
Hiroshima Math. J.

46 (2016), 271–287

The boundary of a fibered face of the magic 3-manifold and

the asymptotic behavior of minimal pseudo-Anosov dilatations

Eiko Kin and Mitsuhiko Takasawa

(Received July 27, 2015)

(Revised July 11, 2016)

Abstract. Let dg; n be the minimal dilatation of pseudo-Anosovs defined on an

orientable surface of genus g with n punctures. It is proved by Tsai that for any

fixed gb 2, there exists a constant cg depending on g such that

1

cg
� log n

n
< log dg; n < cg �

log n

n
for any nb 3:

This means that the logarithm of the minimal dilatation log dg; n is on the order of

log n=n. We prove that if 2gþ 1 is relatively prime to s or sþ 1 for each 0a sa g,

then

lim sup
n!y

nðlog dg; nÞ
log n

a 2

holds. In particular, if 2gþ 1 is prime, then the above inequality on dg; n holds. Our

examples of pseudo-Anosovs f’s which provide the upper bound above have the

following property: The mapping torus Mf of f is a single hyperbolic 3-manifold

N called the magic manifold, or the fibration of Mf comes from a fibration of N

by Dehn filling cusps along the boundary slopes of a fiber.

1. Introduction

Let S ¼ Sg;n be an orientable surface of genus g with n punctures and

ModðSÞ the mapping class group of S. By Thurston’s classification theorem

of surface automorphisms, elements of ModðSÞ are either periodic, reducible,

or pseudo-Anosov, see [20]. Pseudo-Anosov mapping classes have rich

dynamical properties. The hyperbolization theorem by Thurston [21] relates

the dynamics of pseudo-Anosovs and the geometry of hyperbolic fibered

3-manifolds. The theorem asserts that f A ModðSÞ is pseudo-Anosov if and
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only if the mapping torus Mf of f admits a complete hyperbolic metric of

finite volume.

Each pseudo-Anosov element f A ModðSÞ has a representative F : S ! S

called a pseudo-Anosov homeomorphism. Such a homeomorphism is equipped

with a constant l ¼ lðFÞ > 1 called the dilatation of F. If we let entðFÞ be

the topological entropy of F, then the equality entðFÞ ¼ log lðFÞ holds. More-

over entðFÞ attains the minimal entropy among all homeomorphisms which

are isotopic to F, see [3, Exposé 10]. The dilatation lðfÞ of f is defined to

be lðFÞ. We call the quantities entðfÞ ¼ log lðfÞ and EntðfÞ ¼ jwðSÞj log lðfÞ
the entropy and normalized entropy of f respectively, where wðSÞ is the Euler

characteristic of S.

If we fix S, the set of dilatations of pseudo-Anosovs defined on S is a

closed discrete subset of R, see [7] for example. In particular there exists a

minimum. We denote by dðSÞ > 1, the minimal dilatation of pseudo-Anosov

elements in ModðSÞ. The minimal dilatations are determined in only a few

cases. (See for example [9] which is a survey on minimal pseudo-Anosov

dilatations.)

Let us set dg;n ¼ dðSg;nÞ and dg ¼ dg;0. We write A � B if there exists

a universal constant c such that A=c < B < cA. Penner proved in [17] that

log dg � 1
g
. This work by Penner was a starting point for the study of the

asymptotic behavior of the minimal dilatations on surfaces varying topology.

Later it was proved by Hironaka-Kin [6] that log d0;n � 1
n
, and by Tsai [22]

that log d1;n � 1
n
. See also Valdivia [23]. The following theorem of Tsai is

in contrast with the cases of genera 0 and 1.

Theorem 1.1 ([22]). For any fixed gb 2, there exists a constant cg
depending on g such that

1

cg
� log n

n
< log dg;n < cg �

log n

n
for any nb 3:

In particular for any fixed gb 2, we have

log dg;n �
log n

n
:

The following question is due to Tsai.

Question 1.2. What is the optimal constant cg in Theorem 1.1?

One can also ask the following.

Question 1.3. Given gb 2, does lim
n!y

nðlog dg;nÞ
log n

exist? What is its value?
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This is an analogous question, posed by McMullen, which is asking whether

lim
g!y

g log dg exists or not, see [15]. Toward Questions 1.2 and 1.3, we prove

the following.

Theorem 1.4. Given gb 2, there exists a sequence fnigyi¼0 with ni ! y
such that

lim sup
i!y

ni log dg;ni
log ni

a 2:

Theorem 1.4 improves the previous upper bound on log dg;n by Tsai. In fact

for any gb 2, Tsai’s examples in [22] yield the upper bound lim sup
n!y

nðlog dg; nÞ
log n

a

2ð2gþ 1Þ, which is proved by a similar computation in the proof of Theorem

1.4. As a corollary of Theorem 1.4, we have the following.

Corollary 1.5. Given gb 2, the following set

n

log n
� entðfÞ j f A ModðSg;nÞ is pseudo-Anosov; nb 1g

�

has an accumulation point 2.

