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ABSTRACT. A new class of Lipschitz evolution operators is introduced and a charac-
terization of continuous infinitesimal generators of such evolution operators is given.
It is shown that a continuous mapping 4 from a subset Q of [a,b) X X into X, where
[a,b) is a real half-open interval and X is a real Banach space, is the infinitesimal
generator of a Lipschitz evolution operator if and only if it satisfies a sub-tangential
condition, a general type of quasi-dissipative condition with respect to a metric-like
functional and a connectedness condition. An application of the results to the initial
value problem for the quasilinear wave equation with dissipation is also given.

1. Introduction and main theorems

Throughout this paper, R denotes the set of all real numbers. Let X be a
real Banach space with norm || - ||. For a subset O of R x X, Q(¢) denotes the
section of Q at reR, that is, Q(¢) = {x e X;(¢,x) € O}.

Let [a,b) be a subinterval of R and Q a subset of [a,b) x X such that
—ww<a<b<o and Q(t) # & for tefa,b). Let A be a continuous map-
ping from Q to X. Given (7,z) € 2, we consider the following initial value
problem:

(IVP;7,z) { u'(1) = A(t,u(t)) for T <1 <b,

u(t) =z.

Suppose that the problem (IVP;7,z) has a unique solution u(-) on [z,b) for
every (7,z) € Q. Defining U(z,7)z = u(f), we have the following properties
from the uniqueness of solutions:
(E1) U(r,7)z==z and U(t,s)U(s,7)z = U(t,7)z for ze Q(z) and a < 7 <
s<t<bh.
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Set 4 ={(t,7);a <t <t<b}. Usually, we have also the following prop-
erties from the continuous dependence of solutions on the initial data
(1,2) € Q:
(E2) Let (t,7)e 4, z€ Q(z), (ty,74) €4 and z, € Q(z,) for n=1,2,....
If (¢y,7,) — (2,7) and z, — z as n — oo, then U(t,,1,)z, — U(t,7)z
as n— oo.
By an evolution operator on Q, we mean a family {U(,7)}, ;o4 of operators
U(t,7) : Q(t) — Q(1) satisfying (El) and (E2). Such a family {U(2,7)}(, ;4 is
called a Lipschitz evolution operator on 2, if the following additional condition
is satisfied:
(E3) There exist a number L > 1 and a continuous function  : [a,b) —
[0, 0) such that

t

1U( 0% - Ut o)yl < L exp(J

T

ww)de) =y

for x,y e Q(zr) and (1,7) € 4.

The main purpose of this paper is to establish the conditions on the continuous
mapping A which are necessary and sufficient to guarantee the existence of the
Lipschitz evolution operator associated with 4. The obtained results extend
that of Kobayashi and Tanaka in [8] concerning the autonomous case where 4
is independent of ¢. In particular, a type of generalized quasi-dissipativity
condition on 4 with respect to a metric-like functional is shown to be necessary
for the existence of the Lipschitz evolution operator. Sufficient conditions on
A for the existence of evolution operators have been studied by many authors
and this paper is related with the works of Iwamiya [4], Kato [5], [6],
Kenmochi and Takahashi [7], Lakshmikantham, Mitchell and Mitchell [10],
Martin [11], [12], [13], Murakami [15], Pavel and Vrabie [19], Pavel [18] and
Carja, Necula and Vrabie [22]. Several types of generalized quasi-dissipativity
conditions on A are introduced and investigated in [15], [12], [10], [6], [20] and
[2]. Such a kind of generalized quasi-dissipativity conditions was first found
by Okamura [17] as a uniqueness criteria for ordinary differential equations.
See [1] or [24]. Our results extend the most of them. As in [7], [6] and [4],
the domain Q is allowed to be genuinely noncylindrical and the subtangential
condition, which was first found by Nagumo [16], is used to construct approx-
imate solutions to (IVP;z,z). The advantage of these assumptions is illus-
trated by an application of the results to the initial value problems for
nonlinear wave equations.

Let J < [a,b) be a subinterval of the form [r,¢] or [r,¢). An X-valued
continuous function u:J — X is called a solution to (IVP;t,z) on J, if
u(t) =z, (t,u(t)) e Q for teJ,u is differentiable on J and u'(¢) = A(t,u(t))
for teJ. A solution to (IVP;7,z) on [r,b) is called a global solution.
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Let d(x,D) denote the distance from xe X to D < X, ie. d(x,D)=
inf{||x — y|; ye D}. We consider the following conditions.

(21) A is continuous on Q.

(Q2) If (ty,xn) €Q, t, 1 t€[a,b) in R and x, — x in X as n — oo, then
(1,x) € Q.

(Q3) liminfy o h~'d(x + hA(t,x), 2(t + h)) = 0 for (£,x) € Q.

(24) There exists a functional V :[a,b) x X x X — [0,00) satisfying
the following properties (V'1)-(V4) and a continuous function
o : [a,b) — [0,00) such that

D+ V(lv X, y)(A(lv x)vA(t’ y)) < CO(Z) V(lv X, y)

for x,yeQ(t) and tela,b). Here, for (t,x,y)€ela,b) x X x X
and (&,7) e X x X,

o1
D, V(t,x,y)(&n) = hr}il})nf E(V(t+h,x+hé, y+hn) = V(tx, ),

where the values co and —oo are not excluded.

(V1) There exists a number L > 0 such that |V (¢,x, y) — V(t, %, y)|
<Ll -l +y—3l) for (x,y),(x7)eXxX and
t€la,b).

(V2) V(t,x,x)=0 for te[a,b) and x € Q(r).

(V3) If {t,} is a sequence in [a,b) and {(x,, y,)} is a sequence in
X x X such that (x,, y,) € Q(t,) x Q(¢t,) for n>1, t, —
t€la,b) and (x,, yn) — (x, ) € Q(¢) x Q(t) as n — oo, then
V(t,x,y) <liminf, o V(ty, Xn, Yn)-

(V4) If {t,} is a sequence in [a,b) and {(x,, y,)} is a sequence
in X x X such that (x,, y,) € Q(t,) x Q(t,) for n>1, t, —
t€la,b) and V(ty,xn, yu) — 0 as n — oo, then |x, — y,l| —
0 as n — o0.

(25) For any (7,z) € 2, there exists a connected component C of Q such

that (z,z) e C and C(t) # J for te (z,b).

REMARK 1. Condition (V1) with (V2) implies the following:
V(x| < Lix—ll  for (x.v) e Q) x Q1) and 1€ [a,b).
The following are our main theorems.

THEOREM 1. Let A be a mapping from Q into X such that conditions
(21)—(24) are satisfied. Let C be a connected component of Q and set d =
sup{z € [a,b); C(t) # }. Then the following assertions hold true:

(1) For (t,z) € C, (IVP;1,z) has a unique solution u(t;t,z) on [t,d) and

the interval [t,d) is the maximal interval of existence of solution.
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(ii) For z,2€ C(z) and te€[1,d),

t

V(tu(t:t,2),u(ts 7, 2)) < exp (J

T

a)(0)d0) V(z,z,2).

THEOREM 2. Let A be a mapping from Q into X such that (1) and (Q2)
are satisfied.  Then there exists a Lipschitz evolution operator {U(t,7)}(, ;c4 o1
Q such that u(t) .= U(t,7)z is a global solution to (IVP;z,z) for any (t,z) € Q if
and only if conditions (Q3)—(Q5) are satisfied, where condition (V4) is replaced
by the following condition:

(V4)' For any tela,b) and x,y e Q(1), ||x — y|| < V(t,x, y).

Theorem 1 consists of the uniqueness and local existence of solutions to
initial value problems (IVP;7,z) and the global existence theorem as well as
the continuous dependence of solutions on initial data. They are discussed in
Sections 2 and 3 respectively. The proof of Theorem 2 is given in Section 4.
An application of our results to the initial value problem for quasi-linecar wave
equations is given in Section 5.

2. Uniqueness and local existence of solutions

In this section, we construct the solutions to the initial value problem
(IVP;7,z). We assume that conditions (21)—(Q4). The following proposi-
tion ensures the uniqueness of solutions.

ProposITION 1. Let [t,¢) < [a,b) and z; € Q(z) for i=1,2. Let u; be
solutions to (IVP;t,z;) on [t,c), for i = 1,2, respectively. Then

1

T

V(t,u1(£), (1)) < exp (J w(s)ds) Ve, z1,2)

for te[t,c). In particular, if zy =z, then ui(t) = uy(t) for te€lz,c).

ProoF. Set w(t) = V(t,u1(¢),uz(t)) for t€[zr,c¢). From (V3) we see that
w is lower semi-continuous on [z,c¢). Let t€(r,¢) and he (0,c—¢). From
(V1) it follows that

(w(t + hy — w(t))/h— (V(t + hyuy (£) + hA(t, uy (1)), ua (1)
+ hA(t () = V(e (1), ua(1))) [
< |V(t+ huy (t+ h), (i + )
— V(t+ by (6) + hA(t w (8)), us(2) + hA(t, us (1)) /
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< L(llen (2 + ) = wa (1) = hA(2,u1 (2)) | /1
+ lJua(t + ) — us() — hA(t,ux(2)) || /).

Taking the inferior limit as 4 | 0 yields

timinf (1 + ) = w(0)/h < DV (1, 0) (D) (At 10 (1), At 1:(0)

From (24) we have D, w(t) < w(f)w(t), where D, w(¢) denotes the lower right
derivative of w(z). Therefore, we see that the function

t
t— exp(— J w(s)ds) w(t)
is lower semicontinuous on [z, ¢) and D, (exp(— j; w(s)ds)w(t)) <0 for € [z, ¢).
By [3, Lemma 6.3], we have w(f) < exp(f; w(s)ds)w(t) for t€[r,c). Refer to
[9] or [21] for the same kind of differential inequalities. ]

For each (1,x)eRx X and r>0, we define S,(z,x) = {(s,») eR x X;
|s—1t <r|ly—x|| <r}. We need the following lemmas which are proved in
[7] without using condition (Q4).

LemMa 1 ([7, Lemma 1]). Let (¢,x)€Q and n>0. Let r>0 be a
number such that ||A(s,y) — A(t,x)|| <n for (s,y) e 2NS,(¢,x). Let M >0
be a number such that ||A(s, )| <M for (s,y) e QNS (t,x). Set hy=
min{r,r/M,b—t}. Then

d(x+hA(1,x), Q(t+h) <hy  for he (0, h).

