj 0 0, one has lj ¼ li.

By the assertions of Step 1 to Step 4, one has

aðx; yÞ ¼
Xm
i¼1

aiðpiðxÞ; piðyÞÞ ¼
Xm
i¼1

lhpiðxÞ; piðyÞihi;

which completes the proof. r

Since Hp and Sm are the subgroups of NðYÞp, the second fundamental

form Sp : TpY � TpY ! T?
p Y is equivariant under the actions of Hp and Sm.

Hence Lemma 3.2 determines the second fundamental form of Y up to scaling.

In particular, we obtain an explicit representation of the shape operator of Y

as follows:

Proposition 3.3. There exists some l A Rnf0g such that for all x A T?
p Y,

the shape operator Ax : TpY ! TpY is given by

Axx ¼ l
Xm
i¼1

hhi; xipiðxÞ ðx A TpY Þ:

In particular, the eigenvalues of Ax are given by

lhh1; xi; . . . ; lhh1; xi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn�1Þ-times

; . . . ; lhhk; xi; . . . ; lhhk; xi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn�1Þ-times

; . . . ; lhhm; xi; . . . ; lhhm; xi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn�1Þ-times

:

Proof. By the assertion of Lemma 3.2, there exists some l A R such

that the second fundamental form S : TpY � TpY ! T?
p Y is given by Sð ; Þ ¼

l
P

i hpi; piihi. Since Y is not totally geodesic, and is H-homogeneous, one

has l0 0. Then by the definition of the shape operator, one has
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hAxx; yi ¼ l
X
i

hpiðxÞ; piðyÞihi; x
* +

¼ l
X
i

hpiðxÞ; yihhi; xi

¼ l
X
i

hhi; xipiðxÞ; y
* +

for all x; y A TpY . Thus we obtain that Ax ¼ l
P

i hhi; xipi. Our claim for

the eigenvalues easily follows from AxjT i
p
¼ lhhi; xi idT i

p
, and dim T i

p ¼ n� 1

for all i A f1; . . . ;mg. r

Now we are in the position to prove the remaining assertion of Proposi-

tion 3.1.

Proof (of (2) of Proposition 3.1). Assume that mb 3. We have only

to prove that there exists some x A T?
p Y such that the set of eigenvalues of

the shape operator Ax is not invariant under the multiplication by �1. Let

us put x :¼ hm A T?
p Y . By the assertion of Proposition 3.3, there exists some

l A Rnf0g such that the eigenvalues of Ax are given by

lhh1; hmi; . . . ; lhh1; hmi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn�1Þ-times

; . . . ; lhhm; hmi; . . . ; lhhm; hmi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn�1Þ-times

:

On the other hand, one has

hh1; hmi ¼ � � � ¼ hhm�1; hmi ¼ �m; hhm; hmi ¼ mðm� 1Þ:

Thus we obtain that the eigenvalues of Ax are

�lm; . . . ;�lm|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ðn�1Þðm�1Þ-times

; lmðm� 1Þ; . . . ; lmðm� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn�1Þ-times

:

Since l0 0, and mb 3, one can see that the set of eigenvalues is not invariant

under the multiplication by �1. r

Remark 3.4. If m ¼ 2, then it has been shown that Y :¼ Sn�1ð1Þ �
Sn�1ð1Þ is weakly reflective ([9]). In fact, the first assertion of Proposition 3.1

claims that Y is an arid submanifold of codimension m� 1, and as mentioned

in Remark 2.3, a codimension one arid submanifold is weakly reflective.

4. A characterization of homogeneous arid submanifolds

In this section, we prove Theorem 1.5. We here recall the notion of

isolated orbits. Let G be a Lie group, acting on a manifold X . Denote by

GnX the orbit space of the G-action. For two G-orbits G:p;G:q A GnX , we
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denote by G:p@G:q if Gp and Gq are G-conjugate. Then ‘‘@’’ is an equiv-

alence relation on GnM. The equivalence class ½G:p� is called the orbit type of

G:p. Here, we make the orbit space GnX a topological space by endowing

GnX with the natural quotient topology. An orbit G:p is called an isolated

orbit if there exists some open subset U � GnX such that U \ ½G:p� ¼ fG:pg
(i.e. G:p is an isolated point of ½G:p� � GnX ).