To state other results which are related to Questions 1.2 and 1.3, we define

a polynomial Bðg;pÞðtÞ for nonnegative integers g and p:

Bðg;pÞðtÞ ¼ t2pþ1ðt2gþ1 � 1Þ þ 1� 2tpþgþ1 � t2gþ1:

We shall see that there exists a unique real root rðg;pÞ greater than 1 of Bðg;pÞðtÞ,
and these satisfy

lim
p!y

p log rðg;pÞ
log p

¼ 1

(Lemma 4.1). The root rðg;pÞ gives the following upper bound.

Theorem 1.6. For gb2 and pb0, suppose that gcdð2gþ 1; pþ gþ 1Þ ¼ 1.

Then

dg;2pþi a rðg;pÞ for each i A f1; 2; 3; 4g:

If g satisfies ð�Þ in the next Theorem 1.7, then one can take the sequence

fnigyi¼0 in Theorem 1.4 to be the sequence fngyn¼1 of natural numbers.

Theorem 1.7. Suppose that gb 2 satisfies

ð�Þ gcdð2gþ 1; sÞ ¼ 1 or gcdð2gþ 1; sþ 1Þ ¼ 1 for each 0a sa g.

273The boundary of a fibered face of the magic 3-manifold



Then

lim sup
n!y

nðlog dg;nÞ
log n

a 2:

For example, ð�Þ holds for g ¼ 4 since 9 is relatively prime to 1; 2; 4 and 5;

ð�Þ does not hold for g ¼ 7 because gcdð15; 5Þ ¼ 5 and gcdð15; 6Þ ¼ 3. We

point out that infinitely many g’s satisfy ð�Þ. In fact if 2gþ 1 is prime, then

2gþ 1 is relatively prime to s 0 for each 1a s 0 a gþ 1.

Corollary 1.8. If 2gþ 1 is prime for gb 2, then

lim sup
n!y

nðlog dg;nÞ
log n

a 2:

Remark 1.9. One can simplify ð�Þ in Theorem 1.7, since 2gþ 1 is relative

prime to 1; 2 and g. In the case gb 5, ð�Þ is equivalent to

ð��Þ gcdð2gþ 1; sÞ ¼ 1 or gcdð2gþ 1; sþ 1Þ ¼ 1 or each 3a sag� 2.

Our results are proved by using the theory of fibered faces of hyperbolic

and fibered 3-manifolds M, developed by Thurston [19], Fried [4], Matsumoto

[14] and McMullen [15], see Section 2. We focus on a fibered face of a

particular hyperbolic fibered 3-manifold, called the magic manifold N. This

manifold is the exterior of the 3 chain link C3, see Figure 1. Our examples of

pseudo-Anosovs f’s which provide the upper bounds in Theorems 1.4, 1.6 and

1.7 have the following property: The mapping torus Mf of f is homeomor-

phic to N, or the fibration of Mf comes from a fibration of N by Dehn filling

cusps along the boundary slopes of a fiber. An explicit construction of these

examples is given by the first author, see [8, Example 4.8].

We turn to hyperbolic volumes of hyperbolic 3-manifolds. The set of

volumes of hyperbolic 3-manifolds is a well-ordered closed subset in R of order

Fig. 1. (left) 3 chain link C3. (center) Fa, Fb, Fg. (right) Thurston norm ball UN . (fibered face

D is indicated.)
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type oo, see [18]. In particular if we fix a surface S, then there exists a

minimum among volumes of hyperbolic S-bundles over the circle. The proofs

of Theorems 1.4, 1.7 immediately imply the following.

Proposition 1.10. For each gb 2, there exists a sequence fnigyi¼0 with

ni ! y such that the minimal volume of Sg;ni -bundles over the circle is less than

or equal to volðNÞA5:3334, the volume of the magic manifold N. In particular,

for any gb 2 satisfying ð�Þ and any nb 3, the minimal volume of Sg;n-bundles

over the circle is less than or equal to volðNÞ.

We close the introduction by asking

Question 1.11 (cf. Theorems 1.4 and 1.7). Does lim sup
n!y

nðlog dg; nÞ
log n

a 2 hold

for all fixed gb 2?

2. The Thurston norm and fibered 3-manifolds

Let M be an oriented hyperbolic 3-manifold with boundary qM (possibly

qM ¼ q). We recall the Thurston norm k � k : H2ðM; qM;RÞ ! R. Let F

be a finite union of oriented, connected surfaces. We define w�ðFÞ to be

w�ðFÞ ¼
X
Fi�F

maxf0;�wðFiÞg;

where Fi’s are the connected components of F and wðFiÞ is the Euler char-

acteristic of Fi. The Thurston norm k � k is defined for an integral class

a A H2ðM; qM;ZÞ by

kak ¼ min
F

fw�ðF Þ j a ¼ ½F �g;

where the minimum ranges over all oriented surfaces F embedded in M. A

surface F which realizes this minimum is called a minimal representative of a,

denoted by Fa. Then k � k defined on integral classes admits a unique con-

tinuous extension k � k : H2ðM; qM;RÞ ! R which is linear on the ray through

the origin. The unit ball UM with respect to the Thurston norm is a compact,

convex polyhedron. See [19] for more details.

Suppose that M is a surface bundle over the circle and let F be its fiber.