LemMA 2 ([7, Lemma 2]). Let (¢,x)€Q and ¢€(0,1). Let r>0 and
M >0 be numbers such that t+r < b and such that ||A(s,y) — A(t,x)]| <¢/3
and ||A(s, )| <M  for (s,y) e QNS (t,x). Let he(0,r/(M+1). Let
{sk}i_o be a partition of [t,t+h]:t=s5)<s1<---<s,=t+h Then there
exists a sequence {yi},_, of elements in X such that

(1) yo=x and (sg,yx) € for 0 <k <nm;

(1) |k —x| <M +e)(sk—1t) for 0 <k <mn;

(i) [[ye—1 + (s = Se—1)A(Sk—1, Yi—1) — yill < &(se — k1) for 1 <k <n.

We also need the following lemma.

LemMaA 3. Let (t,x) € and ¢ € (0,1). Let r >0 and M > 0 be numbers
such that t+r<b and ||A(s,y)| <M for (s,y)eQNS.(t,x). Let o€
(0,r/(M +1)]. Then the following assertions hold true:



272 Yoshikazu KoBayasHl, Naoki TANAKA and Yukino TomMizawa

(1) If a sequence {(si, yi)}, in Q satisfies
t=sp <81 <--<s5, <t+o, (2.1)
1yict =+ (si = sic) A(sion, yi1) = pill < e(si = si1)
for 1 <i<n, where yy = x, (2.2)
then
lyi—yill < (M +&)(si—s;)  for 0<j<i<n,
|A(si, )l <M for 0<i<n.

Moreover, if 1 >0 and ||A(s, y) — A(t, x)|| <5 for (s,y) € 2N S,.(t,x),
then

Ix + (s, — ) A(t, x) — yull < (e+7) (s, — 1). (2.3)

(i) Let >0 and ||A(s,y) — A(t,x)|| <n for (s,y) e QNS,(t,x). If a
sequence {(si, i)} in Q satisfies

t=5) < <--<§5<--<t+o and lim s; =140, (24)

s
[ yi1 + (si = sim)A(si-1, yie1) — yill < e(si —si-1)
for i>1, where yy = x, (2.5)
then y =1lim; ., y; exists in X, € Q(t+ o) and
x4+ cA(t,x) — p|| < (e +1n)o. (2.6)

Proor. To prove (i), let {(s;, yi)}, be a sequence in Q satisfying (2.1)
and (2.2). We first show inductively that (s;, y;) € Sy(¢,x) for 0 <i<n. TItis
obvious that (s, yo) € S;(z,x). Let k be a nonnegative integer such that k < n
and assume that (s;, y;) € Sy(¢,x) for 0 <i < k. From (2.2) we obtain

1yt = yill < (si = i) [|ACsin, yie) || + e(si = si-1)
for 1 <i<n. Since ||A(s;,x;)|| <M for 0 <i<k by assumption, we have
lyi— yiall < (M +e)(si — si1)

for 1 <i<k-+1. Summing up this inequality from i =1 to i = k + 1, we find
that

i1 — x| < M +¢&)(skp1 — ) < (M + 1o <.

It is obvious that sg ] —t <o < o(M + 1) <r. These mean that (sg.1, yk+1) €
Sy(t,x). Thus, we inductively prove that (s;, y;) € S,(¢,x) for 0 <i <n.
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Since (s, yk) € S(t,x) for 0 <k <n, we have |A(sc, yx)|| <M for
O0<k<n and |yk— yic1ll < (M +¢)(sk —sk—1) for 1 <k <n. Therefore,
we find that

3= 3l < (M +2)(si — 5)
for 0<j<i<n To prove (23), let >0 and assume that
[A(s, y) — A(t,x)|| <n for (s,y) e QNS,(t,x). Since {(s;,;);0<i<n}c
QNS,(¢,x), we have ||A(s;, y;) — A(t,x)|| <n for 0 <i<n. From (2.2) we
see that
| yi1 + (si = si-1) A8, x) = yill
< | yic1 + (si = sic1) A(si-1, yi1) — yill
+ [(si = si-1) (A1, x) = A(si-1, yie1)) |
<e(si—sic1) +n(si —sic1) = (e +n)(si — si-1)

for 1 <i<n. Hence
n
X+ (sn = D) A1, x) = yull <D yict + (s = si1) A2, x) = yill
i=1

< (e+n) (s, —1).

To prove (ii), let {(s;, y:)};2, be a sequence in Q satisfying (2.4) and (2.5).
From (i) we obtain ||y; — yj|| < (M +¢)(s; —s;) for 0 < j<i. This implies
that y =lim,;_,, y; exists in X and is in Q(t+ o) by (Q2). By (i) again, we
note that the inequality (2.3) holds for n > 0. Passing to the limit in (2.3) as
n — oo, we obtain

I+ A () = §l) = Tim [lx+ (5, — A1 x) — 3l

< lim(e+7n)(s, — 1) = (¢ + 7)o,

n— o0
namely, the desired inequality (2.6) is proved. O

The local existence of approximation solutions to (IVP;z,z) is given by the
following proposition, which is essentially shown in [7] and [4]. We give the
proof for completeness.

PropPOSITION 2. Let (t,x) € Q and ¢€(0,1). Let r>0 and M >0 be
numbers such that t+r <b and ||A(s,y)| < M for (s,y) e QNS,(t,x). Let
o€ (0,r/(M+1)]. Then there exists a sequence {(si, yi)}/ o in Q such that

(1) t=s<s1<- <8< <t+o and lim;_,, s; =1+ o,

(it) s;—si1 <¢ for i>1;



274 Yoshikazu KoBayasHl, Naoki TANAKA and Yukino TomMizawa

1) ||yie1 + (i — sim1)A(si—1, yie1) — ill < e(si—si-1)/2 for i =1, where
Yo = X;
(iv) if (s,7) € QN Sars1)(s5i—s1) (Si-1, Yi-1), then

|4(s, v) — A(si—1, yio1)|| < ¢e/4 for i >1.

PrOOF.  Set (so, y9) = (t,x). Let k be a positive integer and assume that
there exists a sequence {(s;, y,-)},-k;o1 in Q which satisfies the first half of (i) and
(ii)—(iv) for 1 <i<k—1. We consider a nonnegative number /; defined by
the supremum of % € [0,¢] such that h <+ 0 — s, and

1 A(s, y) — A(sk—1, yi—1)|| < e/4 for (s, ¥) € QN Spar41) (Sk-1, Yi—1)-

By the continuity of A, we have k; > 0. Thus there exists a number / € (0, €]
such that A;/2 < by < t+ 0 — s, and

lA(s, ) — A(sk-1, ye-1)|| < e/ for (s,y) e QN S, (sx-1, k1),  (2.7)

where ry = (M +1). Set s =sp_1+hi. Then s, < s <t+ 0 and con-
ditions (ii) and (iv) with i =k are satisfied. By Lemma 3, [[A(s;, ;)| < M
for 0 <i<k—1. The inequality (2.7) implies that [|A(s, y)|| < M +¢/4 for
(s,y) € QNS (Sk—1, Yk—1). Hence, Lemma 1, with (z,x), r, M and # replaced
by (Sk—1, Vk—1), e, M +¢/4 and e/4 respectively, implies that

d(yi—1 + hA(sk—1, yi—1), Q(sx)) < ehi /4.

Thus there exists an element y; € Q(s) satisfying (iii) with i = k.

We shall show that lim; .., s; =+ ¢. Assume to the contrary that § =
lim; ., 5; < t+o. By Lemma 3 (i) we obtain ||y; — yj|| < (M +¢/2)(si —s;)
for 0 < j<i. Hence, lim;., y; exists in X, and we denote its limit by p.
Since (8, ) = lim;,o(s;, ;) in Rx X and (s;,y;)eQ for i>1, we have
(5,9) e Q2 by (Q22). The continuity of A enables us to choose # € (0,¢
such that

n<t+o—5 and |A(s,y)— A3, )| <¢&/8 for (s, y) € QN S;(3, p),

where 7=2(M + 1)y. Choose an integer iy >1 so that §—s._1 <y
and ||p—yiall< M+ 1)y for i>iy. Then, for i>i and (s,p)€
S(m+1)y(Si=1, yi1), we have

ls =8| <|s—sic1| +|sic1 =8| < (M + D +n<2(M+ 1)g,
[y =21 <y = yieall + lyicy = P < 2(M + D)g.

Hence Siyi1y,(si-1, yi-1) = S;(8, p) for i > ip. By the choice of 7, we see that
if i > iy, then
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[A(s, y) = A(si-1, i) || < [ A(s, p) — A, D) + [|4(S, ) — A(si-1, yi1) |
<e/8+¢/8=¢/d

for (s, y) € QN Spr1yy(si-1, yi-1). Since n < t+0 —s;-1 for i > 1, the defini-
tion of A; implies that n < h; < 2h; = 2(s; — s;-1) for i > iy and the right-hand
side tends to zero as i — oo. This contradicts the fact that # is positive.

O

In what follows, we write @(|a,b]) = SUp, 14 4 w(s) for [a,b] = [a,h). To
prove the convergence of the approximate solutions, we need the following
Propositions, which are the refinements of the results in [11], [10], [6] and [8].

ProposITION 3. Let tela,b), (x,%) e Q(t) x Q(t) and n,7€(0,1). Let
r>0 and M >0 be numbers such that t+r <b,

A2 <M and [[A(s,2)— A2 /4 for (52) € @NS,(t,),
|A(s,2)|| < M and ||A(s,z2) — A(t,X)|| <7/4  for (s,2) e QN S, (1, %).

Let o€ (0,r/(M+1)]. Then there exists a pair (y,p) € Q(t+a)x Q(t+ o)
such that

lx +aA(t, x) = yll < 5o, (2.8)
1%+ cA(t,%) — §|| < fo, (2.9)
V(t+a,p,3) <exploa([t, 1+ o)) (V(1,x,%) + L(n +7)a).  (2.10)

Proor. We shall show that there exist two sequences {(s;,z)}~, and
{(Sjafj)}/io in Q such that

t=s5<s<--<s§<--<t+o  and lim 5; =+ 0, (2.11)

zi-1 + (5 = si-1)A(s5-1,23-1) — Zl| < 3n(s; — 5-1)/4
for j > 1, where zp = x, (2.12)

Zj—1 + (55 — s5-1)A(sj-1,27-1) — 2| < 37(s; — 55-1) /4

for j > 1, where Zy = X, (2.13)
(V(si»2j,2) = V(sj-1,2j-1,2-1)) / (85 — 85-1)

< a)(ijl)V(Sj,I,ijl,fj,l) +L(77+ﬁ) for ] > 1. (214)
i—1

Set (50,20, 20) = (1, %) and assume that sequences {(s;,5)}/" and {(s,2)}/",

in Q with i > 1 satisfy the first half of (2.11) and (2.12)—(2.14) for 1 < j <
i— 1. Then we need to show that there exist s; € R, z; € Q(s;) and Z; € Q(s;)
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such that s,_; <s; <40 and (2.12)—(2.14) with j =i are satisfied. Let /;
denote the supremum of all 2> 0 such that 1 <t+ 0 —s;,_; and

V(sic1 +h,zic1 + hA(Si—1,zi-1), Zior + hA(si21,2i21)) — V(si—1, Zie1, 2i1)
< h(o(si—1) V (si-1, zi—1,Zi-1) + (n + ) L/4).

