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Abstract. A general method to express in terms of Gauss sums the number of

rational points of general subschemes of projective schemes over finite fields is applied to

the image of the triple embedding P1 ,! P3. As a consequence, we obtain a non-trivial

description of the value of a Kloosterman-sum-like exponential sum.

Introduction

Based on a calculation concerning the diagonal hypersurfaces and Jacobi

sums, André Weil [12] observed that the number of rational points of algebraic

varieties over finite fields is a highly geometric information. His celebrated

Weil conjecture is eventually proved by Pierre Deligne [1] with Grothendieck’s

theory of étale cohomology.

Another, and the first, proof by Bernard Dwork [3] of the rationality of

zeta function, a part of Weil conjecture, more directly concerns exponential

sums. In the very beginning of his proof, he reduces the rationality of the zeta

function of algebraic varieties to that of hypersurfaces of ðGmÞn, and writes the

number of rational points of the hypersurface by using exponential sums.

Besides such general theories, expressing the number of rational points

using exponential sums has proved to be e¤ective also in studying concrete

projective hypersurfaces; the study of Dwork families, for example by Neal

Koblitz [9], is one of the most outstanding success of this strategy. It seems

therefore natural to expect the e‰cacy of this tactic in studying projective

varieties of higher codimension. This point of view, however, does not seem

to be taken note of enough in the study of concrete algebraic varieties of higher

codimension.

In the former half of this article, we explain the general method for

obtaining a formula for the number of rational points of projective varieties

in terms of Gauss sums. Then, in the latter half, we apply the method to

get an expression for the number of rational points of the image V of the
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triple embedding P1 ,! P3. Equating the result with the obvious equation

aVðFqÞ ¼ qþ 1, we get a non-trivial equation on an exponential sum (Cor-

ollary 1);X
t1; t2; t3 AF

�
q

yðt1 þ t2 þ t3 � t21 t
�2
2 t3 � t21 t

�3
2 t23 � t1t

�2
2 t23Þ ¼ 2q2 � 3q� 1;

where y denotes a non-trivial character on Fq. This result is also viewed as

a description of the Frobenius trace on a pull-back of an Artin–Schreier sheaf

by an appropriate morphism ðGmÞ3 ! A1. In the last section, we work on

another subscheme of projective spaces, the image of the Segre embedding

P1 � P2 ,! P5, to see that the character sum L above again appears in this

calculation.

The authors expect that the content of this article can help the future

study of the following two objects. The first is the zeta function of concrete

varieties; the method described in this article is expected to make it possible to

compute zeta function of possibly non-rational varieties of higher codimension

in projective spaces. The second is Kloosterman-sum-like exponential sums;

an explicit calculation of them may be possible by reducing the problem to

finding a variety the number of whose rational points is expressed by using the

exponential sum but is already known in some other methods.

Conventions and notations

Throughout this article, we fix a prime number p, a power q of p, and a

prime number l di¤erent from p.

The n-dimensional projective space Pn
Fq

(resp. a‰ne space An
Fq
) over Fq is

simply denoted by Pn (resp. An), and similarly, the torus Gm;Fq
¼ Spec Fq½t; t�1�

is denoted by Gm. Unless otherwise stated, the term ‘‘rational point’’ refers to

‘‘Fq-rational point’’.

The group of multiplicative characters F�
q ! Q�

l is denoted by cF�
qF
�
q . The

trivial character is denoted by e. Each character w A cF�
qF
�
q , possibly trivial one, is

also regarded as a function on Fq by putting wð0Þ ¼ 0.

Finally, we fix a non-trivial additive character y: Fq ! Q�
l throughout this

article.

1. Preliminaries on Gauss sum

In this section, we briefly recall the definition and some basic properties of

Gauss sums used in this article. Note that we have fixed a non-trivial additive

character y: Fq ! Q�
l .
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Definition 1. For a character w A cF�
qF
�
q , the Gauss sum of w is defined to

be

GyðwÞ :¼
X
x AF�

q

yðxÞwðxÞ:

Although the Gauss sum depends on the choice of y, we usually denote it

simply by GðwÞ.

The following three equations on characters are fundamental in doing

calculations involving Gauss sums.

Lemma 1. The following equations hold.

(i) For each x A Fq,X
w AFq

yðwxÞ ¼ 0 if x0 0;

q if x ¼ 0:

�

(ii) For each w A cF�
qF
�
q ,X
x AF�

q

wðxÞ ¼ 0 if w0 e;

q� 1 if w ¼ e:

�

(iii) For each x A F�
q ,X

w A bF�
qF
�
q

wðxÞ ¼ 0 if x0 1;

q� 1 if x ¼ 1:

�

Now, we list two basic facts on Gauss sums.

