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ABSTRACT. Let J,, be the minimal dilatation of pseudo-Anosovs defined on an
orientable surface of genus g with n punctures. It is proved by Tsai that for any
fixed g > 2, there exists a constant ¢, depending on g such that

1 1 1
Llogn o5 < 108"
Cy n

for any n > 3.

This means that the logarithm of the minimal dilatation logd, , is on the order of
log n/n.  We prove that if 2g + 1 is relatively prime to s or s+ 1 for each 0 <s < g,
then

<2

log 3y, »
lim sup 7n(fogg n/ )

holds. In particular, if 2g + 1 is prime, then the above inequality on J, , holds. Our
examples of pseudo-Anosovs ¢’s which provide the upper bound above have the
following property: The mapping torus My of ¢ is a single hyperbolic 3-manifold
N called the magic manifold, or the fibration of My comes from a fibration of N
by Dehn filling cusps along the boundary slopes of a fiber.

1. Introduction

Let X' =2, , be an orientable surface of genus g with »n punctures and
Mod(2) the mapping class group of 2. By Thurston’s classification theorem
of surface automorphisms, elements of Mod(X) are either periodic, reducible,
or pseudo-Anosov, see [20]. Pseudo-Anosov mapping classes have rich
dynamical properties. The hyperbolization theorem by Thurston [21] relates
the dynamics of pseudo-Anosovs and the geometry of hyperbolic fibered
3-manifolds. The theorem asserts that ¢ € Mod(2) is pseudo-Anosov if and
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only if the mapping torus My of ¢ admits a complete hyperbolic metric of
finite volume.

Each pseudo-Anosov element ¢ € Mod(2) has a representative @ : ¥ — X
called a pseudo-Anosov homeomorphism. Such a homeomorphism is equipped
with a constant A = A(®) > 1 called the dilatation of ®. 1If we let ent(d) be
the topological entropy of @, then the equality ent(®) = log A(®) holds. More-
over ent(®) attains the minimal entropy among all homeomorphisms which
are isotopic to @, see [3, Exposé 10]. The dilatation 2(¢$) of ¢ is defined to
be A(D). We call the quantities ent(¢) = log A(¢) and Ent(¢) = |x(Z)| log A(¢)
the entropy and normalized entropy of ¢ respectively, where y(X) is the Euler
characteristic of X.

If we fix X, the set of dilatations of pseudo-Anosovs defined on X' is a
closed discrete subset of R, see [7] for example. In particular there exists a
minimum. We denote by 6(2) > 1, the minimal dilatation of pseudo-Anosov
elements in Mod(Y). The minimal dilatations are determined in only a few
cases. (See for example [9] which is a survey on minimal pseudo-Anosov
dilatations.)

Let us set dy, =0(2;,) and d; =d,0. We write 4 < B if there exists
a universal constant ¢ such that A/c < B < cA. Penner proved in [17] that
log d, xé. This work by Penner was a starting point for the study of the
asymptotic behavior of the minimal dilatations on surfaces varying topology.
Later it was proved by Hironaka-Kin [6] that log dy, =<1, and by Tsai [22]
that logdy, < 1. See also Valdivia [23]. The following theorem of Tsai is
in contrast with the cases of genera 0 and 1.

Taeorem 1.1 ([22]). For any fixed g > 2, there exists a constant ¢,
depending on g such that

1 logn

Cy n

logn

<logdy, <cy-

for any n > 3.

In particular for any fixed g > 2, we have

1
log 64, < oen

The following question is due to Tsai.
QUESTION 1.2.  What is the optimal constant ¢, in Theorem 1.17

One can also ask the following.

. log o4 1
QUESTION 1.3.  Given g > 2, does lim w exist?  What is its value?

n—owo  logn
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This is an analogous question, posed by McMullen, which is asking whether
lim g logd, exists or not, see [15]. Toward Questions 1.2 and 1.3, we prove
g—o0

the following.