Since h; >0 by (Q4), there exists a number /; >0 such that h;/2 < h; <
t+o—s;_1 and

V(sict + h,zio1 + hA(Si—1,zi1), Zic1 + hA(si—1,2i-1)) — V(siz1, Zim1, Zi1)
< /’Z(CU(S,',]) V(S,;],Zl',l,fl;l) + (71 + ﬁ)L/4) (215)

Set s;=ws;_1+h. It is obvious that s <s;<t+a. To prove that
Sy (8i-1,zi-1) = Sy(¢,x), we note by Lemma 3 (i) with & = 35/4 that

llzit = xI| < (M +3n/4)(si1 — 1) < (M + 1)(s5i1 — 1)
If (s,2) € Styrs1yn (si-1,2i-1), then

Is — 2] < |s—siq| 4+ [sic1 — 2] < (M +1)(hi +si-1 — 1)

=M+ —)<M+Do<r
and
Iz =xll < llz = zicall + llziy = x| < (M + D) (hi + 500 — 1) <7

This means that Sy 1), (si-1,2zi-1) = Sy(t,x). By assumption, we have

|A(s, 2)|| < M and |A(s,z) — A(t, x)|| < n/4 (2.16)

for (s,2) € Q0 Syr41),(si-1,2i-1). From the second inequality of (2.16), we see
that if (S, Z) en S(M—H)h,- (Sl',l,Zi,]), then

14(s,2) = A(sir, zim) | < [ A(s,2) = A6 X))+ [[Asi-1,2i-1) = A X))
<n/4+n/4=n/2.

Hence, by Lemma | with r = (M + 1)h;, (¢, x) = (si—1,z;—1) and h = h;, we find
that

d(Zi—l + h,‘A(S,;],Z,;]),Q(S,‘)) < h,n/Z = 77(S,‘ — Si_l)/z.

This implies that there exists z; € Q(s;) such that (2.12) holds true for j=1.
Similarly, we can show that there exists Z; € Q(s;) satisfying (2.13) with j =i.

By (V1) we obtain (2.14) with j =i by the inequality (2.15) combined with
(2.12) and (2.13) with j=i. Indeed, we have
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(V(siyzi Z2i) — V(Si=1,Zi-1,Zi-1)) /i

= (V(si,zi,2i) = V(si,ziog + hiA(si_1,zi1), 2io1 + hiA(sio1,2i-1))) /i

+ (V(sis zie1 + hiA(Si—1, zi-1), Zioy + hiA(si-1, Zi21))
= V(si-1,zi-1,2i-1)) /i

< L(l|zi = (zioy + hiA (i, i)+ 12— Geor + heA(sion, 2i00) 1) /i
+ o(si-1)V(si-1,zi-1,Zi-1) + (n +7)L/4

<3m+H)L/A+ w(siz1)V(siz1,zi—1,2i-1) + (n +47)L/4

< o(si-1)V(si-1,zi-1,2i-1) + L(n + 7).

It remains to prove the second half of (2.11). Assume to the contrary that
S =1limjo, 5; <t+o0. Lemma 3 (i) asserts that {z;} and {Z;} are Cauchy
sequences in X, since

limsup |z; — zj|| < limsup(M + 3n/4)(s; —s;) = 0,

1, j— 00 1, j—00

limsup |Z; — 2| < limsup(M + 37/4)(s; —s;) = 0.

i j—oo i, j—o0

This implies that z,, =lim;_, z; and Z,, =lim;_,, Z; exist in X and are in
Q(s») by (Q2). By (24), we choose a number /4 >0 so that 2 <+ 0 — 5,
and

V(s + 1,200 + hA(S0, 20 )y 2o + hA(S0,250)) — V(So0sZoo, 200) }/F
< (50)V(SwyZens Zoo) + (n +7)L/8. (2.17)

Let rj =54 +h—s;—1 for j > 1. Then we have r; < t+ 0 —s;_1 for j > 1 and
rj— has j— co. Since h; < 2hj =2(s; —sj—1) — 0 as j — oo, there exists an
integer jo > 1 such that #; <r; for j > jo. By the definition of /4;, we have

Vsio1r + 1, zpm1 + 1 A1, 2-1), 251 + 1 A(sj-1,25-1)) — V(sj-1,2j-1, 2-1) } /1
> (sj-1)V(sj-1,2j-1,2-1) + (n + 7)L/4

for j > jo. Since sj_1 — Seo, Zj—1 = Zoo, Zj—1 — Zo, and r; — h as j — oo and
Sji-1 +1; =35, +h for j>1, from (V1) and (V3) we obtain

{V(sw +hyzoo + hA(S00,200), 200 + hA(S0,20)) — V(Sews Zooy 2o )}/ B
= w(SOC)V(SDCwZOOaEOC) + (’7 +ﬁ)L/47

which contradicts to (2.17).
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We now turn to the proof of the existence of pair (y, y) € Q(z) x Q(1)
satisfying (2.8)—(2.10). We apply Lemma 3 (ii) to show that y = lim;_,., z; and
y=Iim;_ Z; exist in X and are in Q(¢+¢) and that they satisfy (2.8) and
(2.9), that is,

[l +0d(z,x) = yll < (31/4 +n/4)o < no,
|2+ A1, %) — 3| < (34/4+17/4)0 < fio.
We note here that 1 +7<e’ for 1 >0. We deduce from (2.14) that
V(sj,2,2)) < exp(los([t, 1 + 0]))(V (sj-1,Zj-1, 1) + I L(n + 7))
for j > 1. Hence, we inductively show that
V(sjzj,2)) < exp((s; — D)a([t, 14 0]))(V (2, x, %) + L7 + 1) (55 — 1))
for j > 0. Thus we obtain (2.10) by letting j — co. O

PropOSITION 4. Let (1,z) € Q and A,pue (0,1/2). Let R>0 and M >0
be numbers such that t+ R <b and ||A(s,y)| < M for (s,y) € 2N Sg(7,z).
Let 0 € (0,R/(M +1)]. For each ¢ € {A,pu}, let {(7,x5)}.2, be a sequence in Q
satisfying the following conditions:

(i) t=¢t<ti<---<tf<---<t4+0 and lim;_, tf =1+ 0;

(i) -t ,<eforiz=l;

(i) [lxe + (6 — 18 )AGE  x0y) — x| < o(ef — 12.0)/2 for i 1, where

X =z

(iv) if (s, ) e.QﬂS(MH)(,;:_,;LI)(Zf_I,xf_l), then
JAGs, ) = A i <6/4 for 21,

Let {si};—, be a sequence such that si < siy1 for k >0 and

{sc;k=0,1,2,.. 3 ={r/;i=0,1,2,.. }U{ej=0,1,2,...}.

Then there exists a sequence {(z},z{)}iio in X x X such that (z{,z}) €

Q(sk) X Q(si) for each k >0 and the following three properties are satisfied:
(@) if sk =1}, then z} = x}; if s = t;’, then z} = x]”
(b) for each e = ,u, we have

K
Dollzy + (= s-1) A1, 27) = 2]
j=q
< 2e(sp — 84-1) + 3¢ Z (6 —1iy)

for 1 <qg<kand k> 1;
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(c) for k=0,
V(sk, 24 24) < expl(se = (e s )2+ )5k = ) + el )},
where
Me(A,p) =3L| 2 Z (th—th )+ u Z (t — lfil)

the{st,..., s} t}‘e{xl,“.,xk}

PrOOF. Set z§ = z for each ¢ = Z, ;. Assume that sequences {(sx, z}) i

and {(sk,z,f)},i;}) in Q@ with /> 1 satisfy properties (a)—(c) for 0 <k </—1.
Let i and j be positive integers such that ¢}, <s <t and t].‘il <5< t/” ,
respectively. By Lemma 3 (i) with e¢=4/2 we obtain |x}, —z| <
(M -+ 2/2)(tf-y = 7). TF (5, ) € Siran (11, x-,), then we get

s =1l < s — ey |+ 16y — 2l < (M + 1) = 1f) + (1, = 1)
<(M+1)g<R
and
Iy =zl < lly = xZyll + llxiy ==l
< (M A1)t —tf )+ (M +2/2)(t}, —1) < (M +1)a < R.

Hence Sy~ (111, x7) = Sr(r,z). This implies that

[A(s, »)|| < M for (s,y) e 2N S(M+1)(t,."~—ti’";l)(ti{l’xi/lfl)' (2.18)
We shall show that for each ¢ =4, u,

[A(s, ) =M and |4, p) = Alsi, 27 ) <€/2 0 (2.19)

for (s, y) € Q0 Siyrs1y(5—s 1) (S1-1,27_;). By the definition of {sz} we observe
that

3 p

oy <s<s <t <sp<s <t

tf =s, for some 0<p</—1, and

', =s, for some 0 <g</-1.
By the hypothesis (a) of induction, we have z; =x/, and z/'=x/,. 1If
0<p<Il—1, then the set {s,i1,...,5-1} contains no points 7. By the

hypothesis (b) of induction, we have

iz )+ (s — Sk A1, 2¢y) — 22| < 2A(sk — k1) (2.20)
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for k=p+1,...,/—1. By (2.18) and (2.20), we use Lemma 3 (i) with
(t,x) = (t}-,x/) = (sp,2), e=24 and r=(M+1)(t} —¢/,) to obtain
lzf, — z[f|| < (M +22)(s;-1 —sp). This is valid for p=/—1. If (s,y)e
Sty si—s 1) (81-1,2f,), then we get

ls— el | < |s—sima| + |sim1 — ]|
< (M4 )t = 510) + (511 = 1) < (M4 1)(&F = 11)
Iy = xfall < Wy =zl + Nzt =
< (M A+ 1)(sp—s121) + (M +22) (5121 — 5,) < (M 4+ 1)(t} —t})).
This means that
S<M+1>(Szfszf|)(slfla21{1) < S(M+1)(z;-_,;;l)(l,-{1,xf,l). (2.21)

Thus, the claim (2.19) with ¢ =1 follows from (2.18) and condition (iv).
Indeed,

|A(s, p) = A(si—1,2/) |
< ||A(s, y) — A(t] 17xi/1—1)|| + HA(ti/l—lvxi{l) - A(s,,l,zf;l)H

i—

<)/A+ 2[4 =02

for (s,y) € QﬂS(MH)(S,,SH)(sl,l,z,{l). We apply the above argument again,
with p and i replaced by ¢ and j, to show that (2.19) holds true for ¢ = p.

