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Abstract. For a 4-dimensional Riemannian manifold ðM; gÞ let T1M be its unit

tangent sphere bundle with the standard contact metric structure ðh; g; f; xÞ. Then we

prove that the Ricci operator S and the structure operator f commute i.e., Sf ¼ fS

(anti-commute i.e., Sfþ fS ¼ 2kf, respectively) if and only if ðM; gÞ is of constant

sectional curvature 1 or 2 (ðM; gÞ is of constant sectional curvature, respectively).

1. Introduction

It is intriguing to study the interplay between Riemannian manifolds

and their unit tangent sphere bundles. In particular, we are interested in the

standard contact metric structure ðh; g; f; xÞ of a unit tangent sphere bundle

T1M over a given Riemannian manifold ðM; gÞ. As a classical result, Tashiro

([13]) proved that ðT1M; h; gÞ is a K-contact manifold (i.e., the Reeb vector

field x is a Killing vector field) if and only if ðM; gÞ has constant sectional

curvature 1.

Boeckx and Vanhecke ([4]) proved that T1M is Einstein, that is r ¼ ag if

and only if ðM; gÞ is 2-dimensional and is locally isometric to the Euclidean

plane or the unit sphere, where r denotes the Ricci curvature tensor of T1M

and a is a function of T1M. In [6], for a 4-dimensional Riemannian manifold

M it was proved that T1M is h-Einstein, that is r ¼ agþ bhn h if and only if

M is of constant sectional curvature 1 or 2, where a, b are functions of T1M.

Later, Park and Sekigawa ([9]) generalized the result for higher dimensional

cases. In fact, they proved that T1M is h-Einstein if and only if ðMn; gÞ is

of constant sectional curvature 1 or n� 2, where dim M ¼ n. After all, we

are aware that (h-)Einstein condition is too strong to impose on T1M. This
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motivates us to consider geometry of T1M under some weaker restrictions.

Namely, in Section 3 we prove the following theorems.

Theorem 1. Let M ¼ ðM; gÞ be a 4-dimensional Riemannian manifold and

let T1M be the unit tangent sphere bundle with the standard contact metric

structure ðh; g; f; xÞ over M. Then the Ricci operator S and the structure

operator f of T1M commute i.e., Sf ¼ fS if and only if ðM; gÞ is of constant

sectional curvature 1 or 2.

From Theorem 1 we find that the commutativity condition Sf ¼ fS is

already reduced to h-Einstein condition at least for lower (a4) dimensional

base manifolds. Next, we prove

Theorem 2. Let M ¼ ðM; gÞ be a 4-dimensional Riemannian manifold and

let T1M be the unit tangent sphere bundle with the standard contact metric

structure ðh; g; f; xÞ over M. Then the Ricci operator S and the structure

operator f of T1M anti-commute i.e., Sfþ fS ¼ 2kf, where k is a function of

T1M if and only if ðM; gÞ is a space of constant sectional curvature.

The unit tangent sphere bundle T1M treated in this paper has a so-called

H-contact structure, which means that the Reeb vector field x is a harmonic

vector field. Indeed, Perrone ([10]) proved that a contact metric manifold is

H-contact if and only if x is an eigenvector of the Ricci operator S, that is,

Sx ¼ ax for some function a. For 2- or 3-dimensional Riemannian mani-

folds M, Boeckx and Vanhecke ([3]) proved that the standard contact metric

structure of T1M is H-contact if and only if M is of constant curvature.

Recently, for 4-dimensional Riemannian manifolds M, Chun, Park and

Sekigawa ([8]) proved the necessary and su‰cient condition for T1M to admit

an H-contact structure is that M is a 2-stein manifold, that is, an Einstein

manifold satisfying
Pn

i; jðRuiujÞ2 ¼ mðpÞjuj2 for all u A TpM, p A M, where

Ruiuj ¼ gðRðu; eiÞu; ejÞ, juj2 ¼ gðu; uÞ and m is a real-valued function on M.

In a continuing work [7] they generalized their result for higher dimensional

Einstein manifolds. And they showed that the base manifolds of H-contact

unit tangent sphere bundle include many Einstein spaces other than two-point

homogeneous spaces.