The fibration determines a cohomology class a� A H 1ðM;ZÞ, and hence a

homology class a A H2ðM; qM;ZÞ by Poincaré duality. Thurston proved in

[19] that there exists a top dimensional face W on qUM such that a ¼ ½F � is an

integral class of intðCWÞ, where CW is the cone over W with the origin and

intðCWÞ is its interior. Moreover the minimal representative Fa for any integral

class a in intðCWÞ becomes a fiber of the fibration associated to a. Such a face

W is called a fibered face, and an integral class a A intðCWÞ is called a fibered
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class. This work of Thurston tells us that if M has second Betti number

greater than 1, then M provides infinitely many pseudo-Anosov monodromies

defined on surfaces with variable topology.

The set of integral and rational classes of intðCWÞ are denoted by

intðCWðZÞÞ and intðCWðQÞÞ respectively. When a A intðCWðZÞÞ is primitive,

the associated fibration on M has a connected fiber represented by Fa. Let

Fa : Fa ! Fa be the monodromy. Since M is hyperbolic, fa ¼ ½Fa� is pseudo-

Anosov. The dilatation lðaÞ and entropy entðaÞ ¼ log lðaÞ are defined as the

dilatation and entropy of fa respectively. The entropy defined on primitive

fibered classes can be extended to rational classes by homogeneity. It is

shown by Fried in [4] that 1
ent : intðCWðQÞÞ ! R is concave, and in particular

ent : intðCWðQÞÞ ! R admits a unique continuous extension

ent : intðCWÞ ! R:

Moreover Fried proved that the restriction

entjintðWÞð¼ EntjintðWÞÞ : intðWÞ ! R

on the open face intðWÞ has the property that entðaÞ goes to y as a A intðWÞ
goes to a point on qW. Thus we have a continuous function

Ent ¼ k � k entð�Þ : intðCWÞ ! R

which is constant on each ray in intðCWÞ through the origin.

These properties give us the following observation: Fix a hyperbolic

fibered 3-manifold M with a fibered face W as above. For any compact set

D � intðWÞ, there exists a constant C ¼ CD > 0 satisfying the following. Let

a A intðCWÞ be any integral class of H2ðM; qM;ZÞ. The normalized entropy

EntðaÞð¼ EntðfaÞÞ is bounded by C from above whenever a A D, where a is

the projection of a into intðWÞ.
This observation enables us to investigate the following asymptotic

behaviors of minimal dilatations.

(1) lim sup
n!y

n log d0;n a 2 logð2þ
ffiffiffi
3

p
Þ, see [6, 11].

(2) lim sup
n!y

n log d1;n a 2 log l0, where l0A2:2966 is the largest real

root of t4 � 2t3 � 2tþ 1, see [10].

(3) g log dg a log
�
3þ
ffiffi
5

p

2

�
, see [2, Appendix] and [5, 1, 12].

We note that for fixed gb 2, di¤erent methods for investigating the

asymptotic behavior of dg;n varying n are necessary. Theorem 1.1 says that

there exists no constant C > 0, independent of n so that jwðSg;nÞj log dg;n < C.

Thus if, for fixed gb 2, there exists a sequence of fibered classes faig with

ai A intðCWÞ \H2ðM; qM;ZÞ such that the fiber of the fibration associated to

ai is a surface of genus g having ni boundary components with ni ! y, then
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the accumulation points of the sequence of projective classes faig must lie

on the boundary of W. To prove Theorems 1.4, 1.6 and 1.7, we pay special

attention to the magic manifold N. In Section 4.3, we choose such a sequence

of fibered classes faig of N carefully. We analyze the asymptotic behavior of

lðaiÞ’s by using a technique given in Section 3.

The Teichmüller polynomial, developed by McMullen [15] is a certain

element YW (associated to the fibered face W) in the group ring ZG, where

G ¼ H1ðM;ZÞ=torsion, i.e, YW is a finite sum

YW ¼
X
g AG

cgg;

where cg is an integer. For every fibered class a A intðCWÞ, the specialization

of YW at the cohomology class a� A H 1ðM;ZÞ is defined by

Y
ða �Þ
W ðtÞ ¼

X
g AG

cgt
a �ðgÞ

which is a polynomial with a variable t. It is a result in [15] that for all

fibered class a A intðCWÞ, the dilatation lðaÞ is equal to the largest real root

of Y
ða �Þ
W ðtÞ.

3. Roots of polynomials

This section concerns the asymptotic behavior of roots of families of poly-

nomials. Let

gðtÞ ¼ ant
bn þ an�1t

bn�1 þ � � � þ a1t
b1 þ a0

be a polynomial with real coe‰cients a0; a1; . . . ; an (a1; a2; . . . ; an 0 0), where

gðtÞ is arranged in the order of descending powers of t. Let DðgÞ be the

number of variations in signs of the coe‰cients an; an�1; . . . ; a0. For example

if gðtÞ ¼ þt4 þ t3 � 2t2 þ t� 1, then DðgÞ ¼ 3; if hðtÞ ¼ þt4 þ t3 � 2t2 þ tþ 1,

then DðhÞ ¼ 2. Descartes’s rule of signs (see [24]) says that the number of

positive real roots of gðtÞ (counted with multiplicities) is equal to either DðgÞ
or less than DðgÞ by an even integer.