By virtue of (2.19), we deduce from Proposition 3 with 1 =51, (x,X) =
(z} 1,21 )), =22, i=2u and r= (M + 1)(s; — s;—1) that there exists a pair
(v e Qs+ (s = s11)) X QU1 + (51— s1-1)) = Q(s1) x Q(s;) satisfying

z7y + (st = si—1)A(si—1,z7-,) — yill < 2e(sp — s1-1) for e=A,u, (2.22)
Vs, v, vi) < exp((si — si-1)@([s1-1,51]))
X (V(si=1, 211,215 )) + 2L(A + ) (s1 — s1-1))- (2.23)

We define (z},z)) € Q(s;) x Q(s;) by

= 2 _ i _
x; for s, =1 x; for sy =17,

7 A “ for s < t*
A Vi for s; < t, w ) 1 i
z { and z; =

If s; = t, then by condition (iii) we have

1 1 PR 2 1
X721 + (o= 62 )A x[y) =z < (0= 121)4/2,
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while in view of (2.18) and (iv) we find, by applying Lemma 3 (i), with ¢ = 24,
n=7/4, r=(M+1)(t} —t},) and (t,x)= (¢} ,,x',), to (2.20) and (2.22),
that

X7y + (1= 7 ) A, X7 0) = vl < QA+ A/4) (s — 1))
These inequalities together yield

) P p PR *
27 = yill < llxioy + (sr = 2 ) Ay %7 ) = 7l

1 i 1
iy o+ (s — A, X)) = 2l

< (9/4+1/2)A(s) — 1} ) <30 (1} — 1)), (2.24)
tl.)':SI
Similarly, we get
21 = pill < 3u Y (e (2.25)
t,lfs1

Combining (2.24) and (2.25) with (2.22), and adding the resulting inequality
to the inequality (b) with k£ =/— 1, we conclude that the desired property (b)
holds true for k =1.

Finally, we show that (c) is true for k =/. Using (2.24), (2.25) and (V1)
we have

|V (st,27,2f) = Vst, v, vl < LAlizf = v+ Dz = 271)

<3L(/12z —d) ey (-t )

th=g; 1'=s
Combining this and (2.23), we obtain
V(si, 2,2 < Vs, v7, i) + 3L (/IZ th—tt) +'“Z —l;‘_l)>
ti=s I“*S/

< exp((s; = s-1)([si—1, ) (V (s1-1, 21,21 )

+2L(A+ w)(s1 — s1-1))

+3L(22t—lll ﬂ‘Z )

A —
ti=s; =57
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< exp((sr — D) ([z, 1)) 2L(A + p) (51 = ) + 11 (4, 1))

+3L( 2 Z(li;' — i) +u Z(Ify — 1)

t/=s t'=s
< exp((s1 — 1) ([z, 1)) 2L(A + p) (51 = 7) + 1 (4, 0))-
This means that (c) is true for k =/, and the proof is completed. O
The following is a local existence theorem of solutions to (IVP;z,z).

THEOREM 3. Let (1,z) € Q. Let R>0 and M > 0 be numbers such that
T+ R<band ||A(s, y)|| < M for (s,y) € QN Sk(t,z). Let o€ (0,R/(M +1)].
Then there exists a solution u to (IVP;t,z) on [t,7+ o] such that

le(t) — u(s)|| < M|t — s for t,s€t,T+ a].

Proor. Let ¢€(0,1/2). Then, by Proposition 2, there exists a sequence
{(#8,x¢)} 2, in Q satisfying (i)—(iv) of Proposition 4. Let u®: [t,74+ ) — X be
the function defined by u*(r) = x} for t € [¢{,}, ;) and i > 0. We want to prove
that the family {u°} converges in X uniformly on [zr,7+ o) as ¢ | 0.

Let A,p0e (0,1/2) and let {s;},—, be a sequence defined as in Proposition
4. Then there exists a sequence {(z},z{)} in X x X satisfying (z{,z}) €

Q(sk) x Q(sx) for k >0 and (a)—(c) of Proposition 4. We first prove that

sup ||z¢ — z4|| — 0 as A,u|0. (2.26)

k=0

Assume to the contrary that there exist g > 0, two null sequences {4,} and
{u,} of positive numbers, and a sequence {k,} of nonnegative integers such
that

|z =zl > & for n> 1. (2.27)

Since the sequence {sx,} is bounded as n — oo, it has a convergent subsequence
{s, }. Since (zk ,z,/("l) € Q(sk, ) x Q(sx,) for /=1, and since

V(skn[,zk ) k ") < SL exp(od([t, T+ 0]))( Ay, + )0 for [ >1

Hy

by Proposition 4 (c), we deduce from condition (7'4) that hm,_,y||zk = 2,

=0. This is a contradiction to (2.27).
Let teft,7+0). Let k>1 be an integer such that #e [sx_1,5¢). Let
i and j be positive integers such that tl{l < S < s < tf and tj’i | <




Nonautonomous differential equations 283

Sk—1 < Sk < t;‘ , respectively. Then we have, in a similar way to the deriva-
tion of (221), |z, —xill <M+ 1) —ty) and |z, -] <
(M +1)(# = ¢}). Since

A A A /.
lu(0) = w ()] < lIxfoy = 2yl 4 2oy = 2+ Dz = x|
A
< (M + 1)+ ) + Iz — 2,

we observe from (2.26) that the family {u®(7)} is uniformly Cauchy on
[t,74+0). By Lemma 3 (i) we obtain

lu?(6) — u(s)|| < (M +¢/2)(|t — 5| + 2¢) for t,s € [t,7+ 0)

and € (0,1/2). These facts imply that there exists a continuous function u
defined on [z, 7 + o] such that sup,c(; . [[u®(2) —u(?)[| — 0 as e | 0. It is clear
that u(t) =z and |ju(?) — u(s)|| < M|t —s| for t,s € [t,7+0]. Let 7°:[t,7+ 0)
— R be the function defined by °(r) = for re[tf,#{ ) and i >0. Then
T < 7%(t) <t <1+ 0 and lim,o 7°(¢) = ¢ for t € [t,7+ 0). From Proposition 4
(iii) we deduce that

<e(t] —1)/2 <¢e0/2 (2.28)

W (1) — u?(0) — J A (s), u(5))ds

for i >0. Since (¢%(z),u?(¢)) € Q and [|A(z%(¢),us(?))|| < M for ter,7+ o)
and since (z°(7),u®(r)) — (t,u(t)), we have (z,u(r)) e @ and A(z°(¢),u’(r)) —
A(t,u(t)) for te [t,7+0) as ¢ | 0, by (£22) and (Q1) respectively. From (2.28)
we obtain

for t e [r,7+ o). Since t — A(t,u(¢)) is continuous on [z,7 + g], u is a solution
to (IVP;7,z) on [r,7+¢]. Since the uniqueness follows from Proposition 1,
the proof is completed. [

3. Global existence of solutions

In this section we investigate the intervals where the solutions to (IVP;1,z)
exist under assumptions (Q21)—(£24). We follow the arguments in [4], [6] and

[7]-

PROPOSITION 5. Let (t,z) € Q. Then there exists ¢y € (t,b) such that for
any ce€ (t,cy), the following properties are satisfied:
(i) (IVP;7,z) has a solution u on [z,c|.
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(i) For any ¢ > 0, there exists a number r € (0,¢ — 1) which satisfies the
following:
(@) (IVP;t,x) has a solution v on [t,c] for any (t,x) € QNS,(z,z),
(b) if (¢,x),(t,%) e QN S,(t,2), v and v are solutions to (IVP;t,x) on
[t,c¢] and (IVP;i,%) on [i,c] respectively, then V(s,v(s),d(s)) <&
Sor set,c] N[t c]

ProOF. Let R>0 and M >0 be numbers such that 14+ R < b and
|4(z, x)|| < M for (¢t,x) e 2N Sg(t,z), and set ¢o =7+ R/(M +1). We shall
show that for any number ¢ € (7, ¢), the desired properties are satisfied. The
first property (i) follows from Theorem 3.

We shall show that such a number ¢ has the second property (ii). Let
¢>0. We take d > 0 so that exp(; w(0)d0)6 < ¢ for any s € [a,c]. Next, we
choose r >0 so small that t+r<c<t+ (R—r)/(M+1)—r and

A

2L(M + 1)r < exp (J w(0)d()>(5 (3.1)

T
for se[t—r,t+r]N[a,b). To prove (a), let (f,x) e 2N S,(r,z). Set 7=
R—r. Since t+r<c<t+R/(M+1)<t+ R, we have 7 >0. Moreover,
we have 1+7=(—1)+7t+7F<r+1+iF=1t+R<b. For (s,y)e€S;t,x),
we have

|s—z|<|s—t|+|t—7|<F+r=R
and
ly—zll<lly=xll+lx—zl| <F4+r=R

Thus S;(f,x) = Sr(z,z). Since ||A(s,y)|| <M for (s,y)eR2NS;(t,x) and
t+7<b, (IVP;t,x) has a solution v on [t,t+7#/(M +1)] by Theorem 3.
Since t +7#/(M +1)>t—r+ (R—7r)/(M + 1) > ¢, we certainly infer that v is
defined on [¢,¢].

To prove (b), let & be a solution to (IVP;7,X) on [f,c] with (7,%)e€
QNS,(r,z). Assume that 7 < ¢ without loss of generality. Then

[6() = v(@)ll = [1o(r) = x[| < [|o(2) = X[ + [[% = 2[| + [|z = x]|
<||8(2) = (B)|| +2r < M (¢ — ) + 2r
=M((t—1)+(t—1)+2r <2(M + 1)r.

By Remark 1 and (3.1), we have

t

V(1 0(6), () < 2L(M + 1)r < exp(J

T

w(@)d@)é.