2. The unit tangent sphere bundle

We start by reviewing some fundamental facts on contact metric man-

ifolds. We refer to [1] for more details. All manifolds are assumed to be

connected and of class Cy. A ð2n� 1Þ-dimensional manifold M is said to

be a contact manifold if it admits a global 1-form h such that h5ðdhÞn�1 0 0

everywhere on M, where the exponent denotes the ðn� 1Þ-th exterior power
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of the exterior derivative dh of h. We call such h a contact form of M. It is

well known that for a contact form h, there exists a unique vector field x, which

is called the characteristic vector field, satisfying hðxÞ ¼ 1 and dhðx;X Þ ¼ 0 for

any vector field X on M. A Riemannian metric g on M is an associated

metric to a contact form h if there exists a ð1; 1Þ-tensor field f satisfying

hðXÞ ¼ gðX ; xÞ; dhðX ;YÞ ¼ gðX ; fY Þ; f2X ¼ �X þ hðXÞx; ð1Þ

where X and Y are vector fields on M. From (1) it follows that

fx ¼ 0; h � f ¼ 0; gðfX ; fYÞ ¼ gðX ;YÞ � hðXÞhðYÞ:

A Riemannian manifold M equipped with structure tensors ðh; g; f; xÞ satisfying
(1) is said to be a contact metric manifold.

Let ðM; gÞ be an n-dimensional Riemannian manifold and ‘ the asso-

ciated Levi-Civita connection. Its Riemann curvature tensor R is defined by

RðX ;Y ÞZ ¼ ‘X‘YZ � ‘Y‘XZ � ‘½X ;Y �Z for all vector fields X , Y and Z on

M. The tangent bundle over ðM; gÞ is denoted by TM and consists of pairs

ðp; uÞ, where p is a point in M and u a tangent vector to M at p. The

mapping p : TM ! M, pðp; uÞ ¼ p, is the natural projection from TM onto

M. For a vector field X on M, its vertical lift X v on TM is the vector field

defined by X vo ¼ oðX Þ � p, where o is a 1-form on M. For the Levi-Civita

connection ‘ on M, the horizontal lift X h of X is defined by X ho ¼ ‘Xo.

The tangent bundle TM can be endowed in a natural way with a Riemannian

metric ~gg, the so-called Sasaki metric, depending only on the Riemannian metric

g on M. It is determined by

~ggðX h;Y hÞ ¼ ~ggðX v;Y vÞ ¼ gðX ;YÞ � p; ~ggðX h;Y vÞ ¼ 0

for all vector fields X and Y on M. Also, TM admits an almost complex

structure tensor J defined by JX h ¼ X v and JX v ¼ �X h. Then ~gg is a

Hermitian metric for the almost complex structure J.

The unit tangent sphere bundle p : T1M ! M is a hypersurface of TM

given by gpðu; uÞ ¼ 1. Note that p ¼ p � i, where i is the immersion of T1M

into TM. A unit normal vector field N ¼ uv to T1M is given by the vertical

lift of u for ðp; uÞ. The horizontal lift of a vector is tangent to T1M, but the

vertical lift of a vector is not tangent to T1M in general. So, we define the

tangential lift of X to ðp; uÞ A T1M by

X t
ð p;uÞ ¼ ðX � gðX ; uÞuÞv:

Clearly, the tangent space Tðp;uÞT1M is spanned by vectors of the form X h

and X t, where X A TpM.

We now define the standard contact metric structure of the unit tangent

sphere bundle T1M over a Riemannian manifold ðM; gÞ. The metric g 0 on
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T1M is induced from the Sasaki metric ~gg on TM. Using the almost complex

structure J on TM, we define a unit vector field x 0, a 1-form h 0 and a ð1; 1Þ-
tensor field f 0 on T1M by

x 0 ¼ �JN; f 0 ¼ J � h 0 nN:

Since g 0ðX ; f 0YÞ ¼ 2dh 0ðX ;YÞ, ðh 0; g 0; f 0; x 0Þ is not a contact metric structure.

If we rescale this structure by

x ¼ 2x 0; h ¼ 1

2
h 0; f ¼ f 0; g ¼ 1

4
g 0;

we get the standard contact metric structure ðh; g; f; xÞ. Here the tensor f is

explicitly given by

fX t ¼ �X h þ 1

2
gðX ; uÞx; fX h ¼ X t; ð2Þ

where X and Y are vector fields on M. From now on, we consider T1M ¼
ðT1M; h; g; f; xÞ with the standard contact metric structure.

The Levi-Civita connection ‘ of T1M is described by

‘X tY t ¼ �gðY ; uÞX t;

‘X tY h ¼ 1

2
ðRðu;X ÞYÞh;

‘X hY t ¼ ð‘XY Þ t þ 1

2
ðRðu;YÞXÞh;

‘X hY h ¼ ð‘XY Þh � 1

2
ðRðX ;YÞuÞ t ð3Þ

for all vector fields X and Y on M.