THEOREM 1.4. Given g > 2, there exists a sequence {n;}°, with n; — o0
such that
. 1og oy .
lim sup =089 < 5.
i— 00 og n;
Theorem 1.4 improves the previous upper bound on logd, , by Tsai. In fact
for any g > 2, Tsai’s examples in [22] yield the upper bound lim sup 1108 9n)

logn =
n—oo
2(2g + 1), which is proved by a similar computation in the proof of Theorem
1.4. As a corollary of Theorem 1.4, we have the following.

COROLLARY 1.5. Given g = 2, the following set

{10’; — ent(¢) | ¢ € Mod(2, ) is pseudo-Anosov, n > 1}

has an accumulation point 2.

To state other results which are related to Questions 1.2 and 1.3, we define
a polynomial B, ,(t) for nonnegative integers g and p:

B(g,p)(t) _ 12p+1(t2g+1 _ 1) +1-— 2tp+g+1 _ 12g+1.

We shall see that there exists a unique real root r(, , greater than 1 of B, ,)(?),
and these satisfy

lim 2108 Tor) _ |
p—x  logp
(Lemma 4.1). The root ry ,) gives the following upper bound.

THEOREM 1.6.  For g >2 and p > 0, suppose that gcd(2g+ 1, p+g+1)=1
Then

Oy, 2p+i < T(g,p) Sor each ie{1,2 3,4}

If g satisfies (*) in the next Theorem 1.7, then one can take the sequence

{n;}/, in Theorem 1.4 to be the sequence {n}, , of natural numbers.

THEOREM 1.7. Suppose that g > 2 satisfies

(*) ged(2g+1,5) =1 or ged(2g+ 1,5+ 1) =1 for each 0 <s<g.
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Then

1
lim sup M <2

n—on log n

For example, (*) holds for g =4 since 9 is relatively prime to 1,2,4 and 5;
(+) does not hold for g =7 because gcd(15,5) =5 and ged(15,6) =3. We
point out that infinitely many ¢’s satisfy (x). In fact if 2g + 1 is prime, then
2g + 1 is relatively prime to s’ for each 1 <s' <g+1.

COROLLARY 1.8. [If 29+ 1 is prime for g > 2, then

lim sup n(10g 9y.n)

<2
N o logn

REMARK 1.9. One can simplify (%) in Theorem 1.7, since 2¢g + 1 is relative
prime to 1,2 and ¢. In the case g > 5, (*) is equivalent to

(xx) ged(2g+1,5)=1o0r gcd2g+1,s+1)=1oreach3<s<g-—2.

Our results are proved by using the theory of fibered faces of hyperbolic
and fibered 3-manifolds M, developed by Thurston [19], Fried [4], Matsumoto
[14] and McMullen [15], see Section 2. We focus on a fibered face of a
particular hyperbolic fibered 3-manifold, called the magic manifold N. This
manifold is the exterior of the 3 chain link %3, see Figure 1. Our examples of
pseudo-Anosovs ¢’s which provide the upper bounds in Theorems 1.4, 1.6 and
1.7 have the following property: The mapping torus M, of ¢ is homeomor-
phic to N, or the fibration of My comes from a fibration of N by Dehn filling
cusps along the boundary slopes of a fiber. An explicit construction of these
examples is given by the first author, see [8, Example 4.8].

We turn to hyperbolic volumes of hyperbolic 3-manifolds. The set of
volumes of hyperbolic 3-manifolds is a well-ordered closed subset in R of order

(0,1,0)

Y & "

d
(-1,-1,-1)

Fig. 1. (left) 3 chain link %3. (center) F,, Fp, F,. (right) Thurston norm ball Uy. (fibered face
4 is indicated.)
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type ®®, see [18]. In particular if we fix a surface X, then there exists a
minimum among volumes of hyperbolic 2-bundles over the circle. The proofs
of Theorems 1.4, 1.7 immediately imply the following.

PROPOSITION 1.10.  For each g > 2, there exists a sequence {n;};", with
n; — o such that the minimal volume of X, ,-bundles over the circle is less than
or equal to vol(N) = 5.3334, the volume of the magic manifold N. In particular,
Sor any g = 2 satisfying (x) and any n > 3, the minimal volume of X, ,-bundles
over the circle is less than or equal to vol(N).