4.1. Preliminary on proper actions. In order to prove Theorem 1.5, we use

some general theory of proper actions. We here give a review of them.

Recall that a G-action on M is called a proper action if the map

G �M ! M �M; ðg; pÞ 7! ðg:p; pÞ

is proper. That is, the inverse image of any compact subset in M �M is

also compact. It has been proved that an isometric G-action on a connected

complete Riemannian manifold X is proper if and only if G is a closed

subgroup of IsomðX Þ ([3, 19]). In the following arguments, we fix a closed

subgroup G of IsomðX Þ, and consider isometric proper G-action on a connected

complete Riemannian manifold X .

An important consequence of a G-action being proper is the

‘‘G-equivariant tubular neighborhood theorem’’, which we described below.

For each p A X , let NðG:pÞ be the total space of the normal bundle of G:p.

That is,

NðG:pÞ :¼ fðq; xÞ j q A G:p; x A T?
q G:pg:

Also, for l > 0 and p A X , let NlðG:pÞ be the total space of the normal disk

bundle of G:p with radius l, and denote by Nl
p ðG:pÞ the fiber at p:

NlðG:pÞ :¼ fðq; hÞ A NðG:pÞ j hh; hiq < lg;

Nl
p ðG:pÞ :¼ fðp; hÞ j h A T?

p G:p; hh; hip < lg:

Note that G acts on NðG:pÞ by g:ðq; hÞ :¼ ðg:q; ðdgÞqhÞ, and NlðG:pÞ ¼
G:Nl

p ðG:pÞ. Let us define a map

Exp : NðG:pÞ ! X ; ðp; xÞ 7! expp x:

One can see that this map is G-equivariant. The assertion of the equivariant

tubular neighborhood theorem ([4, Theorem B.24, and Remark B.27]) is given

as follows:

Proposition 4.1. For all p A X, there exists some l > 0 such that the map

Exp : NlðG:pÞ ! X is a G-equivariant embedding, and the image ExpðNlðG:pÞÞ
is an open neighborhood of G:p.
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Proposition 4.1 provides nice tools to study the geometry of orbits. For

examples, the following lemma implies that a G-orbit passing through p A X

cannot ‘‘come back’’ to near p, unlike the irrational winding of a torus.

Namely,

Lemma 4.2. Fix p A X. Let us take l > 0 as in Proposition 4.1, and

ðp; xÞ A Nl
p ðG:pÞ. Then the orbit G:p coincides with G:Expðp; xÞ if and only

if x ¼ 0.

Proof. It is obvious that x ¼ 0 implies G:p ¼ G:Expðp; xÞ. We prove the

‘‘only if ’’ part. Take any ðp; xÞ A Nl
p ðG:pÞ. Assume that G:Expðp; xÞ ¼ G:p.

We prove that x ¼ 0. Let us denote by r :¼ Expðp; xÞ. Then one has

Expðr; 0Þ ¼ r ¼ Expðp; xÞ:

Also, one knows that ðp; xÞ A Nl
p ðG:pÞ � NlðG:pÞ, and ðr; 0Þ A NlðG:pÞ. By

Proposition 4.1, the map Exp : NlðG:pÞ ! X is injective. This concludes that

ðp; xÞ ¼ ðr; 0Þ, and hence x ¼ 0. r

Also, Proposition 4.1 provides the tools to study orbit types of G-actions

via the slice representations of G-actions (see Remark 1.2) as follows:

Lemma 4.3. Fix p A X, and let us take l > 0 as in Proposition 4.1. Take

any ðp; xÞ A Nl
p ðG:pÞ. Then one has GExpðp;xÞ � Gp. Moreover, the followings

are equivalent:

(1) Gp and GExpðp;xÞ are G-conjugate. In other words, G:Expðp; xÞ A ½G:p�.
(2) GExpðp;xÞ ¼ Gp,

(3) x is invariant under the slice representation of the G-action at p.

Proof. Firstly we prove that GExpðp;xÞ � Gp. Take any g A GExpðp;xÞ.