Also the Riemann curvature tensor R of T1M is given by

RðX t;Y tÞZt ¼ �ðgðX ;ZÞ � gðX ; uÞgðZ; uÞÞY t

þ ðgðY ;ZÞ � gðY ; uÞgðZ; uÞÞX t;

RðX t;Y tÞZh ¼ fRðX � gðX ; uÞu;Y � gðY ; uÞuÞZgh

þ 1

4
f½Rðu;XÞ;Rðu;Y Þ�Zgh;

RðX h;Y tÞZt ¼ � 1

2
fRðY � gðY ; uÞu;Z � gðZ; uÞuÞXgh

� 1

4
fRðu;Y ÞRðu;ZÞXgh;

128 Jong Taek Cho and Sun Hyang Chun



RðX h;Y tÞZh ¼ 1

2
fRðX ;ZÞðY � gðY ; uÞuÞg t � 1

4
fRðX ;Rðu;Y ÞZÞug t

þ 1

2
fð‘XRÞðu;YÞZgh;

RðX h;Y hÞZt ¼ fRðX ;YÞðZ � gðZ; uÞuÞg t

þ 1

4
fRðY ;Rðu;ZÞXÞu� RðX ;Rðu;ZÞYÞug t

þ 1

2
fð‘XRÞðu;ZÞY � ð‘YRÞðu;ZÞXgh;

RðX h;Y hÞZh ¼ ðRðX ;YÞZÞh þ 1

2
fRðu;RðX ;YÞuÞZgh

� 1

4
fRðu;RðY ;ZÞuÞX � Rðu;RðX ;ZÞuÞYgh

þ 1

2
fð‘ZRÞðX ;Y Þug t ð4Þ

for all vector fields X , Y and Z on M.

Next, to calculate the Ricci tensor r of T1M at the point ðp; uÞ A T1M, let

e1; . . . ; en be an orthonormal basis of TpM. Then r is given by

rðX t;Y tÞ ¼ ðn� 2ÞðgðX ;YÞ � gðX ; uÞgðY ; uÞÞ

þ 1

4

Xn
i¼1

gðRðu;X Þei;Rðu;YÞeiÞ;

rðX t;Y hÞ ¼ 1

2
ðð‘urÞðX ;Y Þ � ð‘XrÞðu;YÞÞ;

rðX h;Y hÞ ¼ rðX ;Y Þ � 1

2

Xn
i¼1

gðRðu; eiÞX ;Rðu; eiÞYÞ; ð5Þ

where r denotes the Ricci curvature tensor of M. We can refer to [2, 5] for

the formulas (3)–(5).

3. Proofs of Theorems

Proof of Theorem 1. Suppose that the unit tangent sphere bundle T1M

over an n-dimensional Riemannian manifold M satisfies the condition Sf ¼ fS

for the Ricci operator S and the structure tensor field f on T1M. Then from

(2) and (5), we have

129Ricci tensors on unit tangent sphere bundles



0 ¼ gðSfX t;Y tÞ � gðfSX t;Y tÞ

¼ rðfX t;Y tÞ þ rðX t; fY tÞ

¼ 2ð‘urÞðX ;YÞ � ð‘XrÞðu;YÞ � ð‘YrÞðu;X Þ

� gðX ; uÞfð‘urÞðY ; uÞ � ð‘YrÞðu; uÞg

� gðY ; uÞfð‘urÞðX ; uÞ � ð‘XrÞðu; uÞg; ð6Þ

0 ¼ gðSfX h;Y tÞ � gðfSX h;Y tÞ

¼ rðfX h;Y tÞ þ rðX h; fY tÞ

¼ ðn� 2ÞðgðX ;YÞ � gðX ; uÞgðY ; uÞÞ þ 1

4

Xn
i¼1

gðRðu;X Þei;Rðu;YÞeiÞ

� rðX ;YÞ þ 1

2

Xn
i¼1

gðRðu; eiÞX ;Rðu; eiÞY Þ

þ gðY ; uÞ rðX ; uÞ � 1

2

Xn
i¼1

gðRðu; eiÞu;Rðu; eiÞXÞ
( )

; ð7Þ

0 ¼ gðSfX h;Y hÞ � gðfSX h;Y hÞ

¼ rðfX h;Y hÞ þ rðX h; fY hÞ

¼ 2ð‘urÞðX ;YÞ � ð‘XrÞðu;Y Þ � ð‘YrÞðu;X Þ: ð8Þ

Thus T1M satisfies the condition Sf ¼ fS if and only if ðM; gÞ satisfies (6)–(8).
In (7) we put X ¼ ea, Y ¼ eb, u ¼ ec. Then we have