We close the introduction by asking

QUESTION 1.11 (cf. Theorems 1.4 and 1.7). Does lim sup "(lﬁ)gi;;f”) <2 hold
for all fixed g >2? e

2. The Thurston norm and fibered 3-manifolds

Let M be an oriented hyperbolic 3-manifold with boundary M (possibly
OM = &). We recall the Thurston norm || - || : Ho(M,0M;R) — R. Let F
be a finite union of oriented, connected surfaces. We define y_(F) to be

2-(F) =" max{0,—x(F)},
F,CF
where F;’s are the connected components of F and y(F;) is the Euler char-
acteristic of F;. The Thurston norm || || is defined for an integral class
ae Hy(M,0M;Z) by

lall = min{y_(F)|a = [F]},

where the minimum ranges over all oriented surfaces F embedded in M. A
surface F' which realizes this minimum is called a minimal representative of a,
denoted by F,. Then | -|| defined on integral classes admits a unique con-
tinuous extension || - || : H2(M,dM;R) — R which is linear on the ray through
the origin. The unit ball Uy, with respect to the Thurston norm is a compact,
convex polyhedron. See [19] for more details.

Suppose that M is a surface bundle over the circle and let F be its fiber.
The fibration determines a cohomology class a* € H'(M;Z), and hence a
homology class a € Hy(M,0M;Z) by Poincaré duality. Thurston proved in
[19] that there exists a top dimensional face 2 on dUys such that a = [F] is an
integral class of int(Cq), where Cq is the cone over @ with the origin and
int(Cg) is its interior. Moreover the minimal representative F, for any integral
class a in int(Cg) becomes a fiber of the fibration associated to a. Such a face
Q is called a fibered face, and an integral class a € int(Cq) is called a fibered
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class. This work of Thurston tells us that if M has second Betti number
greater than 1, then M provides infinitely many pseudo-Anosov monodromies
defined on surfaces with variable topology.

The set of integral and rational classes of int(Cg) are denoted by
int(Cq(Z)) and int(Cqo(Q)) respectively. When a € int(Co(Z)) is primitive,
the associated fibration on M has a connected fiber represented by F,. Let
@, : F, — F, be the monodromy. Since M is hyperbolic, ¢, = [®@,] is pseudo-
Anosov. The dilatation A(a) and entropy ent(a) = log A(a) are defined as the
dilatation and entropy of ¢, respectively. The entropy defined on primitive
fibered classes can be extended to rational classes by homogeneity. It is
shown by Fried in [4] that L : inf(Co(Q)) — R is concave, and in particular

ent *
ent : int(Co(Q)) — R admits a unique continuous extension

ent : int(Co) — R.
Moreover Fried proved that the restriction
ent|int(.Q)(: Ent|int(.Q)) : ll/lt(.Q) —R

on the open face inf(Q2) has the property that ent(a) goes to oo as a € int(Q)
goes to a point on 0R2. Thus we have a continuous function

Ent= || - | ent(:) : int(Co) — R

which is constant on each ray in in?(Cq) through the origin.

These properties give us the following observation: Fix a hyperbolic
fibered 3-manifold M with a fibered face 2 as above. For any compact set
2 C int(Q), there exists a constant C = Cy > 0 satisfying the following. Let
a €int(Cg) be any integral class of Hy(M,0M;Z). The normalized entropy
Ent(a)(= Ent(¢,)) is bounded by C from above whenever @ € &, where a is
the projection of a into int(Q).

This observation enables us to investigate the following asymptotic
behaviors of minimal dilatations.

(1) limsup 7 logdy, <2 log(2++/3), see [6, 11].

n—oo

(2) limsup nlogdy, <2logdy, where Jy=x2.2966 is the largest real

n—oo
root of t* —213 —2t+1, see [10].

(3) glogds, < log(#), see [2, Appendix] and [5, 1, 12].