Lemma 3.1. Let rb 0, s > 0 and u > 0 be integers. Let

PmðtÞ ¼ t2mþrðts � 1Þ þ 1�QðtÞtm � tu

¼ t2mþrþs � t2mþr �QðtÞtm � tu þ 1

be a polynomial for each m A N, where QðtÞ is a polynomial whose coe‰cients

are positive integers. (QðtÞ could be a positive constant.)
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(1) Suppose that t2mþrþs is the leading term of PmðtÞ. Then PmðtÞ has a

unique real root lm greater than 1.

(2) Given 0 < c1 < 1 and c2 > 1, we have

mc1=m < lm < mc2=m for m large:

In particular

lim
m!y

m log lm

log m
¼ 1:

(3) For any real numbers q0 0 and v, we have

lim
m!y

ðqmþ vÞ log lm

logðqmþ vÞ ¼ q:

Proof. (1) Under the assumption on PmðtÞ, we have DðPmÞ ¼ 2. By

Descartes’s rule of signs, the number of positive real roots of PmðtÞ is either 2

or 0. Since Pmð0Þ ¼ 1 and Pmð1Þ ¼ �Qð1Þ < 0, the number of positive real

roots of PmðtÞ is exactly 2. Because PmðtÞ goes to y as t does, PmðtÞ has a

unique real root lm > 1.

(2) We have

PmðtÞt�ð2mþrÞ ¼ ts � 1þ t�ð2mþrÞ �QðtÞt�ðmþrÞ � t�ð2mþr�uÞ:

We define fmðtÞ and gmðtÞ such that PmðtÞt�ð2mþrÞ ¼ fmðtÞ þ gmðtÞ as follows.

fmðtÞ ¼ ts � 1þ t�ð2mþrÞ; and

gmðtÞ ¼ QðtÞt�ðmþrÞ þ t�ð2mþr�uÞ:

We let t ¼ mc=m for c > 0. Then

fmðmc=mÞ ¼ ðmc=mÞs � 1þ ðmc=mÞ�ð2mþrÞ

¼ ððe log mÞc=mÞs � 1þm�cð2þr=mÞ

¼ eðsc log mÞ=m � 1þm�cð2þr=mÞ:

By Maclaurin expansion of eðsc log mÞ=m, we have

eðsc log mÞ=m ¼ 1þ sc log m

m
þ R2;

where

R2 ¼
ew

2

sc log m

m

� �2
for some 0 < w <

sc log m

m
:
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Since sc log m
m

goes to 0 as m goes to y, we may assume that ew

2 < B for some

constant B > 0. Then

fmðmc=mÞ ¼ sc log m

m
þ R2 þ

m1�cð2þr=mÞ

m

<
sc log m

m
þ B

sc log m

m

� �2
þm1�cð2þr=mÞ

m

¼ sc log m

m
þ Bs2c2

log m

m

� �2
þm1�cð2þr=mÞ

m

<
sc log m

m
þ Bs2c2

log m

m

� �
þm1�cð2þr=mÞ

m

¼ ðscþ Bs2c2Þ log mþm1�cð2þr=mÞ

m
:

(The last inequality comes from 0 < log m
m

< 1 for m large.) Thus

fmðmc=mÞ < ðscþ Bs2c2Þ log mþm1�cð2þr=mÞ

m
: ð1Þ

The first equality fmðmc=mÞ ¼ sc log m
m

þ R2 þ m1�cð2þr=mÞ

m
above together with R2 > 0

and m1�cð2þr=mÞ

m
> 0 tells us that

fmðmc=mÞ > sc log m

m
: ð2Þ

Recall that all coe‰cients of QðtÞ (appeared in PmðtÞ) are positive integers.

If we write QðtÞ ¼
Pl
j¼0

ajt
j, where aj b 0, then

gmðmc=mÞ ¼ Qðmc=mÞm�cð1þr=mÞ þm�cð2þr=m�u=mÞ

¼
Xl
j¼0

ajm
�cð1þr=m� j=mÞ

 !
þm�cð2þr=m�u=mÞ:

Thus we obtain

gmðmc=mÞ ¼
�Pl

j¼0 ajm
1�cð1þr=m� j=mÞ�þm1�cð2þr=m�u=mÞ

m
: ð3Þ

For the proof of the claim (1), it is enough to prove that for 0 < c1 < 1

and c2 > 1, we have fmðmc1=mÞ < gmðmc1=mÞ and fmðmc2=mÞ > gmðmc2=mÞ for m

large.
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First, suppose that 0 < c < 1
2 . Let us consider how the following four

terms grow.

log m; m1�cð2þr=mÞ; m1�cð1þr=m� j=mÞ and m1�cð2þr=m�u=mÞ: ð4Þ

The first two terms appear in (1), and the last two are coming from (3). All

four terms go to y as m does, since the last three terms have the positive

powers of m. Note that for any C > 0, we have log m < mC for m large.