ðn� 2Þðdab � dacdbcÞ þ
1

4

Xn
i; j¼1

RcaijRcbij � rab þ
1

2

Xn
i; j¼1

RciajRcibj

þ dbc rac �
1

2

Xn
i; j¼1

RciajRcicj

 !
¼ 0; ð9Þ

where dab denotes the Kronecker’s delta, Rabcd ¼ gðRðea; ebÞec; edÞ and rab ¼
rðea; ebÞ. For a ¼ b0 c in (9), we get

4raa ¼ 4ðn� 2Þ þ
Xn
i; j¼1

R2
caij þ 2

Xn
i; j¼1

R2
ciaj ¼ 0: ð10Þ

In particular, from the assumption Sf ¼ fS we easily see that T1M satisfies

Sx ¼ ax, that is, it has an H-contact structure. We suppose that n ¼ 4.

130 Jong Taek Cho and Sun Hyang Chun



Then, owing to a result in [8], M is 2-stein. Now, since M is Einstein i.e.,

r ¼ gg (g is a function on M), we may choose an orthonormal basis feig4i¼1

(known as the Singer-Thorpe basis) at each point p A M such that

R1212 ¼ R3434 ¼ l1; R1313 ¼ R2424 ¼ l2; R1414 ¼ R2323 ¼ l3;

R1234 ¼ m1; R1342 ¼ m2; R1423 ¼ m3;

Rijkl ¼ 0 whenever just three of the indices i; j; k; l are distinct ðcf : ½12�Þ:

8><
>: ð11Þ

Note that

m1 þ m2 þ m3 ¼ 0 ð12Þ

by the first Bianchi identity and

l1 þ l2 þ l3 ¼ � t

4
; ð13Þ

where t is the scalar curvature of M.

It is also known that a 4-dimensional Einstein manifold M is 2-stein if

and only if

m1 ¼ l1 þ
t

12
; m2 ¼ l2 þ

t

12
; m3 ¼ l3 þ

t

12
ð14Þ

or

�m1 ¼ l1 þ
t

12
; �m2 ¼ l2 þ

t

12
; �m3 ¼ l3 þ

t

12
ð15Þ

holds for any Singer-Thorpe basis feig4i¼1 at each point p A M (cf. [11]).

On the other hand, if we put a ¼ b ¼ 1, c ¼ 2 and a ¼ b ¼ 3, c ¼ 4 in (10),

then, using (11), we have

4g ¼ 8þ 4l21 þ 2ðm2
1 þ m2

2 þ m2
3Þ: ð16Þ

Similarly, put a ¼ b ¼ 1, c ¼ 3 and a ¼ b ¼ 2, c ¼ 4 in (10) to have

4g ¼ 8þ 4l22 þ 2ðm2
1 þ m2

2 þ m2
3Þ: ð17Þ

For a ¼ b ¼ 1, c ¼ 4 and a ¼ b ¼ 2, c ¼ 3 in (10), we have

4g ¼ 8þ 4l23 þ 2ðm2
1 þ m2

2 þ m2
3Þ: ð18Þ

From (16)–(18), we get

l21 ¼ l22 ¼ l23 : ð19Þ

Then, from (12), (13), (14) and (19) we obtain the following four cases.
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( i ) l1 ¼ l2 ¼ l3 ¼ � t
12 and m1 ¼ m2 ¼ m3 ¼ 0,

( ii ) l1 ¼ l2 ¼ � t
4 , l3 ¼ t

4 and m1 ¼ m2 ¼ � t
6 , m3 ¼ t

3 ,

(iii) l1 ¼ l3 ¼ � t
4 , l2 ¼ t

4 and m1 ¼ m3 ¼ � t
6 , m2 ¼ t

3 ,

(iv) l2 ¼ l3 ¼ � t
4 , l1 ¼ t

4 and m2 ¼ m3 ¼ � t
6 , m1 ¼ t

3 .

In the case (i), we get from (17)

ðt� 12Þðt� 24Þ ¼ 0:

Therefore M is of constant sectional curvature 1 or 2. Conversely, we easily

check that such a space satisfies (6)–(8). In the other cases (ii)–(iv), we get

from (17)