We note that for fixed g > 2, different methods for investigating the
asymptotic behavior of d,, varying n are necessary. Theorem 1.1 says that
there exists no constant C > 0, independent of n so that |y(Z, ,)| logd, , < C.
Thus if, for fixed g > 2, there exists a sequence of fibered classes {a;} with
aj € int(Co) N Hy(M,0M;Z) such that the fiber of the fibration associated to
a; 1s a surface of genus g having n; boundary components with n; — oo, then
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the accumulation points of the sequence of projective classes {a;} must lie
on the boundary of 2. To prove Theorems 1.4, 1.6 and 1.7, we pay special
attention to the magic manifold N. In Section 4.3, we choose such a sequence
of fibered classes {a;} of N carefully. We analyze the asymptotic behavior of
Ala;)’s by using a technique given in Section 3.

The Teichmiiller polynomial, developed by McMullen [15] is a certain
element @ (associated to the fibered face Q) in the group ring ZG, where
G = H|(M;Z)/torsion, i.e, Oq is a finite sum

@.Q - Z €99,

gel

where ¢, is an integer. For every fibered class a € int(Cg), the specialization
of @q at the cohomology class a* € H'(M;Z) is defined by

057 (1) =Y et

ge@G

which is a polynomial with a variable 7. It is a result in [15] that for all
fibered class a € int(Cq), the dilatation A(a) is equal to the largest real root
of 047 (1).

3. Roots of polynomials

This section concerns the asymptotic behavior of roots of families of poly-
nomials. Let

g(1) = anlb” + Clnillbn,l R altbl T ap

be a polynomial with real coefficients ay,ay,...,a, (a1,as,...,a, # 0), where
g(t) is arranged in the order of descending powers of 7. Let D(g) be the
number of variations in signs of the coefficients a,,a,_1,...,ap. For example

if g(f)=+t*+13 -2+ 1~ 1, then D(g) =3; if h(t) = +t* + 13 - 22+t +11,
then D(h) =2. Descartes’s rule of signs (see [24]) says that the number of
positive real roots of g(7) (counted with multiplicities) is equal to either D(g)
or less than D(g) by an even integer.

LemMa 3.1. Let r=0, s >0 and u> 0 be integers. Let
Pm(l) _ t2m+r(ts _ 1) T Q(l)lm o
_ t2m+r+s _ Z2m-¢—r _ Q(l)lm e +1

be a polynomial for each m € N, where Q(t) is a polynomial whose coefficients
are positive integers. (Q(t) could be a positive constant.)
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(1) Suppose that "'+ is the leading term of P, (t). Then P, (t) has a
unique real root A, greater than 1.
(2) Given 0 <c; <1 and ¢y > 1, we have

m" < J < mM for m large.
In particular

lim 7198 n 4
m—x  log m

(3) For any real numbers q #0 and v, we have

m (gm +v) log A,

m—e log(gm+uv) T

Proor. (1) Under the assumption on P,(f), we have D(P,)=2. By
Descartes’s rule of signs, the number of positive real roots of P, (f) is either 2
or 0. Since P,(0) =1 and P,(1) =—0Q(1) <0, the number of positive real
roots of P,(¢) is exactly 2. Because P,(f) goes to oo as ¢ does, P,(f) has a
unique real root 4, > 1.

(2) We have

Po(0)t ) = 5 1 = GmEn) ()¢ m) g G,
We define f,,(¢) and g,,(f) such that P,,(t)t=C"7) = £, (£) + g(t) as follows.
Snt) =15 =1 4 =G0 and
gm(t) = Q1)) 4 = @mtr=w),
We let t = m“™ for ¢ > 0. Then
Sn(mI™)y = () — 1 (el
— ((eloEmyeImys _ | 4 pyel@ie/m)
_ plsclogm)/m _q  p—c(r/m).
By Maclaurin expansion of e(¢°27)/" e have

e(sc logm)/m _ 1+ sc IOg m

+ Ry,

where

w 1 2 1
RZ:e_(sc ogm) for some 0<w<SC ogm.
2 m m
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Since “lﬂ goes to 0 as m goes to co, we may assume that 4 < B for some
constant B > 0. Then

sc log m ml—c(2+r/m)