Nonautonomous differential equations 285
Thus, by Proposition 1, we obtain

V (s, v(s), 0(s)) < exp (J

for set, . O

S \

‘ w(e)d(a) V(t,0(t), (1)) < exp (J w(e)de)a <e

t T

Let (7,z) € Q and let u be a solution to (IVP;z,z) which is noncontinuable
to the right. We denote its final time by T(z,z). Tt is clear that 7 < T(z,z) <
b and u is a solution to (IVP;z,z) on [r,T(z,z)). Since (IVP;z,z) has a
unique solution, 7(z,z) € (z,b] is well-defined for every (z,z) € Q. We con-
sider T as a function from the metric space 2 into the extended real line
RU{o0} endowed with the usual topology.

PROPOSITION 6. Let (1,z) € Q and let d be a number such that v < d <
T(t,z). Then there exists a number r >0 with t+r < b such that T(t,x) > d
for any (t,x) € QNS,(z,2).

ProoOF. Let (7,z) € 2 and let d be a number such that t < d < T(z,z).
Let u be a solution to (IVP;7,z) on [r,d]. Since the set {(s,u(s));s € [r,d]} is
compact in 2 and A is continuous on £, there exists a number M > 0 such
that [|A(s,u(s))|| < M for se€ [7,d].

We first prove that there exists a number R > 0 such that || A(s,x)|| < M
for any se[r,d] and xeQ(s) satisfying V(s,x,u(s)) < R. Assume to the
contrary that for any n>1 there exist s, €[r,d] and x, € Q(s,) such that
V (Sn, Xn,u(sn)) < 1/m and || A(sy,X,)|| > M. Since the sequence {s,} is
bounded, there exists a convergent subsequence {s, } converging to some
number se€[r,d]. Since  V(sy, X, u(sy,)) — 0 as k— oo, we have
|0, — u(sy, )| = 0 as k — co by (V4). Since u(s, ) — u(s) as k — oo, we
have (s, , X, ) — (s,u(s)) as k — oo. Thus, by (1), we have || A(s,u(s))|| =
M. This contradicts to the definition of M.

By Proposition 5, we can choose a number ¢ such that 7 < ¢ < d and
properties (i) and (ii) in Proposition 5 are satisfied for (z,z). Let ¢ >0 be
a number such that ¢ exp([, w(0)d0) < R for s € [¢,d], and then choose r >0
so that 7+ r<c¢ and Proposition 5 (ii) is satisfied for the number e.
Let (z,x) e QN S,(r,z). We want to show that d < T(z,x). To this end,
assume to the contrary that 7(¢,x) <d and let v be a noncontinuable solu-
tion to (IVP;t,x). Note by Proposition 5 (ii) that [t,¢] < [f,T(¢,x)) and
V(e,v(c),u(c)) < e By Proposition 1, we have

s

V(s,0(s), u(s)) < V(e,v(e), u(c)) p(j w(@)d@)

c

< g exp (Jsco(ﬁ)dﬁ) <R

C
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for se[c, T(t,x)). From the fact proved first, we observe that ||A(s, v(s))| <
M for selc,T(t,x)). Thus |ov(t) —v(s)|| < Mlt—s| for t.selc,T(tx)).
Therefore, w = limg 7 ) v(s) exists in X and (7(¢,x),w)eQ by (Q2). In
view of Theorem 3, this contradicts the fact that v is noncontinuable to the
right of T'(z,x). Hence T(t,x) > d. O

PropoSITION 7. Let (1,z) € Q and let {(t,,z,)},-, be a sequence in Q
converging to (t,z) as n — oo. For n>1, let u, be a noncontinuable solution
to (IVP;t,,z,), and let u be a noncontinuable solution to (IVP;zt,z). Assume
that d € (t,b) satisfies d < T(t,,z,) for n>=1. Then the following assertions
hold:

(i) d<T(r,z).

(i) For any g € (t,d), the sequence {u,} converges to u uniformly on [o,d]

as n— oo.

ProOF. Let ce(7,d) be a number with the properties (i) and (ii) in
Proposition 5, and let 1 <o <c¢. We may assume that 7, <o <c<d<
T(ty,z,) for n > 1, because lim,, 7, =7<d. Let ¢>0. Let re(0,c—1)
be a number with the property (ii) in Proposition 5 for the number . Since
(tn,zu) — (7,z) as n — oo, there exists an integer ng > 1 such that (t,,z,) €
2N8S,(r,z) for n > ny. By Proposition 5 (ii-b) we observe that if n,m > ny,
then V (s, uy(s), uy(s)) < ¢ for s€[o,c] and

t

V(t, um(2), un(2)) < exp (J

c

w(&)d@) V(e tn(€), a(€))
<eexp((d — c)@([c,d]))

for tec,d]. By (V4), the sequence {u,} is uniformly Cauchy on [o,d].
Define () = lim,_., u,(f) for te€[o,d]. Then we observe that @'(¢) =
A(t,u(t)) for te|o,d]. By Proposition 5, we observe that if n > ng, then
V(s un(s),u(s)) <e for se[o,c]. Thus, we have (o) = lim,_ u,(a) = u(o).
Hence # is a solution to (IVP;0,u(g)) on [o,d]. Note that u is a solution to
(IVP;7,z) on [r,0]. Since the function v : [r,d] — X defined by v(7) = u(¢) for
t€(r,0] and v(r) = u(z) for t € [o,d] is a solution to (IVP;z,z) on [z,d], we
have T(t,z) > d. Since v(z) = u(z) for ¢ € [t,d] by uniqueness, we observe that
the sequence {u,} converges to u uniformly on [o,d] as n — 0. O

ProposITION 8. T is a continuous function from Q into RU {o0}.

ProoF. Let (7,z)eQ and let {(#,,x,)},.; be a sequence in Q con-
verging to (7,z). Let 1 <d < T(z,z). Since lim,_ o (t,,x,) = (z,z), we de-
duce from Proposition 6 that d < T'(t,,x,) for sufficiently large integers
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n. Thus d <liminf, ., T(t,,x,). Since d is arbitrary, we obtain T(z,z) <
liminf, ., T(t,,x,). Note that

1< T(1,2) < limiglolf T(ty, x,) < limsup T(t,,x,),
n— n—oo
and let d satisfy 7 < d < limsup,_,., T(t,,x,). Then there exists a subsequence
{(tn, X ) }is1 of {(tw,Xn)},>; such that d < T(t,,x,) for k>1. Since
(twesXn,) — (1,z) as k — oo, it follows from Proposition 7 that d < T'(z,z).
Since d is arbitrary chosen, we conclude that limsup,_, , T (¢, x,) < T(z,z).
Hence, we obtain lim,_., T(ty,x,) = T(z,z). O

A global existence theorem is given as follows.

THEOREM 4. Let C be a connected component of Q and set d =
sup{z € [a,b); C(t) # &} Then for each (t,z)e C, (IVP;1,z) has a unique
solution on [t,d) and the interval [t,d) is the maximal interval of existence of
solution. In particular, if Q is connected, then for (t,z) € Q, (IVP;1,z) has a
unique solution on [t,b).

Proor. We shall show that 7: Q — RU{oo} takes the constant value d
on C. To prove that T(C) is a singleton set, let ¢,é e T(C) = {T(¢,x);
(t,x) e C}. Without loss of generality, we assume that ¢ < ¢, and set

C={(t,x) e C;T(t,x) < ¢} and G ={(t,x) e C;T(t,x) > c}.

If C=C, then é <¢, and so T(C) is a singleton set {c}. To prove that
C = (Cy, we have only to prove that C; = ¢ because C; and C, are disjoint.
To this end, assume to the contrary that C, is nonempty. Since 7T is
continuous on C by Proposition 8 C, is an open subset of C. Let
{(tn,xn)},>1 be a sequence in C, converging to (f,x) € C. By the definition
of C,, we have ¢ < T(ty,x,) for n > 1. Proposition 7 asserts that ¢ < T(¢, x).
This implies that C; is a closed subset of C. It follows that C = C; U C,, and
C; and G, are disjoint, nonempty and open in C. This is impossible because
C is connected, and so we conclude that C, = (7.

Since T(C) is a singleton set, we can write T(C) = {c} for some ce
RU{o}. Since 1 < T(t,x) = ¢ for (1,x) € C, we obtain d = sup{s; C(t) # &}
< c¢. On the other hand, let s < ¢. Note that ¢ = T(¢,x) for some (z,x) € C.
If + <s then a noncontinuable solution u to (IVP;z, x) satisfies (s,u(s)) € C,
and so C(s) # . This implies that s <d. If s <t then s < <d because
C(t) # . Since s is arbitrarily chosen such that s < ¢, we have ¢ <d. Con-
sequently, we get T(C) = {d}. O

Theorem 1 is a consequence of Proposition 1 and Theorems 3 and 4.
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4. Proof of Theorem 2

Proof of the necessity part. Let (7,z) € Q and u(t) = U(t,71)z for t € [z, b).
Let C be a connected component of @ such that (z,z) € C. Since {(z,u(?));
te(r,b)} is a connected set in @ containing (,z), we have (z,u(r)) e C for
t € [r,b) by the maximality of C; hence C(¢) # & for ¢ € [r,bh). This means
that (25) holds true. Since u(t+h) e Q(r+h) for he (0,6 —1), we have

h='d(z+ hA(1,2),Q(t + h)) < h7 Y|z + hA(t,2) — u(z + h)||
= || 4(z,u(2)) = h™ (u(z + h) — u(0))|
= [ A(z,u(z)) —u' ()] =0

as 7 [ 0. Thus, (Q23) also holds true. It remains to show that (£24) holds
true. We set

Vo(t,x, y) = 51[1pb>{exp (— JJ w(H)d@) |U(a,t)x — U(o, t)y|}
oelt, t

for tefa,b) and x,y € Q(r). From (El) and (E3) we see that

lx =yl < Vo(t,x,y) < L||x — y| for tefa,b) and x,y e Q(z). (4.1)
For any x,ye X, te[a,b) and x', y’' € Q(t), we have

Vo(t,x", y") = L(llx = Xl + 1y = »'ID
< Lx" =yl = LAlx = x| + Ly = ') < Lllx = y].