7t2 � 12tþ 96 ¼ 0;

which can not occur. This completes the proof of Theorem 1. r

Proof of Theorem 2. Suppose that the unit tangent sphere bundle T1M

over an n-dimensional Riemannian manifold M satisfies the condition Sfþ fS

¼ 2kf. Then, at first we can easily find that T1M satisfies Sx ¼ ax. From (2)

and (5), we have

0 ¼ gðSfX t þ fSX t � 2kfX t;Y tÞ

¼ rðfX t;Y tÞ � rðX t; fY tÞ � 2kgðfX t;Y tÞ

¼ 1

2
fð‘YrÞðu;X Þ � ð‘XrÞðu;Y Þ þ gðX ; uÞðð‘urÞðY ; uÞ � ð‘YrÞðu; uÞÞ

� gðY ; uÞðð‘urÞðX ; uÞ � ð‘XrÞðu; uÞÞg; ð20Þ

0 ¼ gðSfX h þ fSX h � 2kfX h;Y tÞ

¼ rðfX h;Y tÞ � rðX h; fY tÞ � 2kgðfX h;Y tÞ

¼ ðn� 2� 2kÞðgðX ;YÞ � gðX ; uÞgðY ; uÞÞ þ 1

4

Xn
i¼1

gðRðu;X Þei;Rðu;Y ÞeiÞ

þ rðX ;Y Þ � 1

2

Xn
i¼1

gðRðu; eiÞX ;Rðu; eiÞY Þ

� gðY ; uÞ rðX ; uÞ � 1

2

Xn
i¼1

gðRðu; eiÞu;Rðu; eiÞXÞ
( )

; ð21Þ

0 ¼ gðSfX h þ fSX h � 2kfX h;Y hÞ

¼ rðfX h; yhÞ � rðX h; fyhÞ � 2kgðfX h;Y hÞ

¼ 1

2
fð‘YrÞðu;X Þ � ð‘XrÞðu;YÞg: ð22Þ
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Thus T1M satisfies the condition Sfþ fS ¼ 2kf if and only if ðM; gÞ satisfies

(20)–(22). In (21), we put X ¼ ea, Y ¼ eb, u ¼ ec. Then we have

ðn� 2� 2kÞðdab � dacdbcÞ þ
1

4

Xn
i; j¼1

RcaijRcbij

þ rab �
1

2

Xn
i; j¼1

RciajRcibj � dbc rac �
1

2

Xn
i; j¼1

RciajRcibj

 !
¼ 0: ð23Þ

For a ¼ b0 c in (23), we get

ðn� 2� 2kÞ þ 1

4

Xn
i; j¼1

R2
caij þ raa �

1

2

Xn
i; j¼1

R2
ciaj ¼ 0: ð24Þ

Now we suppose that n ¼ 4. Since our T1M is an H-contact manifold, M

is a 2-stein manifold. In a similar way as in the proof of Theorem 1, for

a ¼ b ¼ 1, c ¼ 2 and a ¼ b ¼ 3, c ¼ 4 in (24), we have

2g ¼ �m2
1 þ m2

2 þ m2
3 � 4ð1� kÞ; ð25Þ

where g is the function defined in the proof of Theorem 1. For a ¼ b ¼ 1,

c ¼ 3 and a ¼ b ¼ 2, c ¼ 4 in (24), we have

2g ¼ m2
1 þ m2

2 � m2
3 � 4ð1� kÞ: ð26Þ

For a ¼ b ¼ 1, c ¼ 4 and a ¼ b ¼ 2, c ¼ 3 in (24), we have

2g ¼ m2
1 � m2

2 þ m2
3 � 4ð1� kÞ: ð27Þ

From (25)–(27), we get

m2
1 ¼ m2

2 ¼ m2
3 : ð28Þ

From (12) and (28), we have

m1 ¼ m2 ¼ m3 ¼ 0: ð29Þ

Hence, from (14) or (15), we have

l1 ¼ l2 ¼ l3 ¼ � t

12
;

that is, M is a space of constant sectional curvature t
12 . Moreover, we find

that g ¼ t
4 and then from (25) we get k � 1 ¼ t

8 . Conversely, we suppose that

M is a space of constant sectional curvature c and k ¼ 1þ t
8 . Then we first
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get rðX ;YÞ ¼ 3cgðX ;YÞ, t ¼ 12c, and k ¼ 1þ 3
2 c. Moreover, we easily check

that T1M satisfies (20) and (22). For checking (21), we compute

Xn
i¼1

gðRðu;X Þei;Rðu;YÞeiÞ ¼ 2c2ðgðX ;Y Þ � gðX ; uÞgðY ; uÞÞ;

Xn
i¼1

gðRðu; eiÞX ;Rðu; eiÞY Þ ¼ c2ðgðX ;Y Þ þ ðn� 2ÞgðX ; uÞgðY ; uÞÞ;

Xn
i¼1

gðRðu; eiÞu;Rðu; eiÞX Þ ¼ c2ðn� 1ÞgðX ; uÞ:

After all, we can see that T1M satisfies (21). This completes the proof of

Theorem 2. r
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