Sn(m™) = + Ry +

- sc log m N B(sc log m)2 . ml—c@tr/m)
m m

2 —C r/m
_ sclogm B (log m) N ml—c@tr/m)
m m

m
1 1 1—c(2+r/m)
_s¢ ogm+BS262(ogm>+m
m m m

B (sc+ Bszcz) log m + ml—c@+tr/m)
= .

log m

(The last inequality comes from 0 < <1 for m large.) Thus

(sc + Bs*c?) log m + m!~<(+r/m)
— .

Sn(mI™) < (1)

c(2+r/m)

The first equality f;,(m</™) =% 10gm 4 Ry 4 mCm
and W >0 tells us that

above together with Ry > 0

sc log m

Jnlmem) > 2)

m
Recall that all coefficients of Q(#) (appeared in P,,(t)) are positive integers.

/ .
If we write Q(f) = ) a;t/, where a; > 0, then
Jj=0

gm(m"/’”) = Q(m"/m)m*ﬂ(lwq/m) _|_m7c(2+r/mfu/m)

/
= <Z q/m—0(1+1'/m—_j/l71)> + m_c(2+r/m_u/m> .

J=0

Thus we obtain

(Zj/:() a/mlfc(Hr/mfj/m)) + mlfc(2+r/mfu/m)

gm(mC/m) = m

3)

For the proof of the claim (1), it is enough to prove that for 0 < ¢ < 1
and ¢; > 1, we have f,(m“/") < g,,(ma/™) and f,,(m/") > g,,(m/") for m
large.
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First, suppose that 0 < ¢ < % Let us consider how the following four
terms grow.

lOg m, ml—c(2+r/m)’ ml—c(1+r/m—j/m) and ml—c(2+r/m—u/m). (4)

The first two terms appear in (1), and the last two are coming from (3). All
four terms go to oo as m does, since the last three terms have the positive
powers of m. Note that for any C >0, we have logm < m® for m large.
Keeping this in mind, we observe that among the four terms in (4),
mi—<(4r/m=j/m) is dominant. This is because

1—c<1+£—i>>1—c<2+i—ﬁ)21—c(2+1>
m m m m m

for m large. These imply that f,,(m<™) < g,,(m/™) holds for m large, since
m!=etr/m=j/m) appears in the numerator of g,,(m™), see (3).

Next, we suppose that 1 <c¢ < 1. We can check that m!=c(i+7/m=i/m) jg
still dominant among the four in (4). (The second and fourth terms are
bounded as m goes to c0.) Therefore we still have f,,(m/™) < g,,(m™) for
m large.

Finally we suppose that ¢ > 1. Clearly, the last three terms in (4) go to 0
as m goes to oo. Thus the numerator of g,,(m™), see (3), goes to 0 as m
tends to co. On the other hand, f;,(m/") > “’1% holds (see (2)), and hence
the numerator of

sc log m + mRy + m'—<@+r/m)
m

(= fu(m™)

goes to oo as m does. Thus f,(m™) > g,,(m/™) for m large. This com-
pletes the proof of the first part of the claim (2).
Taking logarithms on both sides of m“/” < 1, < m®/™ yields

1 }vm
o < 1 208 4m <o for m large.

log m
Since 0 <¢; <1 and ¢, > 1 are arbitrary, we have the desired limit. This

completes the proof of the second half of the claim (2).
(3) By the claim (2),

¢ logm ¢, logm

<log 2, < for m large.