Keeping this in mind, we observe that among the four terms in (4),

m1�cð1þr=m� j=mÞ is dominant. This is because

1� c 1þ r

m
� j

m

� �
> 1� c 2þ r

m
� u

m

� �
b 1� c 2þ r

m

� �

for m large. These imply that fmðmc=mÞ < gmðmc=mÞ holds for m large, since

m1�cð1þr=m� j=mÞ appears in the numerator of gmðmc=mÞ, see (3).

Next, we suppose that 1
2 a c < 1. We can check that m1�cð1þr=m� j=mÞ is

still dominant among the four in (4). (The second and fourth terms are

bounded as m goes to y.) Therefore we still have fmðmc=mÞ < gmðmc=mÞ for

m large.

Finally we suppose that c > 1. Clearly, the last three terms in (4) go to 0

as m goes to y. Thus the numerator of gmðmc=mÞ, see (3), goes to 0 as m

tends to y. On the other hand, fmðmc=mÞ > sc log m
m

holds (see (2)), and hence

the numerator of

sc log mþmR2 þm1�cð2þr=mÞ

m
ð¼ fmðmc=mÞÞ

goes to y as m does. Thus fmðmc=mÞ > gmðmc=mÞ for m large. This com-

pletes the proof of the first part of the claim (2).

Taking logarithms on both sides of mc1=m < lm < mc2=m yields

c1 <
m log lm

log m
< c2 for m large:

Since 0 < c1 < 1 and c2 > 1 are arbitrary, we have the desired limit. This

completes the proof of the second half of the claim (2).

(3) By the claim (2),

c1 log m

m
< log lm <

c2 log m

m
for m large:

Let us set n ¼ qmþ v. We substitute m ¼ n�v
q

above:

c1 log
�
n�v
q

�
n�v
q

< log lm <
c2 log

�
n�v
q

�
n�v
q

:
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Hence

qc1ðlogðn� vÞ � log qÞ
n� v

< log lm <
qc2ðlogðn� vÞ � log qÞ

n� v
:

We multiply all sides above by n
log n

> 0 (for n large). Then

qc1nðlogðn� vÞ � log qÞ
ðn� vÞ log n

<
nðlog lmÞ
log n

<
qc2nðlogðn� vÞ � log qÞ

ðn� vÞ log n
:

Note that
nðlogðn�vÞ�log qÞ

ðn�vÞ log n
goes to 1 as n (and hence m) goes to y. Since

0 < c1 < 1 and c2 > 1 are arbitrary, it follows that

lim
m!y

nðlog lmÞ
log n

¼ lim
m!y

ðqmþ vÞ log lm

logðqmþ vÞ ¼ q: r

4. The magic 3-manifold N

Monodromies of fibrations on N have been studied in [10, 11, 12]. In

Sections 4.1 and 4.2, we recall some results which tell us that the topology of

fibered classes a and the actual value of lðaÞ. In Section 4.3, we find a family

of fibered classes aðg;pÞ of N with two variables g and p, and we shall prove

that it is a suitable family to prove theorems in Section 1 (cf. Remark 4.4).

Recall that Sg;n is an orientable surface of genus g with n punctures.

Abusing the notation, we sometimes denote by Sg;n, an orientable surface of

genus g with n boundary components.

4.1. Fibered face D. Let Ka, Kb and Kg be the components of the 3 chain

link C3. They bound the oriented disks Fa, Fb and Fg with 2 holes, see Figure

1. Let a ¼ ½Fa�, b ¼ ½Fb�, g ¼ ½Fg� A H2ðN; qN;ZÞ. The set fa; b; gg is a basis

of H2ðN; qN;ZÞ. Figure 1 illustrates the Thurston norm ball UN for N which

is the parallelepiped with vertices Ga, Gb, Gg, Gðaþ b þ gÞ ([19, Example 3

in Section 2]). Because of the symmetry of C3, every top dimensional face of

UN is a fibered face.

We denote a class xaþ yb þ zg A H2ðN; qN;RÞ by ðx; y; zÞ. We pick a

fibered face D with vertices a ¼ ð1; 0; 0Þ, aþ b þ g ¼ ð1; 1; 1Þ, b ¼ ð0; 1; 0Þ and

�g ¼ ð0; 0;�1Þ, see Figure 1. The open face intðDÞ is written by

intðDÞ ¼ fðX ;Y ;ZÞ jX þ Y � Z ¼ 1;X > 0;Y > 0;X > Z;Y > Zg:

A class a ¼ ðx; y; zÞ A H2ðN; qN;RÞ is an element of intðCDÞ if and only if

x > 0, y > 0, x > z and y > z. In this case, we have kak ¼ xþ y� z.
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Let a ¼ ðx; y; zÞ be a fibered class in intðCDÞ. The minimal representative

of this class is denoted by Fa or Fðx;y; zÞ. We recall some formula which tells

us that the number of the boundary components of Fa. We denote the tori

qNðKaÞ, qNðKbÞ, qNðKgÞ by Ta, Tb, Tg respectively, where NðKÞ is a regular

neighborhood of a knot K in S3. Let us set qaFðx;y; zÞ ¼ qFðx;y; zÞ \ Ta which

consists of the parallel simple closed curves on Ta. We define the subsets

qbFðx;y; zÞ; qgFðx;y; zÞ � qFðx;y; zÞ in the same manner. By [11, Lemma 3.1], the

number of the boundary components

aðqFðx;y; zÞÞ ¼aðqaFðx;y; zÞÞ þaðqbFðx;y; zÞÞ þaðqgFðx;y; zÞÞ

is given by

aðqFðx;y; zÞÞ ¼ gcdðx; yþ zÞ þ gcdðy; zþ xÞ þ gcdðz; xþ yÞ ð5Þ

whereaðqaFðx;y; zÞÞ ¼ gcdðx; yþ zÞ,aðqbFðx;y; zÞÞ ¼ gcdðy; zþ xÞ,aðqgFðx;y; zÞÞ ¼
gcdðz; xþ yÞ and gcdð0;wÞ is defined by jwj.