Thus, we can define V :[a,b) X X x X — [0, 00) by

Vit,x,y)=  sup  {max(0, Vo(t,x", y') = L(llx = x| + [y = »'ID)}
(x'.) €20 x2(1)

for (z,x,y)€[a,b) x X x X. Since
Vo(t,x', »') < Vo(t,x",x) + Vo(t, x, y) + Va(t, », ')
< Vo(t,x, y) + L(llx = x| + {1y = »'I)

for t€[a,b) and (x,y),(x',y") € Q(¢) x Q(¢t), we have V(t,x,y) < Vy(t,x, )
for t€a,b) and (x,y) € Q(r) x Q(f). The converse inequality follows readily
from the definition of V. Thus V(¢,x,y) = Vo(t,x, y) for t € [a,b) and (x, y) €
Q(#) x (). This combined with (4.1) implies that the functional V' satisfies
(V4)" and (V2).

Let (x,y),(X,7) € X x X and t € [a,b). For any (x',y’) € Q(r) x Q(¢), we
have
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Vo(t,x", »') = L(llx = x| + {1y = »'II)
= (Vo(6,x", y") = LAIX = X"l + 17 = »'I1))

= L(Ix = X[ + 17 = ¥'I) = Llx = X"l + {1y = »'II)

< L(||x = x[| + 1y = »ID),
which implies that

Vo(t,x", y") = L(llx = X"l + 1y = »'ll) < V(5, %, 9) + L(IX = x| + 1 = »ID)

and

V(t,x,y) < V(6,%,3) + L([|% = x| + |7 = »I]).

Thus, we obtain (V1).

To prove (V3), let t,€la,b) with ¢, —t€[a,b) as n— oo and let
(Xn, yn) € Q(t,) x Q(t,) with (x,, yn) — (x,y) € 2(¢) x Q(t) as n— oo. Let
g€ (t,b) and N a number such that ¢ >, for n > N. Then we have

ag

Vo(tu, Xu, yn) = exp (—J w(H)dB) U (o, t,)x, — Ula, ty) yull for n > N.

by
Taking the inferior limit as » — oo, we have

liminf Vo(t,, xu, yu) = exp(—J w(@)d@) U (o, t)x — U(o,1)y|.

n— o0 ¢

By (4.1), we have Vy(ty,xn, yn) = ||xn — yul| for n>1. Taking the inferior
limit as n — oo, we see that the above inequality is also valid for ¢ = ¢. Thus,
we have

liminf Vo (ty, Xn, yn) = Vo(t, x, y).

n—oo

Finally, we prove the dissipativity condition

D V(1% )(A(,¥), A(t, ) <o)V (1,x,y)  for x,yeQ(r) and 1€ [a,b).
For this purpose, let 7€ [a,h) and x, y € Q(¢). Since

|U(o,t+h

~—

U(t+h,t)x—Uo,t+h)U(t+ h,t)y|

’ w(e)da> - exp ( J w(e)d9> |U(a,0)x — U(a, 1)y

t t

1

(
< exp( Gw(&)d@) Vo(t,x, y)
(

+h w(@)d@) ex (J" w(e)d9> Vo(t, x, y)

Jt t+h
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for he (0,b—1t) and o€ [t+ h,b), we have

t+h
Volt+ b, Ut + h 1), U(t+ h, 1)) < exp (j

t

w(O)dO) Volt,x,y) (4.2)

for he (0,b—1¢). Since V(t,x,y) = Vo(t,x, y) for t € [a,b) and x, y € Q(r) and
since V(¢,-,-) is Lipschitz continuous on X x X with Lipschitz constant L, by
(4.2) we have

(V(t4+h,x+hA(t,x), y+ hA(t,y)) — V(t,x, ) /h
S(VU+hUlt+ht)x,U(t+ht)y)—V(t,x,y))/h
+ L(||x+hA(t,x) = Ut + h, O)x|| + ||y + hA(t, y) — U(t + h, t) y||) /h

< % (exp (J[Hh w(@)d@) - 1> V(e x, )

+ L(|lx + hdA(t,x) = Ut + b, O)x|| + ||y + hA(2, y) = Ut + h, ) yl]) /h
— o)V (tx,y) as h | 0.

This means that the desired dissipativity condition holds true. O

Proof of the sufficiency part. By condition (25), Theorem 4 asserts
that for any (7,z) € 2, there exists a unique global solution u = u(-;7,z) to
(IVP;7,2) on [t,b). Define {U(#,7)}, ;yeq by U(t,7)z = u(t;7,2) for (z,z) e 2
and t € [t,h). Then we see that for each (z,7) € 4, U(z,7) maps Q(1) to Q(z).
We immediately obtain (E1) from the uniqueness of solutions to initial value
problem (IVP;z,z). By Proposition 1, we find, noting (V4)’, that

|U(t, 1)z — U(t,20)z|| < V(t, U(t,7)z, U(t,7)2)

t

< exp (JI w(@)d@) V(t,2,2) < Lexp (J

T T

w(@)d@)nz 3

for z,z e Q(r) and (z,7) € 4, namely, (E3) holds true.

It remains to show that (E2) holds true. Let (#,,7,),(¢,7) € 4, z, € Q(ty)
and z € () and suppose that (¢,,7,) — (¢,7) and z, — z as n — c0. We have
to show that u(t,;7,,2,) = U(ty,tn)zs — u(t;7,z) = U(t,7)z as n — oo. First,
we assume that > 7. Let d € (7,h) be a number such that ¢+ < d and take
o€ (t,t). Since t, —t as n — oo, we may assume that #, € [0,d] for n > 1.
Then, we deduce from Proposition 7 that lim, .. u(-;7,,z,) = u(-;7,z) uni-
formly on [o,d], and hence u(t,;t,,z,) — u(t;z,z) as n— oo. Next, we
assume that r=17. Since u(t;7,z) = U(f,7)z=2z, we need to show that
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u(ty; Ty, zy) — z as n — oo. To this end, let M > 0 and R > 0 be numbers such
that 7+ R<b and |A(s,y)[| <M for (s,y) e QNSg(r,z). Since
(tn,zu) — (7,z) as n— oo, there exists an integer N > 1 such that 7, + R/2
<b and (1,,z,) € Sg2(t,z) for n> N. Take r= R/2. Thus, we observe
that if n> N, then S,(t,,z,) = Sr(r,z) and ||A(s,y)|| <M for (s,y)e QN
Sy(tn, zn). Let o€ (0,r/(M +1)). Thus, we deduce from Theorem 3 that if
n> N then

(85 Ty 2n) — u(8; Thy 2n) || < M|s — 3§

for s,§ € [ty, 7, + 0]. Since 7, — 7 and t, — t =7 as n — oo, we find that ¢, €
[Tu, Ta + o] for sufficient large n, and so the above inequality implies that

Hu(tn;fnazn) - ZnH S M|tn - 7:n|

for sufficient large n. Since z, — z as n — oo, we conclude that u(z,;t,,z,) —
z as n — oo. O

5. Application to wave equations

In this section, we apply Theorem 1 to the initial value problem for non-
linear wave equation with dissipation:

{ o= 0w, 0w =0ya(t,u) -y, (5.1)

u(0,x) = up(x), v(0,x) = vo(x) for xeR and € [0, ).

Here y is a positive constant and o(-,-) a real-valued smooth function on
[0, c0) x R satisfying o(#,0) = 0 for 1 € [0, 0). We make the following assump-
tions on the function o.
(1) There exists a positive constant dy such that o,(¢,r) > Jy for (¢,r) €
[0,00) x R.
(ii) There exists a constant Ly > 0 such that

lov(t, )l = < Lo, llon(t, )l < Lo
and  ||oy (1, )| < Lo for ¢ €0, o0).

(i) There exists a continuous integrable function /% : [0, c0) — [0, 00) such
that

low(t, )|l - < h(t) for e [0, o0).

Let X =L*R)xL*R) with the standard norm ||(u,0)| =
(lull?> + ||o]|1?.)"/, and define H : [0, 0) x H*(R) x H*(R) — R by
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H(t,u,v) = HO(t,u,0) + HY (t,u,v) + H®(t,u,v)

J atrdr—|— v)dx

J“ (07 (6,0)(200)* + (yu + 0,0)*)dx

1 o0
+ EJ (0,(1,u) (0%u)* + (pdsu + 8%v)*)dx
for (u,v) e H*(R) x H?(R) and t€[0,c0). The assumptions imply that there
exist constants Cy > ¢o > 0 such that
coll(, 0) | 722 < H(t,u,0) < Coll(1,0) | 22 (5.2)

for (u,v) e H*(R) x H*(R) and t€[0,0). The following proposition will be
used in order to convert the problem (5.1) into the initial value problem for a
continuous mapping 4 : 2 (= [0,0) x X) — X.

PROPOSITION 9. Let t€[0,0) and (ug,vy) € H*(R) x H*(R). Then there
exists 29 > 0 such that for any 1€ (0,4, the problem

(uz —uo)/ 2 = 0xv;, (5.3)
(v = v0) /4 = 0,(t,u0) 0ty — yv; (5.4)

has a solution (u;,v;) € H*(R) x H*(R) satisfying the following properties:
(i)  The family {(u;,v;)} converges to (ug,vy) in H*(R) x H*(R) as 1 | 0.
(i) There exists a nondecreasing continuous function g : [0, 00) — [0, o)
with g(0) =0, depending only y and o(-,-), such that

(H(t + /1,1/{/1, Ui) — H(l, U, U()))

1 t+4
= 2) (J h(s)d5> ||”}.||§{z — y50||0xu;~||12{]
v t

+(1+ ﬂz)g(H(l/lo, Vo)l g2 v (i, 02) L2 2

X (I0xtto| 1 v 1002l 1) (5.3)

ol =

Jor e (0, ).
Here and subsequently, we use notation av b = max{a,b} for a,beR.

PrOOF. Let t€[0,00) and (ug,v0) € H*(R) x H*(R). Define D(L(t)) =
H'(R) x H'(R) and

L(t)(u,v) = (0xv, 04(t, 1) Oxtt — yv)
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for (u,v)e D(L(¢)). Let fp, be a positive number such that f;,>
Lo||0xtio|| 1/ (24/00).  Since

10x(0r (£, u0))| o _ [low (2, u0) Oxto| -

2vdo 2V

we deduce from [8, Proposition 5.7] that L(z) — I is m-dissipative in X =
L*(R) x L*(R) with inner product ((u,v),(#,9)) = (|, o.(t,uo)uit + vd dx)'/?
for (u,v),(@,0) e X. Choose Ay >0 so that Agf, < 1. Then, for 1€ (0, 4],
(uz,v;) := (I — AL(1)) " (uo, vo) satisfies (5.3) and (5.4). Note that D(L(¢)") =
H*(R) x H*(R) for k=2,3. It follows from the proof of [8, Proposition
5.7] that (u;,v;) € D(L(1)*) and L(1)*(u;,v;) = (I — AL(1)) "' L(1)*(ug, vy) for
k =0,1,2 and that the family {L(z)"(u;,v;)} converges to L(¢)*(ug,v9) in X as
410, for k=0,1,2. Hence the family {(u;,v;)} converges to (ug,vo) in
H?*(R) x H*(R) as 4] 0.