Let us set n=gm+v. We substitute m = % above:

%<loglm<%

n—v —v
q q
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Hence

quOQn—v%—bg®<<bgi <qQ00ﬂn—v%—bg%

n—uv n—uv

lo

We multiply all sides above by o> 0 (for n large). Then

gcin(log(n — v) — log q) - n(log Ay) - gcan(log(n — v) — log q)
(n—v)logn log n (n—v)logn '

Note that % goes to 1 as n (and hence m) goes to oo. Since

0<ec¢; <1 and ¢; > 1 are arbitrary, it follows that

lim n(log A,) — lim (gm + v) log A _
m—o0 log n m— oo log(qm + U)

4. The magic 3-manifold N

Monodromies of fibrations on N have been studied in [10, 11, 12]. In
Sections 4.1 and 4.2, we recall some results which tell us that the topology of
fibered classes a and the actual value of /(a). In Section 4.3, we find a family
of fibered classes a(, , of N with two variables g and p, and we shall prove
that it is a suitable family to prove theorems in Section 1 (cf. Remark 4.4).

Recall that X, is an orientable surface of genus g with n punctures.
Abusing the notation, we sometimes denote by 2, ,, an orientable surface of
genus g with n boundary components.

4.1. Fibered face 4. Let K,, Kz and K, be the components of the 3 chain
link %3. They bound the oriented disks £, Fy and F, with 2 holes, see Figure
1. Let o= [F,], fp=[Fp], y=[F)) € Hy(N,0N;Z). The set {a,f, 7} is a basis
of Hy(N,0N;Z). Figure 1 illustrates the Thurston norm ball Uy for N which
is the parallelepiped with vertices +o, +f, +y, +(a+ f+y) ([19, Example 3
in Section 2]). Because of the symmetry of %3, every top dimensional face of
Uy 1s a fibered face.

We denote a class xa+ yf +zy e Hy(N,0N;R) by (x,y,z). We pick a
fibered face 4 with vertices o = (1,0,0), a+f+y=(1,1,1), f=(0,1,0) and
—y=1(0,0,—1), see Figure 1. The open face int(4) is written by

int(A) ={(X,Y,2) | X+Y—-Z=1,X>0,Y >0,X >Z Y >Z}.

A class a = (x,y,z) € Hy(N,0N;R) is an element of int(C,) if and only if
x>0, y>0, x>z and y >z In this case, we have |a|| =x+ y —z.
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Let a = (x, ,z) be a fibered class in int(C4). The minimal representative
of this class is denoted by F, or F, , .. We recall some formula which tells
us that the number of the boundary components of F,. We denote the tori
0N'(Ky), 0N (Kg), 0N (K,) by T,, Ty, T, respectively, where .4"(K) is a regular
neighborhood of a knot K in S*. Let us set ,F(y, ) = 0Fx, - N T, which
consists of the parallel simple closed curves on 7,. We define the subsets
0pF(x,y,2), OyF (x,y,z) C OF(y,,,-) in the same manner. By [l11, Lemma 3.1], the
number of the boundary components

#(aF(x,y,z)) = #(axF(x‘y,Z)) + #(6/3F(X~,}’~Z)) + #(a"/F(X=}"7—’))
is given by
#(0F(x,y,2)) = ged(x, y + 2) + ged(p, z + x) + ged(z, x + p) (5)

where #(aocF(x,y,z)) = ng(Xv y+ Z): #(a/fF(x,y.z)) = ng(y>Z + X), #(a}'F(x.y,z)) =
gcd(z,x + y) and ged(0,w) is defined by |w|.

4.2. Dilatations and stable foliations of fibered classes «’s. The Teichmiiller
polynomial associated to the fibered face A is computed in [11, Section 3.2],
and it tells us that the dilatation A, , ) of a fibered class (x, y,z) € int(Cy) is
the largest real root of

f(x,y,z)(t) — [x+y—z _ [x _ ly _ tx—z _ ty—z + 1’

see [11, Theorem 3.1]. (In fact, (., -y is a unique real root greater than 1 of
Sx.0.2) (1) by Descartes’s rule of signs.)

Let @\, - : F(x) - — F,,,- be the monodromy of the fibration asso-
ciated to a primitive class (x, y,z) € int(C4). Let #,, ) be the stable foliation
of the pseudo-Anosov @, ). The components of 0,F( , - (resp. dpF(x y -,
0,F(y,,,-) are permuted cyclically by @, .. In particular the number of
prongs of 7., . at a component of 0,F. , -y (resp. dpFiyy ), 0,F(x, ), ) is
independent of the choice of the component. By [12, Proposition 3.3], the
stable foliation #(, , .) has the following properties.