4.2. Dilatations and stable foliations of fibered classes a’s. The Teichmüller

polynomial associated to the fibered face D is computed in [11, Section 3.2],

and it tells us that the dilatation lðx;y; zÞ of a fibered class ðx; y; zÞ A intðCDÞ is

the largest real root of

fðx;y; zÞðtÞ ¼ txþy�z � tx � ty � tx�z � ty�z þ 1;

see [11, Theorem 3.1]. (In fact, lðx;y; zÞ is a unique real root greater than 1 of

fðx;y; zÞðtÞ by Descartes’s rule of signs.)

Let Fðx;y; zÞ : Fðx;y; zÞ ! Fðx;y; zÞ be the monodromy of the fibration asso-

ciated to a primitive class ðx; y; zÞ A intðCDÞ. Let Fðx;y; zÞ be the stable foliation

of the pseudo-Anosov Fðx;y; zÞ. The components of qaFðx;y; zÞ (resp. qbFðx;y; zÞ,

qgFðx;y; zÞ) are permuted cyclically by Fðx;y; zÞ. In particular the number of

prongs of Fðx;y; zÞ at a component of qaFðx;y; zÞ (resp. qbFðx;y; zÞ, qgFðx;y; zÞ) is

independent of the choice of the component. By [12, Proposition 3.3], the

stable foliation Fðx;y; zÞ has the following properties.
� Each component of qaFðx;y; zÞ has x=gcdðx; yþ zÞ prongs.
� Each component of qbFðx;y; zÞ has y=gcdðy; xþ zÞ prongs.
� Each component of qgFðx;y; zÞ has ðxþ y� 2zÞ=gcdðz; xþ yÞ prongs.
� Fðx;y; zÞ does not have singularities in the interior of Fðx;y; zÞ.

4.3. Proofs of theorems. Let a ¼ ð1; 1; 0Þ and b ¼ ð0; 1; 1Þ. For gb 0 and

pb 0, define a fibered class aðg;pÞ as follows.

aðg;pÞ ¼ ðpþ gþ 1Þaþ ðp� gÞb ¼ ðpþ gþ 1; 2pþ 1; p� gÞ A intðCDÞ:
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The class aðg;pÞ is primitive if and only if 2gþ 1 and pþ gþ 1 are relatively

prime. One can check the identity

Bðg;pÞðtÞ ¼ fðpþgþ1;2pþ1;p�gÞðtÞ

(see Section 1 for the definition of Bðg;pÞðtÞ). We denote by rðg;pÞ, the dilata-

tion lðaðg;pÞÞ of the fibered class ag;p. (Thus the dilatation rðg;pÞ ¼ lðaðg;pÞÞ
of aðg;pÞ is a unique real root of Bðg;pÞðtÞ which is greater than 1, see Section

4.2.)

Lemma 4.1. We fix gb 0. Given 0 < c1 < 1 and c2 > 1, we have

pc1=p < rðg;pÞ < pc2=p for p large:

In particular

lim
p!y

p log rðg;pÞ
log p

¼ 1:

Proof. Apply Lemma 3.1 to the polynomial Bðg;pÞðtÞ. r

Lemma 4.2. Suppose that aðg;pÞ is primitive. The minimal representative

Faðg; pÞ is a surface of genus g with 2pþ 4 boundary components, and the stable

foliation Faðg; pÞ has the following properties. If pþ g is odd (resp. even), then

aðqaFaðg; pÞ Þ ¼ 2 (resp. 1) and aðqgFaðg; pÞ Þ ¼ 1 (resp. 2). A component of

qaFaðg; pÞ has
pþgþ1

2 prongs (resp. ðpþ gþ 1Þ prongs), and a component of

qgFaðg; pÞ has ðpþ 3gþ 2Þ prongs (resp.
pþ3gþ2

2 prongs).

Proof. By (5), we have that aðqbFaðg; pÞ Þ ¼ 2pþ 1. We have

aðqaFaðg; pÞ Þ ¼ gcdðpþ gþ 1; 3p� gþ 1Þ ¼ gcdðpþ gþ 1; 2ð2gþ 1ÞÞ:

Since aðg;pÞ is primitive, pþ gþ 1 and 2gþ 1 must be relatively prime. Hence

aðqaFaðg; pÞ Þ ¼ 1 (resp. 2) if pþ g is even (resp. odd). Let us compute

aðqgFaðg; pÞ Þ. We have

aðqgFaðg; pÞ Þ ¼ gcdð3pþ gþ 2; p� gÞ ¼ gcdð2ð2gþ 1Þ; p� gÞ:

Since gcdð2gþ 1; p� gÞ ¼ gcdð2gþ 1; pþ gþ 1Þ ¼ 1, we have that aðqgFaðg; pÞ Þ
¼ 2 (resp. 1) if p� g is even (resp. odd), equivalently pþ g is even (resp.

odd). The genus of Faðg; pÞ is computed from the identities kaðg;pÞkð¼ jwðFaðg; pÞ ÞjÞ
¼ 2pþ 2gþ 2 and aðqFaðg; pÞ Þ ¼ 2pþ 4.