Then one has

Expðp; xÞ ¼ g:Expðp; xÞ ¼ Expðg:p; g:xÞ:

Since the map Exp : NlðG:pÞ ! X is injective by Proposition 4.1, we have

ðp; xÞ ¼ ðg:p; g:xÞ. This concludes that g A Gp.

Next, we prove the equivalence of ð1Þ and ð2Þ. The assertion ð2Þ ) ð1Þ
is obvious. We prove ð1Þ ) ð2Þ. Let us put r :¼ Expðp; xÞ. Assume that

Gr GGp. Let us denote by gr and gp the Lie algebras of Gr and Gp, respec-

tively. Since Gr � Gp, one has gr � gp. On the other hand, the assumption

Gr GGp yields that dimðgrÞ ¼ dimðgrÞ. Thus we obtain that gr ¼ gp, and hence

one has

ðGrÞ0 ¼ ðGpÞ0: ð4:1Þ
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Here, ðGrÞ0 and ðGpÞ0 are the connected components of Gr and Gp containing

the unit element e, respectively. Let Cp and Cr be the set of connected com-

ponents of Gp and Gr, respectively. We have shown that Gr ¼ GExpðp;xÞ � Gp.

This and (4.1) yield that

Cr � Cp: ð4:2Þ

On the other hand, it is well known that stabilizers of proper actions are

always compact. This implies that both Gr and Gp are compact, and hence

aCp and aCr are finite. This and the assumption Gr GGp yield that

aCr ¼aCp < y: ð4:3Þ

By (4.2) and (4.3), one has Cr ¼ Cp. This concludes that Gr ¼ Gp.

We now prove the equivalence of ð2Þ and ð3Þ. We show that ð2Þ implies

ð3Þ. Assume that Gp ¼ GExpðp;xÞ. Take any g A Gp. We prove that g:x ¼ x.

Since g A GExpðp;xÞ ¼ Gp, one has

Expðp; xÞ ¼ g:Expðp; xÞ ¼ Expðg:p; g:xÞ ¼ Expðp; g:xÞ:

The map Exp : NlðG:pÞ ! X is injective by Proposition 4.1. These conclude

that g:x ¼ x.

Lastly, we show the assertion ð3Þ ) ð2Þ. Assume that x is a fixed nor-

mal vector. We prove that GExpðp;xÞ ¼ Gp. Recall that GExpðp;xÞ � Gp always

holds, and hence we have only to show that Gp � GExpðp;xÞ. Take any g A Gp.

Since g fixes p and x, it also fixes Expðp; xÞ. This completes the proof.

r

4.2. Isolated orbits and slice representations. In this subsection, we study

isolated orbits of proper isometric actions via the arguments in the previous

subsection, and prove Theorem 1.5. Continuing from the previous subsection,

we fix a closed subgroup G of IsomðXÞ, and consider isometric proper G-action

on a Riemannian manifold X .

Firstly, we give a simple characterization of isolated orbits by the notion

of slice representations.

Proposition 4.4. For all p A X, the followings are equivalent:

(1) the orbit G:p is an isolated orbit of the G-action.

(2) the slice representation of the G-action at p has no nonzero fixed normal

vector.

(3) the orbit G:p is a G-arid submanifold.

Proof. As seen in Remark 1.2, the slice representation of the G-action at

p coincides with the G-slice representation of G:p at p. Hence, the equivalence

13On a Riemannian submanifold whose slice representation has no nonzero fixed points



of ð2Þ and ð3Þ easily follows from the definition of G-arid submanifolds.

Therefore, we prove the equivalence of ð1Þ and ð2Þ only.

We prove ð1Þ ) ð2Þ. Assume that G:p is isolated. Take any x A
T?
p G:pnf0g. We prove that there exists some g A Gp such that g:x0 x.

We firstly construct a proper neighborhood V of G:p. Take l > 0 as in

Proposition 4.1. Since G:p is an isolated orbit, there exists some open subset

U � GnX such that U \ ½G:p� ¼ fG:pg. Let us denote by p : X ! GnX the

natural projection. Then p�1ðUÞ is an open subset of X . Let us define an

open subset V � X by

V :¼ p�1ðUÞ \ ExpðNlðG:pÞÞ:

By choosing t > 0 small enough, we may assume that Expðp; txÞ A V .