Proposition 1. For each character w A cF�
qF
�
q ,

GðwÞGðw�1Þ ¼ qwð�1Þ if w0 e;

1 if w ¼ e:

�
Proposition 2. For each x A F�

q ,

yðxÞ ¼ 1

q

X
w A bF�

qF
�
q

Gðw�1ÞwðxÞ:

The detailed proofs for these propositions are omitted; they are straight-

forward by using Lemma 1 (i) for Proposition 1, and by using Lemma 1 (ii) for

Proposition 2.
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2. Computing the number of rational points—general strategy

In this section, we describe, in a general setting, a strategy to express the

number of rational points of subschemes of projective spaces over Fq in terms

of Gauss sums. The first crucial point is the following reduction process to

hypersurfaces; this process is taken in the proof [3, Theorem 1] of rationality of

zeta functions, and is now also used in algorithmic theory of zeta functions

[11, 3].

Observation 1. We obtain a formula for the number of rational points of

a closed subscheme of a projective space if we obtain a formula for the number of

rational points of some appropriate hypersurfaces.

In fact, let V be a projective variety of which we want a formula for the

number of rational points. Take a closed immersion of V in a projective space

Pn, and let the image be defined by m homogeneous polynomials f1; . . . ; fm.

For each choice of integers 1a i1 < � � � < ir am, we set

Ni1;...; ir :¼afx A PnðFqÞ j bj A fi1; . . . ; irg; fjðxÞ ¼ 0g:

Then, since

aVðFqÞ ¼
Xm
r¼1

X
1ai1<���<iram

ð�1Þrþ1
Ni1;...; ir ;

it su‰ces to obtain a formula for each Ni1;...; ir , which is exactly the number of

rational points of the hypersurface defined by the product fi1 fi2 . . . fir .

Remark 1. A formula for rational points of not necessarily closed sub-

schemes of projective spaces is also obtained because such a subscheme is the

di¤erence of two closed subschemes.

For obtaining a formula for the number of rational points of a hyper-

surface of Pn, it su‰ces to count the number of rational points of the hyper-

surface of Anþ1 defined by the same polynomial. Moreover, the problem

reduces to obtaining a formula for

afðx1; . . . ; xnþ1Þ A ðGmÞnþ1 j ½x1 : � � � : xnþ1� A VðFqÞg

because the locus with at least one coordinates being zero is covered by

hypersurfaces of lower-dimensional a‰ne spaces.

Remark 2. When dealing with a specific projective variety V HPn (or

equivalently, specific homogeneous polynomials f1; . . . ; fm), it is often easier to

compute firstly the number

N0 :¼af½x1 : � � � : xnþ1� A VðFqÞ j bi A f1; . . . ; nþ 1g; xi ¼ 0g
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directly, and to compute secondly, for each choice 1a i1 < � � � < ir am, the

number

N�
i1;...; ir

:¼af½x1 : � � � : xnþ1� A PnðFqÞ j

Ei A f1; . . . ; nþ 1g; xi 0 0 and bj A fi1; . . . ; irg; fjðxÞ ¼ 0g;

which is 1=ðq� 1Þ times the number of rational points of the hypersurface of

ðGmÞnþ1 defined by the product fi1 fi2 . . . fir . Under this notation, our formula

becomes

aVðFqÞ ¼ N0 þ
Xm
r¼1

X
1ai1<���<iram

ð�1Þrþ1
N�

i1;...; ir
:

Our calculations in Sections 3 and 4 also go in this manner.

We conclude this section by giving a formula for the number of Fq-rational

points of an arbitrary hypersurface of ðGmÞn in terms of Gauss sums.

Let us introduce a convention which we need to state the result. Let

M ¼ ðmijÞi; j be an n�N matrix with coe‰cients in Z. Then, M naturally

defines the group homomorphism jðMÞ: ðcF�
qF
�
q Þ

N ! ðcF�
qF
�
q Þ

n, explicitly expressed

as

jðMÞððwiÞi¼1;...;NÞ ¼ ðwmj1

1 . . . w
mjN

N Þj¼1;...;n:

We always regard elements of ðcF�
qF
�
q Þ

N and ðcF�
qF
�
q Þ

n as column vectors.

The following proposition gives a formula we are asking for.