We shall show (ii). Since (#,0) =0, we have o(t,u;) e H'(R) and
Oxo(t,u;) = a,(t,u;)0uy. By (5.4), we get

=< ﬂOv

(v, —vo) = Oxa(t,uy) — yv; + (o,(t,u0) — 0,(t,u;))0xtty.

| —

We multiply this equality and (5.3) by v, and o(z,u,), respectively. The sum
of these two equations gives us

1 1
ZU(E u;)(uy — uo) + EUA(U). —vp)

= 0x(vyo(t,u;)) — yuf + v;(or(t,u0) — a,(t,u;))0xu;.
Integrating this equality, we have
o0

%J V a(t,u;)(uy — up)dx + %J (v, — vo)dx

—o0 —©

= —yJ vf dx +J v v, (0,(t,ug) — op(t,u;))0xu; dx

-0 -0

- ir (0:(t, 140) — 0(1, ) (Dutty) 2

S
Lg (7 2 2. _ /IZL(% . 2 2
=< 4_y‘|\700(u0 _u/l) (6xu}v) dx = 4 J,m(axm) (axu;v) dx
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Since the function r — o(¢,r) is nondecreasing, we have
lr (J (t )d)d o Jw (v; — vp)d
- o(t,r)dr |dx +— vy — vg)dx
20— Uiy 2 ) 0
AL} ”
< ol | @)

— o0

or

(H(())(l + /17 U, Ui) - H(O)(lv Uo, UO))

o =

< 1Jm (J""(a(z + A —alt, r))dr) dx

_l—oo 0

+

"2 2
#Ly A J (0ut;) dx.

o0
4y —w

The first term on the right-hand side is estimated as follows:

lr <Juz(o'(t 4,0 —alt, r))dr) dx

A —0 0

SIN(RIRIEDDT
[ (T (s o))

1 t+A 5
<5 (J[ h(s)ds>||u;~||Lz.

o

o =

Hence

1 \
5 (HO 1+ 2, u;,v;) — HO(t,u0, v0))

<5 th( )ds ) [luz; +ﬁL2|I0 e (5.6)
s 5 , S)ds AN 4]/ oNOXUL| g1 [|OxUi|| 1 2- .
Differentiating (5.3) and (5.4), we have
1
I (axul - aXMO) = 6x(axvﬂ.)a (57)
l ja)
z((yu/l + 00;) — (yuo + 0xv9)) = 0x(0, (2, up)0xuty). (5.8)
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We multiply (5.7) and (5.8) by o,(¢,u0)0u; and yu; + 0yv,, respectively. The
sum of these two equations gives us

(1 10) (0 = 0a0)®) + 57 (G + 002 = (o + 2a00)?)

< 0x(0,(t,10) 011, 050;) + y1u;0x(0,(, u0)Oxuty).

1
227

Integrating this equality, we have

;_AJT G"(t7 uo)((axu).)z - (5xu0)2)dx

o0

1
+ 27] ((yuz, + 0x0,)* — (yug + Oxv0)?)dx

— 0

<-y JOC (0xu;) (o, (¢, u0)0xuy)dx.

—0

Thus

1 ,
I(H(])(l + Aoz, 07) — HWY (1,10, v0))
.

= %J (0:(t + 2, uz) — 0,(t,u0)) (6xu;) *dx — yJ o, (1, u0) (0uy) 2dx.

Since

|0,(1+ A,u;) = 0r(tu0)| < |ov(t + 2, u5) — 0(t,uz)| + |00 (1,u5) — 0,2, u0)|

A
+ Loluy — uo| < J h(s)ds 4+ ALy|0yv,], (5.9)

t

<

t+7
J O (S7 u)v)ds

t

we have

(H<1)(t + lv Uy, Uﬂ) - H(l)(l7 Uy, UO))

o —

1 144 5 1 R 5
<5 t h(s)ds |||0xu||72 +§L0||0xvﬂ.||H1HaxuxHLz
— 0ol 0tz - (5.10)

Differentiating (5.7) and (5.8), we have

(0% — 0Tuo) = 0x(0%w2), (5.11)

o —
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1
7 (03 + 03v;) — (pOsuo + 03v0))
= ax(arr(l, uo)axuoaxui + O’r(l, ug)aiuﬂ) (5.12)

We multiply (5.11) and (5.12) by o,(t,u0)0*u; and yd,u; + d2v;, respectively.
The sum of these two equations gives us

1 1
55000 o) ((02uz)* — (02up)?) + 57 (0 + 020;)" — (y0suo + 0%v9)”)
< ax(ar([a UO)aiu)ﬁiU},) + y0xu,0x (0 (2, Mo)aiui)
+ (0% + p0u1;) 0 (0, (1, 100) Do dsity).

Integrating this equality, we have

S| st - @

24)
+ %&J ((705uz + 0702)* = (p0uo + 3vo)*)dx
g —yJ " ot 0) (0%3) el +J (70xtts + 0702)0x (00 (2, 1) Oxtto ;) dx
_ _yJ O-r([7 uo)(aiu),)zdx _ yJ 6)2614;‘(0”‘(% uo)axuoaxul)dx

+ J (6§Ui>ax(az'r(ta UO)axanxu}.)dx-

—o0

Hence
1
S(HO(+ 4 07) = HO (10, 10))
< 1 P 62 2d 0 62 2d
=5 7m(0'r([+ Ju;) — o (tug))(Oxus) “dx —y B o, (t,u0) (0u;) dx
- VJ 5§u/1(0',r(t, uo)(Oxto)Oxut; )dx
+ J (aivl)ax(@r(l‘, u0)OxttoOxuty )dx. (5.13)

The third term on the right-hand side is estimated by
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—yj 02y (01 (1, 00) (Dxtio) D1tz

— 00

dxtty|| -

< pLol|03u| 12110 ctaol| Lo 1051zl 12 < yLolluo]l 2
Since
ax(o'rr(l; u0>axuoaxu2)

= Gy (1, 10) (Oxtt0) > Otty, + 0y (1, 100) 02100014 + 0, (1, 100) D100tz

we have

J (aivg)ax(dw(l‘, uo)axuoaxui)dx

—
< Lollzvll 2 (190 | 2« 10z .-
+ [[0uoll 2 100z o + 100l - 1032 12)
< Lol[vzl 2 ([lwoll 72| Oxteol 71 10242 .2
+ N1 0xtto| g (10031 1+ ol 10501 2)
< Lol[vall = (ol 72 + 2) [ 0xtto| g1 1024z | 11
We estimate the first term on the right-hand side of (5.13) by (5.9), and com-

bine the resulting inequality and the inequalities obtained above. This yields

(H(z)(t + /15 U, v/l) - H(2>(t, Ugp, U()))

ol —

1 +r LO
I A e e A A e 2

t
+ Lo(lluoll g2 + 102l g2 (ol g2+ 2)) (st o v |0tz | 1)

Combining this inequality with (5.6) and (5.10) we observe that the desired
inequality (5.5) is satisfied for the function

9(’)—LOV{<I:);)V(3+y+r)} for r > 0. 0

Let ¢y be the constant in (5.2), and define A : [0, 0) x H*(R) x H*(R) —
R by

H(t,u,v) = exp <— 1 Jt h(s)ds) H(t,u,v)

C()O
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for (t,u,v) € [0,00) x H*(R) x H*(R). Then we have
. | B N
H(t,u,v) < H(t,u,v) <exp (c_J h(s)ds)H(l, u,v) (5.14)
0Jo
for (t,u,v) € [0, 0) x H*(R) x H*(R). Since g is continuous and ¢(0) = 0, we
choose a number Ry, > 0 so small that
. 2 R() 1 *©
if >0 and r* < — exp|—| Ah(s)ds| then g(r) < ydo, (5.15)
o ¢ Jo
and define a subset Q of [0,0) x X by
@ = {(t, (u,v)) € [0, 50) x (H*(R) x H*(R)); H(t,u,0) < Ro}.
Let ro = y/Ro/Co, where Cp is the constant in (5.2). Then, by (5.2) we
have

So = {(u,v) € H*(R) x H>(R); ||(tt,0) | sy2,5 <10} = (1) (5.16)

for any r€0,00), and there exists a connected component C of Q such
that [0,0) x Sp = C = Q. Let R be the positive number such that (R(’))2 =

1;—(;) exp((}—ofooc h(s)ds). Then, by (5.2) and (5.14) we have

Q(1) = Sy := {(u,v) e H*(R) x H*(R):[|(t,0) | jpoeppe < RG}  (5.17)
for any 1e€[0,00). Let V be the functional on [0,0) x X x X defined by

V(t,(u,v), (@,0)) = (JT (- 0) + <J: \/mdr)zdx>1/z

-

for (u,v),(#,0) € X and 1€ [0,00). It is easily seen that conditions (V'1)—(V4)
are satisfied. In particular, we see that for each ¢ € [0, c0), V' (¢,-,-) is a metric
on X and

min{1, v/Go}||(u, v) = (& 8)[| < V(1, (u,0), (&)
< (1v/Lo)l|(u,0) = (@, 9)]
for (u,v),(u,9) e X. Consider the operator 4 : Q2 — X defined by
A(t, (u,v)) = (0xv, 050 (1, u) — yv)

for (¢, (u,v)) € Q. Then the nonlinear wave equation with dissipation (5.1) is
converted into the initial value problem for 4. We can prove that the initial
value problem for 4 is globally well-posed, by Theorem 1 combined with the
following theorem which will be proved by a sequence of propositions.
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THEOREM 5. The operator A satisfies (21)-(Q4).

In view of (5.16) and (5.17), we are in a position to state the global
solvability of the nonlinear wave equation with dissipation (5.1).

COROLLARY 1. For any (ug,vo) such that ||(uo,v0)|| 2y 2 < ro, there exists
a unique time global solution (u(-),v(-)) to (5.1) such that

(u(-),v()) € C'([0, 00); L*(R) x L*(R)) N L™ (0, 03 H*(R) x H*(R)).