Next, we claim that G:Expðp; txÞ B ½G:p�. Assume that G:Expðp; txÞ A ½G:p�.
One knows that Expðp; txÞ A V � p�1ðUÞ. Hence one has G:Expðp; txÞ A U .

On the other hand, one knows that U \ ½G:p� ¼ fG:pg. Since G:Expðp; txÞ A
½G:p�, one has

G:Expðp; txÞ A U \ ½G:p� ¼ fG:pg:

This yields that G:Expðp; txÞ ¼ G:p. Hence, by Lemma 4.2, one has tx ¼ 0.

One knows that x0 0, and hence we have t ¼ 0. This contradicts that t > 0.

This concludes that G:Expðp; txÞ B ½G:p�.
Now we are in the position to give g A Gp, and show that g:x0 x. By

Lemma 4.3 and the previous claim G:Expðp; txÞ B ½G:p�, one has GExpðp; txÞ � Gp.

Hence there exists some g A Gp such that g B GExpð p; txÞ. Then one has

Expðp; g:txÞ ¼ Expðg:p; g:txÞ ¼ g:Expðp; txÞ0Expðp; txÞ:

This concludes that g:tx0 tx, and hence g:x0 x.

It remains to prove ð2Þ ) ð1Þ. Assume that the slice representation at p

has no nonzero fixed normal vector. We prove that there exists some open

subset U of GnX such that U \ ½G:p� ¼ fG:pg. Let us put

U :¼ pðExpðNlðG:pÞÞÞ:

Note that U is an open subset of GnX since p is an open map. We show

that U \ ½G:p� ¼ fG:pg. By the definition of U , it is obvious that fG:pg �
U \ ½G:p�. We prove U \ ½G:p� � fG:pg. Take any G:q A U \ ½G:p�. By the

definition of U , there exists some ðp; xÞ A Nl
p ðG:pÞ such that G:q ¼ G:Expðp; xÞ.

Since G:Expðp; xÞ A ½G:p�, Lemma 4.3 yields that x is a fixed point of the slice

representation. On the other hand, by the assumption, there are no nonzero

fixed normal vector under the slice representation. This yields that x ¼ 0.
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Hence one has

G:q ¼ G:Expðp; 0Þ ¼ G:p A fG:pg:

This completes the proof. r

Now we are in the position to prove Theorem 1.5.

Proof (of Theorem 1.5). We prove ð2Þ ) ð1Þ. Assume that Y is an

isolated orbit of the action of a closed subgroup G � IsomðXÞ. By Propo-

sition 4.4, one has that Y is a G-arid submanifold, and hence is an arid

submanifold.

We prove ð1Þ ) ð2Þ. Assume that Y is a closed homogeneous arid

submanifold. Let us put G ¼ NðY Þ. Since Y is homogeneous, Y is precisely

a G-orbit. Also, one can see that G is a closed subgroup of IsomðXÞ since Y

is closed. On the other hand, since Y is an arid submanifold, Y is an NðY Þ-
arid submanifold. Hence Proposition 4.4 yields that Y is an isolated orbit of

the action of G. This completes the proof. r

5. An application to the study of left-invariant Ricci solitons

Let G be a simply connected Lie group with Lie algebra g. In this

section, we prove Theorem 1.6, and show an example of a Lie algebra to

which one can apply Theorem 1.6.

Firstly, we give some review for Ricci solitons. Let h ; i be a Riemannian

metric on a manifold M. Then h ; i is called a Ricci soliton if there exist some

l A R and some vector field X such that the Ricci tensor Rich;i is given by

Rich;i ¼ l � h ; iþLXh ; i:

This condition is equivalent to the condition that the metric evolves along

scalings and di¤eomorphisms under the Ricci flow. Namely, there exist some

one parameter families ct A R and Ft A Di¤ðMÞ such that the solution h ; it of
the Ricci flow

q

qt
h ; it ¼ �2 Rich;it

starting at h ; i is given by

h ; it ¼ ð1=ctÞ2 � hðdFtÞ�1; ðdFtÞ�1i; h ; i ¼ h ; i0:

Hence, a Ricci soliton is a fixed point of the Ricci flow (up to isometry and

scaling), and have been considered as a distinguished metric from the view

point of the theory of Ricci flow.
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Our strategy to prove Theorem 1.6 is to observe the relationship between

the R� AutðgÞ-action and the Ricci flow for left-invariant metrics. Recall that

the Ricci tensor Rich;i for a left-invariant metric h ; i is naturally identified

with the tangent vector of MðgÞ at h ; i. Hence, the Ricci flow for left-

invariant metrics on G is just an ODE on MðgÞ given by the vector field

h ; i 7! Rich;i A Th;iMðgÞ. We note that the vector field Ric is invariant under

the action of AutðgÞ on MðgÞ by (1.1). We are in the position to prove

Theorem 1.6.

Proof (of Theorem 1.6). Take any left-invariant metric h ; i A MðgÞ.
Assume that the orbit R� AutðgÞ:h ; i is an AutðgÞ-arid submanifold in MðgÞ.

We firstly claim that, for all p A R� AutðgÞ:h ; i, the tangent vector

Ricp A TpMðgÞ is tangent to the orbit R� AutðgÞ:h ; i, that is, Rich;i A

Th;iR� AutðgÞ:h ; i. Take any p A R� AutðgÞ:h ; i. Let us denote by Ric?p A
T?
p R� AutðgÞ:h ; i the normal component of Ricp. Since the vector field

Ric is invariant under the AutðgÞ-action on MðgÞ, so is the normal vector

field Ric?. This yields that the normal vector Ric?p is invariant under the

AutðgÞ-slice representation of the orbit R� AutðgÞ:h ; i at p. Since the orbit

R� AutðgÞ:h ; i is an AutðgÞ-arid submanifold, one has Ric?p ¼ 0, and hence

Ricp A TpR� AutðgÞ:h ; i.
Since the vector field Ric is tangent to the orbit R� AutðgÞ:h ; i, there

exists some ctjt A R� AutðgÞ such that the solution h ; it of the Ricci flow

starting at h ; i is given by

h ; it ¼ ðctjtÞ:h ; i ¼ ð1=ctÞ2 � hj�1
t ; j�1

t i:

On the other hand, since G is simply connected, there exists some Ft A AutðGÞ
such that ðdFtÞe ¼ jt. These imply that the initial metric h ; i evolves along

scalings and automorphisms of G under the Ricci flow. This completes the

proof. r

Remark 5.1. A G-invariant metric on a homogeneous manifold G=K

that evolves along scalings and (K-normalizing) automorphisms of G under

the Ricci flow is called a G-semi-algebraic Ricci soliton. Theorem 1.6 asserts

that if the orbit R� AutðgÞ:h ; i is an AutðgÞ-arid submanifold then the left-

invariant metric h ; i on G is a G-semi-algebraic Ricci soliton. It has been

shown that any homogeneous Ricci soliton on X is G-semi-algebraic for

some G � IsomðXÞ, and any G-semi-algebraic Ricci soliton is a G-algebraic

Ricci soliton. For more details on (semi-)algebraic Ricci solitons, we refer to

[10, 11].

We now show an example of Lie group that one can apply Theorem

1.6. Let us denote by h2nþ1 :¼ spanfx1; . . . ; xn; y1; . . . ; yn; zg the ð2nþ 1Þ-
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dimensional Heisenberg Lie algebra. Here, the nonzero bracket relations of

h2nþ1 are given as follows:

½xi; yi� ¼ z ði A f1; . . . ; ngÞ:

Then one has

Proposition 5.2. Let p be an inner product of h2nþ1 such that the basis

fx1; . . . ; xn; y1; . . . ; yn; zg is an orthonormal basis with respect to p. Then the

orbit R� Autðh2nþ1Þ:p is an Autðh2nþ1Þ-arid submanifold.

Proof. It has been known that the R� Autðh2nþ1Þ-action is transitive for

the case n ¼ 1 ([12], [13]), and hence Proposition 5.2 trivially follows for this

case.