* Each component of d,F, , . has x/gcd(x, y 4 z) prongs.

* Each component of dgF|, , .) has y/ged(y,x +z) prongs.

e Each component of d,F, , - has (x+ y—2z)/ged(z,x + y) prongs.

* F(xy,- does not have singularities in the interior of F, , ..

4.3. Proofs of theorems. Let a=(1,1,0) and b= (0,1,1). For g >0 and
p =0, define a fibered class a(, ,) as follows.

agp=@P+tg+a+(p—g)b=(p+g+1,2p+1,p—g)eint(Cy).
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The class q ) is primitive if and only if 29+ 1 and p+g¢g+ 1 are relatively
prime. One can check the identity

B(.q,p)(t) = f(p+g+1,2p+1~,pfg)(t)

(see Section 1 for the definition of B, , (#)). We denote by r( ,), the dilata-
tion A(a(, ) of the fibered class a,,. (Thus the dilatation r(, , = A(ay,,))

of ay , is a unique real root of B, ,(¢) which is greater than I, see Sectlon
4.2.)

Lemma 4.1. We fix g > 0. Given 0 <c; <1 and ¢; > 1, we have
par < Fg.p) < PP for p large.
In particular

1
lim plog r(“l,l’) —
p—o log p

Proor. Apply Lemma 3.1 to the polynomial B, ,) (7). O

LemmA 4.2. Suppose that a, ) is primitive. The minimal representative
Fu,, is a surface of genus g with 2p +4 boundary components, and the stable
Joliation F, , has the following properties. If p+g is odd (resp. even), then
#(0uly, ) =2 (resp. 1) and #(0,F,, ) =1 (resp. 2). A component of

by, h pﬂﬂ prongs (resp. (p+g+1) prongs), and a component of
0,Fy,, has (p+3g+2) prongs (resp. “3"”2 prongs).

Proor. By (5), we have that #(0sF,,,)=2p+1. We have
#(0uky, ) =gcd(p+g+1,3p—g+1) =ged(p+g+ 1,229 + 1)).

Since ayy, ) is primitive, p+ g+ 1 and 2g + 1 must be relatively prime. Hence
#(0xky,,) =1 (resp. 2) if p+g is even (resp. odd). Let us compute
#(0,Fa, ). We have

#(0yFa, ) =ged(B3p+9g+2,p—g) =ged(2(29 + 1), p — g).

Since ged(2g +1,p —¢g) = ged(2g + 1, p+ g+ 1) = 1, we have that #(0,F,, )
=2 (resp. 1) if p—g¢ is even (resp. odd), equivalently p+ ¢ is even (resp.
odd). The genus of F,, , is computed from the identities ||a(, ,)||(= |x(Fa,,)|)
=2p+2g+2 and #(6Fa< ) =20 +4

The singularity data of %, , is obtained from the formula at the end of
Section 4.2. ]
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By Lemma 4.2, it is straightforward to prove the following.

Lemma 4.3, Suppose that a, p) is primitive. Then (g, p) ¢ {(0,0),(0,1),
(1,0)} if and only if F,,, does not have a 1 prong on each component of
0ok, U 0yFy, . In parlzcular if g=2and p >0, then #,, , does not have

a 1 prong on each component of 04F,, , U0,F,

Ag,p)"

We are now ready to prove theorems in Section 1.