REMARK 2. Similar results are obtained in Yamada (23] and Matsumura

[14].
For the proof of Theorem 5 we follow the argument in [8]. We note here
that
loowll72 < [[wll 2102wl for we H*(R). (5.18)
ProPOSITION 10. The operator A is continuous on £2.
Proof. Let (¢, (u,v)), (4, (@,0)) € 2. Since a(7,0) =0, we have
1
a(t,u(x)) — a(t,u(x)) = u(x)J (a,(t,0u(x)) — o,(¢,0u(x)))do
0
and

SN2
lo(z,u) — oz, u)||z>
i 2

_ Jic ((t ~ () J; JO o+ 0(t — 1), éu<x)>d9dé) dx

1 2

< Jw (|z— il |u(x)|J0 h(i + 01 i))de) dx

— o0

_ (j;ms)ds)znuniz-

Since ||ul|;>» < R{y by (5.17) and |o,(,-)|;» < Lo, we get
lo(t,u) = o(t, )|l > < llo(t,u) — a(t,u)ll > + llo(t,u) — o(z,d)| >

< [ull 2 + Lollu — al| >

Jt h(s)ds

t

t
<R, J h(s)ds| + Lollu — i .

t
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By (5.17) we have [|02(v — 8)||;> < [|020]|;2 + |02 - < 2R}). Since

d30(t, u(x)) = 0x(0,(1,u(x))Oxu(x))
= 0 (1,u(x)) (23u(x))* + 0, (1, u(x)) 03u(x),
we get, by using the inequality |wl||;.. < |w|/y: for we H'(R),

103 (a(t,u) — a(i, )|

2 < 103a(t,0) 2 + 1030 (2, @)

< Lo(l(0x14)* [l 2 + 1100381 2) + Lo([|03ul| 2 + (|03l )
< Lo(||0xull o [|0xtall 2 + [|0x]| 1o (| Ol 12) + 2Lo Ry,
< 2Lo(R))* + 2LoR}.
Thus, using (5.18), we have
1 4(t, (u, v) = A(E, (&, 8))[|

< |0x(v = B)lI72 + |0x(a(t,u) — a(f, @) — y(v — 8)|72

< |0x(v = B)]172 + 2[10x(a(t, 1) — o(F, @)1 72 + 29|o — 87

< o= ol 2103w = D)l| 2 + 297 ljo — 7

+2la(t,u) = o, @)| 103 (0(1, ) — o (2,2))]] .2

< 2RY||v — Bl| 2 + 292 [|v — 8]|7

t
+4LoR)(1 + R)) (R{) J h(s)ds

t

which implies the continuity of 4 on Q. O
ProposITION 11.  Condition (Q2) is satisfied for the set Q.

Proor. Let 7, €[0,00) with #, T 1€ [0,00) as n — o0. Let (u,0) € X and
let {(u,,v,)} be a sequence in X such that (u,,v,) € Q(s,) for n>1 and
(ty,vy) — (u,v) in X as n — oo. We have to show that (u,v) € Q(¢). Since
the sequence {(u,,v,)} is bounded in H?*(R) x H?(R) it follows that (u,v) e
H?*(R) x H*(R) and the sequence {(u,,v,)} converges weakly to (u,v) in
H?*(R) x H*(R) as n— co. By (5.18), we see that the sequence {(u,v,)}
converges to (u,v) in H'(R) x H'(R) as n — co. Moreover, {(u,,v,)} con-
verges to (u,v) in L*(R) x L*(R) as n— oo. Since H(ty,uy,v,) < Ry for
n>1, we have
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Ry exp(

—&-%J (o (2, un)(0: un)2 + (yu, + 6xv,,)2)dx
+%J (6, (tn, un)(0; u,,)2 + (yOyuy +6§vn)2)dx

© 1
J o(t,r)dr+= v)dx
0 2

|
%
8

J% {Gf(tv u)((axun)z + (afun)z) + (Vun + axvn)z + (Vaxun + aivn)z}dx

| | J (o(tn7) — o1, r))dr) dx

+ Jio{(a,.(tn,u,,) — o, (t,u)) ((O1n)* + (chun)z)} for n>1. (5.19)
Since
Ji@( . (o(ty,r) —a(t,r dr)dx
J (ty — 1) (J <Ll J; ot +0(t, — 1), ér)dedé)rdr)dx
< J (Jo (J h(t+ 0(t, ))d0>r dr)dx
= m Jtn h(s)ds‘
2
and

|7 (tns tn) — 0 (8, u)| < |07 (tny tn) — 01 (En, u)| + |07 (10, 1) — 0,2, 1)

< LOHun - uHL“

+ Jtn h(s)ds

t

for n>1, we have Ry > H(t,u,v) by taking the inferior limit in (5.19) as
n— 0. 0
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PrROPOSITION 12.  There exists a real-valued continuous function w defined
on [0,00) such that

DV (t,(u,v), (@,0))(A(t, (u,v)), A(t, (4,0)) < w()V (1, (u,v), (@,0))
Jor (u,v),(&,0) € Q(t) and t € [0, ).

PrOOF. Let (u,0), (i1, ) € Q(1) for t€ [0, 0). Let (¢,7),(£,7) € X. Then
we get

2D,V (1, (u,0), (8, 9) (&), (&) V (1, (u,v), (i,8))
= lim inf %(V(l +hy (uy0) + h(E,m), (@,0) + h(E,)? = V{1, (u,0), (@,6))°)
TSP B B PR 2 e 2
= 11m1an{J (04 hip— (v+hn))” — (0—v)")dx

710
()

:Jo;<2(u—v)n 1) +2J \/Tdr{ (E/a,(t,0) — E/o,(t,u))

i auw(t,r)
—I—J 2\/0’— })dx (5.20)

Substituting (&,7) = A(1, (u,v)) and (&,7) = A(t, (4, 0)) into (5.20) yields

DV (1, (u,v), (,0))(A(1, (u,v)), A(t, (&, 0)) V (2, (, v), (&, D))

- ((ﬁ — 0)(0uo(t,) = o(t,) — (6~ )
+ Ju Voot r)dr( (0x0/ 0, (1, 1) — Oxvr/ 0, (1, 14))

“g(t,r)
+ L NG dr) ) dx

_ _yf (-0 - r 0ulb — 0)(a(t, ) — ot 1)) dx




Nonautonomous differential equations

+J‘y(] VT (/o8] — 0.0/ ) )

[ (v [ o)

:—yJw (5 — v) dx+J (J \/Tdrj 7)dr>d

—o or(t,7)

o] j<mm — ou(t,))drd
+Jf J \/O',T\/m ))drdx.

The second term on the right-hand side is estimated as follows:

J,‘ (J Varltndr rz(\f/nm%d>dx = 26,

The third and fourth terms are estimated as follows:

[ e[ aremvate - e

< [16dll r J e
B T —oo|Ju \/ar(laﬁ)—i_\/ar(lar)
SLonﬁnsz j|a—r|drdx:Lonﬁnmua—unz/z

and

J J Vo (t,r)\ o (t,u) — a.(t,r))drdx

VLoh(t )J (it — u) dx.

< Lollol| gl — ul*/2.

303

Setting w(t) = C}(1 + h(t)) for a suitable positive number CJ, we conclude that

DV (1, (u, ), (4, 0)) (A2 (u,0)), A1, (4, 0))) < (0) V' (1, (u,v), (@, 0))
for (u,v), (i,0) € 2(t) and 1€ [0, 0).

PrROPOSITION 13.  For any t€[0,00) and (ugy,vy) € Q(1),

11rgllmf /ld((llml)o) + 2A(¢, (ug,v0)), 2(t + 1)) =

(5.21)
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Proor. Let 1€ 0,00) and (ug,vp) € 2(¢). By (5.15) and (5.17), we note
that

=700 + g(ll (wo, vo)ll 2 2) <0 (5.22)
By Proposition 9, there exists 4y > 0 such that for any 1 e (0, 4], the problem
{ (M)v - “0)/;L = axvﬂva
(v, — v0)/2 = a,(t,ug)0xuy — yv;

has a solution (u;,v;) € H3(R) x H*(R) satisfying the properties (i) and (ii)
in Proposition 9. If it is proved that (u;,v;) € (¢ + 1) for sufficiently small
A > 0, then the subtangential condition (5.21) is shown to be satisfied by using
the property (i) in Proposition 9.

We shall prove that (u;,v;) € Q(¢+ 1) for sufficiently small 2> 0. By
(5.2) and (5.5), we have

% ((1 ~ LJIH h(s)ds) H(t + 2, u;,0;) — H(t, uo, vo)>

2(70 ¢

< (14 22)g( 0, 00) |22 v 110z, 02) |22 ) (105200 1 v 105203 10)?

— p00l x| (5.23)

+4
for 2€(0,4p]. Choose 4;€(0,4] so that lj h(s)ds <1 for A€ (0, 4]

Co Js
and te[0,0). Noting that e <1 —r for 0 <r < 1/2, we have

exp(—lJIH h(s)ds) <1 —ZLJIH h(s)ds

! €o J:

for 1€ (0,4;]. Hence

(H(t + 2yuz,v;) — H(t,up, vo))

o =

1 t
< eXP<— EL h(S)dS) (=700l 71 + (14 229 (10, 20) | 7212

Vs 02) | g2z )l 0stol g v [[0ttil 1)) (5.:24)
for 1€ (0,4]. Since (u;,v;) — (ug,v0) in H*(R) x H*(R) as 4 | 0, we have

) 1 .
limsup — (H (¢ + 4,u;,v;) — H(t,uo, v9))
a0 A

1

<exp (——J h(S)dS) (=700 + g (110, 00) 22 )1 Oxtaoll . (5.25)
€0 Jo
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If [[Oxuoll 1 # 0, then we have (—ydo + g([/(u0, v0)ll 72 g2)) 10xtt0][ 2 < O by
(5.22). Hence (5.25) implies that H(t+ A,u;,v;) < H(t,u9,v0) < Ry and
(uy,v,) € 2(t+ 4) for sufficiently small 2> 0. If [|0ug||y =0, then (5.24)
implies that

1, .. N
_<H(Z + /Lu/lvvi) - H(t7 Uy, UO))

< exp (— cioj(: h(s)ds)

x (=900 + (1+ 22)g(|[ (o, v0) | groserrs ¥ (1 02) | g2 2 ) N0t o
for 2 e (0,4]. Since

Hm(—ydo + (1 + 22)g(1Ga0, v0) 2z v 1102, 02) | o 12)

= =700 + g([[ (w0, v0)l gr2.cr2) <O,

the right-hand side of the above inequality is less than or equal to zero for
sufficient small 4 > 0; hence H(t+ A, u;,v;) < H(t,up,v0) < Ro and (u;,v;) €
Q(t+ ) for sufficient small 4 > 0. O
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