Now we assume that nb 2. We prove that the Autðh2nþ1Þ-slice repre-

sentation at p A Mðh2nþ1Þ has no nonzero fixed points. Recall that the

Autðh2nþ1Þ-slice representation is the action of Autðh2nþ1Þp :¼ fj A Autðh2nþ1Þ j
j:p ¼ pg on the normal space T?

p :¼ T?
p R� Autðh2nþ1Þ:p. Let K be the con-

nected component of Autðh2nþ1Þp GAutðh2nþ1Þ \Oð2nþ 1Þ with e A K . To

prove that the action has no nonzero fixed points, it su‰ces to show that K

acts on T?
p irreducibly.

To study the K-action, we determine the normal space T?
p . By a direct

calculation, the matrix representation of Derðh2nþ1Þ with respect to the basis

fxi; yi; zg is given by

Derðh2nþ1Þ ¼
c � I2n þ A 0

� 2c

� �
A glð2nþ 1;RÞ j c A R; A A spð2n;RÞ

� �
:

Here spð2n;RÞ � glð2n;RÞ is given as follows:

spð2n;RÞ :¼
X P

Q �tX

 !
A glð2n;RÞ jX A glðn;RÞ;P;Q A symðn;RÞ

( )
:

Also, let us denote by RlDerðh2nþ1Þ the Lie algebra of R� Autðh2nþ1Þ.
Then the matrix representation of RlDerðh2nþ1Þ is given by

RlDerðh2nþ1Þ ¼
c � I2n þ R 0

� �

� �
A glð2nþ 1;RÞ j c A R;R A spð2n;RÞ

� �
:

One can see that the tangent space Tp :¼ TpR� Autðh2nþ1Þ:p is given by

Tp ¼ fX þ tX A symð2nþ 1;RÞ jX A RlDerðh2nþ1Þg

¼
Aþ cIn B �

B �Aþ cIn �

� � �

0
BB@

1
CCA A symð2nþ 1;RÞ jA A glðn;RÞ; c A R

8>><
>>:

9>>=
>>;:
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Hence, the normal space T?
p is obtained by

T?
p ¼ fA A symð2nþ 1;RÞ j EX A Tp; trðAX Þ ¼ 0g

¼
A �B 0

B A 0

0 0 0

0
BB@

1
CCA A symð2nþ 1;RÞ jA A slðn;RÞ

8>><
>>:

9>>=
>>;:

Note that the K-action on T?
p is given by the conjugate action of K �

Autðh2nþ1Þ \Oð2nþ 1Þ on T?
p � symð2nþ 1;RÞ.

Denote by herm0ðnÞ � glðn;CÞ the set of all trace free hermitian symmetric

matrices of degree n. We claim that our K-action on T?
p is equivariant to

the conjugacy action of SUðnÞ on herm0ðnÞ, and hence irreducible. The

identification between the K-action and the SUðnÞ-action is given as follows.

Let us define r the natural embedding of glðn;CÞ to glð2nþ 1;RÞ by

glðn;CÞ C Aþ iB 7!
A �B 0

B A 0

0 0 0

0
BB@

1
CCA A glð2nþ 1;RÞ:

We note that the Lie algebra k of K is given by

k ¼ Derðh2nþ1Þ \ ðoð2nþ 1ÞÞ ¼
A �B 0

B A 0

0 0 0

0
BB@

1
CCA A oð2nþ 1Þ

8>><
>>:

9>>=
>>;;

and k � glð2nþ 1;RÞ is identified with suðnÞ � glðn;CÞ by r. This implies

that KG SUðnÞ. On the other hand, T?
p � glð2nþ 1;RÞ is identified with

herm0ðnÞ � glðn;CÞ by r. One can see that r : herm0ðnÞ ! T?
p is an SUðnÞ-

equivariant isomorphism, and hence the K-action is equivariant to the SUðnÞ-
action. r

Remark 5.3. By Theorem 1.6, the left-invariant metric p on the ð2nþ 1Þ-
dimensional Heisenberg Lie group H2nþ1 is a Ricci soliton. We note that it is

well known that ðH2nþ1; pÞ is a Ricci soliton nilmanifold. For examples, we

refer to [14].
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