The singularity data of Faðg; pÞ is obtained from the formula at the end of

Section 4.2. r
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By Lemma 4.2, it is straightforward to prove the following.

Lemma 4.3. Suppose that aðg;pÞ is primitive. Then ðg; pÞ B fð0; 0Þ; ð0; 1Þ;
ð1; 0Þg if and only if Faðg; pÞ does not have a 1 prong on each component of

qaFaðg; pÞ [ qgFaðg; pÞ . In particular if gb 2 and pb 0, then Faðg; pÞ does not have

a 1 prong on each component of qaFaðg; pÞ [ qgFaðg; pÞ .

We are now ready to prove theorems in Section 1.

Proof of Theorem 1.4. There exists a sequence of primitive fibered

classes faðg;piÞg
y
i¼0 with pi ! y. (In fact, if we take pi ¼ ðgþ 1Þ þ ð2gþ 1Þi,

then 2gþ 1 and pi þ gþ 1 are relatively prime. Hence aðg;piÞ is primitive.)

Then N is a Sg;2piþ4-bundle over the circle whose monodromy of the fibration

has the dilatation rðg;piÞ. Therefore dg;2piþ4 a rðg;piÞ. If we set ni ¼ 2pi þ 4,

then

ni log dg;ni
log ni

a
ni log rðg;piÞ

log ni
¼

ð2pi þ 4Þrðg;piÞ
logð2pi þ 4Þ :

The right hand side goes to 2 as i goes to y, see Lemmas 3.1(3) and 4.1. This

completes the proof. r

Proof of Theorem 1.6. The monodromy Faðg; pÞ of the fibration associated

to the primitive fibered class aðg;pÞ is defined on the surface of genus g with

2pþ 4 boundary components. It has the dilatation rðg;pÞ, and hence dg;2pþ4 a

rðg;pÞ.

Now let us prove dg;2pþ1 a rðg;pÞ. The fibration associated to aðg;pÞ extends

naturally to a fibration on the manifold obtained from N by Dehn filling

two cusps specified by the tori Ta and Tg along the boundary slopes of the

fiber. Then Faðg; pÞ : Faðg; pÞ ! Faðg; pÞ extends to the monodromy F̂F : F̂F ! F̂F of the

extended fibration, where the extended fiber F̂F is obtained from Faðg; pÞ by filling

each disk bounded by each component of qaFaðg; pÞ [ qgFaðg; pÞ . Thus F̂F has the

genus g with 2pþ 1 boundary components, see Lemma 4.2. By Lemma 4.3,

Faðg; pÞ does not have 1 prong at each component of qaFaðg; pÞ [ qgFaðg; pÞ . Hence

Faðg; pÞ extends canonically to the stable foliation F̂F of F̂F. Therefore f̂f ¼ ½F̂F� is
pseudo-Anosov with the same dilatation as Faðg; pÞ . This implies that dg;2pþ1 a

rðg;pÞ.

The proofs of the rest of the bounds dg;2pþ2 a rðg;pÞ and dg;2pþ3 a rðg;pÞ are

similar. In fact, the extended fiber of the fibration on the manifold obtained

from N by Dehn filling a cusp specified by Ta or Tg along the boundary slope

of the fiber has the genus g with 2pþ 2 or 2pþ 3 boundary components, see

Lemma 4.2. Lemma 4.3 ensures that the extended monodromy is pseudo-

Anosov with the same dilatation as Faðg; pÞ . r

284 Eiko Kin and Mitsuhiko Takasawa



Proof of Theorem 1.7. By Theorem 1.6 together with the assumption ð�Þ
in Theorem 1.7, we have that for any pb 0 and for j A f3; 4g,

dg;2pþ j a rðg;pÞ or dg;2pþ j a rðg;pþ1Þ:

Thus

ð2pþ jÞ log dg;2pþ j

logð2pþ jÞ a
ð2pþ jÞ log rðg;pÞ

logð2pþ jÞ or

ð2pþ jÞ log dg;2pþ j

logð2pþ jÞ a
ð2pþ jÞ log rðg;pþ1Þ

logð2pþ jÞ :

By Lemma 3.1, it is easy to see that the both right hand sides in the above two

inequalities go to 2 as p goes to y. Thus

lim sup
p!y

ð2pþ jÞ log dg;2pþ j

logð2pþ jÞ a 2:

Since this holds for j A f3; 4g, the proof is done. r

Proof of Proposition 1.10. We prove the claim in the second half.