ProoF OF THEOREM 1.4. There exists a sequence of primitive fibered
classes {a(y »)}izy with p; — co. (In fact, if we take p; = (g+ 1)+ (29 + 1)i,
then 29 +1 and p; +g¢g+1 are relatively prime. Hence q(, ,) is primitive.)
Then N is a X 5, 4-bundle over the circle whose monodromy of the fibration
has the dilatation r(, ,). Therefore g2y 14 <1y, If we set n; =2p;+4,
then

ni 1og oy, <M log rg ) _ (2pi +4)r(g
logn; ~  logmn; log(2p; +4)

The right hand side goes to 2 as i goes to co, see Lemmas 3.1(3) and 4.1. This
completes the proof. O

PrOOF OF THEOREM 1.6. The monodromy @, , of the fibration associated
to the primitive fibered class a(, ) is defined on the surface of genus g with
2p +4 boundary components. It has the dilatation r(, ,), and hence d,, 54 <
(g,p)-

Now let us prove dg 2,11 < (g ). The fibration associated to a(, ,) extends
naturally to a fibration on the manifold obtained from N by Dehn filling
two cusps specified by the tori 7, and T, along the boundary slopes of the
fiber. Then &, : Fy, , — Fy,, extends to the monodromy @ : F — F of the
extended fibration, where the extended fiber F is obtained from Fa,, by filling
each disk bounded by each component of 0,F,, , Ud,F,,, . Thus F has the
genus g with 2p + 1 boundary components, see Lemma 4.2. By Lemma 4.3,

Fa,,, does not have 1 prong at each component of d,Fy, , Ud,F, agp: Hence
Fa,,, extends canonically to the stable foliation # of @. Therefore ¢ = [D] is
pseudo-Anosov with the same dilatation as @, . This implies that dy 2,1 <
T(g.p)-

The proofs of the rest of the bounds dy 2,12 < 7y ) and 6,213 <1y, ) are
similar. In fact, the extended fiber of the fibration on the manifold obtained
from N by Dehn filling a cusp specified by T, or T, along the boundary slope
of the fiber has the genus g with 2p + 2 or 2p + 3 boundary components, see
Lemma 4.2. Lemma 4.3 ensures that the extended monodromy is pseudo-

Anosov with the same dilatation as @, . O
(9.p)
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PrOOF OF THEOREM 1.7. By Theorem 1.6 together with the assumption (x)
in Theorem 1.7, we have that for any p >0 and for je {3,4},

Og,op+j < Tg.p) or Og,2p+j < g p+1)-
Thus

(2p + j) log 59,217-&-(/‘ < (2]7 + ]) log T'(g,p)
log(2p+j) = log(2p+))

(2P + ]) 1Og 5g72p+j < (2[7 Jr]) 10g Fig,p+1)
log(2p+j) = log(2p+J)

By Lemma 3.1, it is easy to see that the both right hand sides in the above two
inequalities go to 2 as p goes to co. Thus

(2[) + f) log 55/,2p+j

lim su - <2
pat log(2p + )
Since this holds for j e {3,4}, the proof is done. O

ProoOF OF ProrosiTiON 1.10. We prove the claim in the second half.
(The proof in the first half is similar.) If g > 2 satisfies (x), then for any p >0
there exist a X, 5,,3-bundle and a %, ,,.4-bundle over the circle obtained from
N, see proof of Theorem 1.7. More precisely such a bundle is homeomorphic
to N or it is obtained from N by Dehn filling cusps along the boundary slopes
of the fiber. Thus Proposition 1.10 holds from the result which says that the
hyperbolic volume decreases after Dehn filling, see [16, 18]. O

REmMARK 4.4. To address Question 1.3, we explored fibered classes of the
magic manifold whose dilatations have a suitable asymptotic behavior. We
found a family of primitive fibered classes a(, ,) by computer. By Lemma 4.2,
most of the components of 0F, , lie on the torus 7y. The pseudo-Anosov
stable foliation associated to «a, , has the property that each component of
dpFy,, has 1 prong. The striking property of a(, , is that the slope of the
components of JgFy, , is exactly equal to —1. Moreover, for any fixed g,
the projective class @, , goes to a single point (1,1,1) € 04 as p goes to .
It is proved by Martelli and Petronio [13] that the manifold N(—1) obtained
from N by Dehn filling a cusp along the boundary slope —1 is not hyperbolic.
The property that each component of dgF, , has 1 prong can also be seen

from the fact hat N(—1) is a non hyperbolic manifold.
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