(The proof in the first half is similar.) If gb 2 satisfies ð�Þ, then for any pb 0

there exist a Sg;2pþ3-bundle and a Sg;2pþ4-bundle over the circle obtained from

N, see proof of Theorem 1.7. More precisely such a bundle is homeomorphic

to N or it is obtained from N by Dehn filling cusps along the boundary slopes

of the fiber. Thus Proposition 1.10 holds from the result which says that the

hyperbolic volume decreases after Dehn filling, see [16, 18]. r

Remark 4.4. To address Question 1.3, we explored fibered classes of the

magic manifold whose dilatations have a suitable asymptotic behavior. We

found a family of primitive fibered classes aðg;pÞ by computer. By Lemma 4.2,

most of the components of qFaðg; pÞ lie on the torus Tb. The pseudo-Anosov

stable foliation associated to aðg;pÞ has the property that each component of

qbFaðg; pÞ has 1 prong. The striking property of aðg;pÞ is that the slope of the

components of qbFaðg; pÞ is exactly equal to �1. Moreover, for any fixed g,

the projective class aðg;pÞ goes to a single point
�
1
2 ; 1;

1
2

�
A qD as p goes to y.

It is proved by Martelli and Petronio [13] that the manifold Nð�1Þ obtained

from N by Dehn filling a cusp along the boundary slope �1 is not hyperbolic.

The property that each component of qbFaðg; pÞ has 1 prong can also be seen

from the fact hat Nð�1Þ is a non hyperbolic manifold.
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isque, 66–67, Société Mathématique de France, Paris (1979).

[ 4 ] D. Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Com-

ment. Math. Helv. 57 (1982), 237–259.

[ 5 ] E. Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic

braid, Algebr. Geom. Topol. 10 (2010), 2041–2060.

[ 6 ] E. Hironaka and E. Kin, A family of pseudo-Anosov braids with small dilatation, Algebr.

Geom. Topol. 6 (2006), 699–738.

[ 7 ] N. V. Ivanov, Stretching factors of pseudo-Anosov homeomorphisms, Journal of Soviet

Mathematics, 52 (1990), 2819–2822, which is translated from Zap. Nauchu. Sem. Leningrad.

Otdel. Mat. Inst. Steklov. (LOMI), 167 (1988), 111–116.

[ 8 ] E. Kin, Dynamics of the monodromies of the fibrations on the magic 3-manifold, New

York J. Math. 21 (2015), 547–599.

[ 9 ] E. Kin, Notes on pseudo-Anosovs with small dilatations coming from the magic

3-manifold, Representation spaces, twisted topological invariants and geometric structures

of 3-manifolds, RIMS Kokyuroku 1836 (2013), 45–64.

[10] E. Kin, S. Kojima and M. Takasawa, Minimal dilatations of pseudo-Anosovs generated

by the magic 3-manifold and their asymptotic behavior, Algebr. Geom. Topol. 13 (2013),

3537–3602.

[11] E. Kin and M. Takasawa, Pseudo-Anosov braids with small entropy and the magic

3-manifold, Comm. Anal. Geom. 19 (4) (2011), 705–758.

[12] E. Kin and M. Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and

the Whitehead sister link exterior, J. Math. Soc. Japan 65 (2) (2013), 411–446.

[13] B. Martelli and C. Petronio, Dehn filling of the ‘‘magic’’ 3-manifold, Comm. Anal. Geom.

14 (2006), 969–1026.

[14] S. Matsumoto, Topological entropy and Thurston’s norm of atoroidal surface bundles

over the circle, J. Fac. Sci., Univ. of Tokyo, Section IA. Mathematics 34 (1987), 763–778.

[15] C. McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüler geodesic for

foliations, Ann. Sci. Éc. Norm. Supér. 33 (2000), 519–560.

[16] W. D. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (3)

(1985), 307–332.

[17] R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443–450.

[18] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton

University (1979).

[19] W. Thurston, A norm of the homology of 3-manifolds, Mem. Amer. Math. Soc. 339

(1986), 99–130.

[20] W. Thurston, On the geometry and dynamics of di¤eomorphisms of surfaces, Bull. Amer.

Math. Soc. 19 (1988), 417–431.

[21] W. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds

which fiber over the circle, preprint, arXiv:math/9801045

[22] C. Y. Tsai, The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol.

13 (2009), 2253–2278.

286 Eiko Kin and Mitsuhiko Takasawa



[23] A. D. Valdivia, Sequences of pseudo-Anosov mapping classes and their asymptotic behavior,

New York J. Math. 18 (2012), 609–620.

[24] X. Wang, A simple proof of Descartes’s rule of signs, Amer. Math. Monthly 111 (6)

(2004), 525–526.

Eiko Kin

Department of Mathematics, Graduate School of Science

Osaka University

Toyonaka, Osaka 560-0043, Japan

E-mail: kin@math.sci.osaka-u.ac.jp

URL: http://www.math.sci.osaka-u.ac.jp/~kin/

Mitsuhiko Takasawa

Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

Ohokayama, Meguro, Tokyo 152-8552, Japan

E-mail: takasawa@is.titech.ac.jp

URL: http://www.is.titech.ac.jp/~takasawa/

287The boundary of a fibered face of the magic 3-manifold