Proposition 3 ([2], [4]). Let n and N be positive integers, let c1; . . . ; cN be

elements of F�
q , and let R ¼ ðrijÞi; j A Mn;NðZÞ be an n�N matrix. Define a

polynomial f ðX1; . . . ;XnÞ A Fq½X1; . . . ;Xn� by

f ðX1; . . . ;XnÞ ¼
XN
j¼1

cjX
r1j
1 . . .X rnj

n :

Then, the number of n-tuples ðx1; . . . ; xnÞ A ðF�
q Þ

n
satisfying f ðx1; . . . ; xnÞ ¼ 0

equals

ðq� 1Þn

q
þ ðq� 1Þnþ1�N

q

X
tðw1;...;wN Þ AKerðjð ~RRÞÞ

YN
j¼1

Gðw�1
j ÞwjðcjÞ;

where

~RR ¼
R

1 . . . 1

 !
:
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Proof. Lemma 1 (i) shows thatX
x1;...;xn AF

�
q

X
w AFq

yðwf ðx1; . . . ; xnÞÞ

¼ qafðx1; . . . ; xnÞ A ðF�
q Þ

n j f ðx1; . . . ; xnÞ ¼ 0g;

thus it su‰ces to calculate the left-hand side and divide the result by q.

Because yð0Þ ¼ 1 and because y transforms addition to multiplication, the left-

hand side equals

ðq� 1Þn þ
X

x1;...;xn;w AF�
q

yðwf ðx1; . . . ; xnÞÞ

¼ ðq� 1Þn þ
X

x1;...;xn;w AF�
q

YN
j¼1

yðcjwxr1j
1 . . . xrnj

n Þ:

Now, Proposition 2 shows that the second term equals

1

ðq� 1ÞN
X

x1;...;xn;w AF�
q

YN
j¼1

X
wj A
bF�
qF
�
q

Gðw�1
j Þwjðcjwx

r1j
1 . . . xrnj

n Þ

and by using the multiplicativity of characters, we know that it equals

1

ðq� 1ÞN
X

w1;...;wN A bF�
qF
�
q

(YN
j¼1

Gðw�1
j ÞwjðcjÞ

Yn
i¼1

X
xi AF

�
q

ðw ri1
1 . . . w riN

N ÞðxiÞ
X
w AF�

q

ðw1 . . . wNÞðwÞ
)
:

Because of Lemma 1 (ii), each summand with respect to the outer sum

vanishes unless wri1
1 . . . wriN

N ¼ e for each i ¼ 1; . . . ; n and w1 . . . wN ¼ e, that is,

unless tðw1; . . . ; wNÞ A Ker jð ~RRÞ; if it is the case, the summand equals

ðq� 1Þnþ1QN
j¼1 Gðw�1

j ÞwjðcjÞ. This completes the proof.

3. The image of triple embedding P1 ,! P3

In this section, we compute the number of rational points of P1 by

identifying it as the image V of triple embedding P1 ,! P3 and by following

the strategy in the previous section. Later, we compare the result with the

obvious answer aP1ðFqÞ ¼ qþ 1.
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The variety V is defined in P3 ¼ ProjðFq½x1; x2; x3; x4�Þ by the following

three polynomials:

f1ðxÞ ¼ x1x3 � x2
2 ; f2ðxÞ ¼ x2x4 � x2

3 ; f3ðxÞ ¼ x1x4 � x2x3:

We follow the notation in Remark 2; in particular, we have

aVðFqÞ ¼ N0 þN�
1 þN�

2 þN�
3 �N�

12 �N�
13 �N�

23 þN�
123: ð1Þ

Firstly, we directly compute the number N0. In our case, we easily see

that

f½x1 : x2 : x3 : x4� A VðFqÞ j bi A f1; 2; 3; 4g; xi ¼ 0g

¼ f½1 : 0 : 0 : 0�; ½0 : 0 : 0 : 1�g;

thus N0 ¼ 2.

Secondly, we compute the number

N�
i ¼af½x1 : x2 : x3 : x4� A P4ðFqÞ j fiðxÞ ¼ 0 and Ej; xj 0 0g

for i A f1; 2; 3g. Although we could employ Proposition 3, a direct calculation

is easy in this case. Namely, if i ¼ 1, we may assume x4 ¼ 1, and after a free

choice of x2; x3 A F�
q , the remaining x1 A F�

q is uniquely determined; thus we get

N�
1 ¼ ðq� 1Þ2. By a similar argument, we see that

N�
1 ¼ N�

2 ¼ N�
3 ¼ ðq� 1Þ2:

Thirdly, we compute the number

N�
ij ¼af½x1 : x2 : x3 : x4� A P4ðFqÞ j fiðxÞ fjðxÞ ¼ 0 and Ej; xj 0 0g

for ði; jÞ A fð1; 2Þ; ð1; 3Þ; ð2; 3Þg. Since

f1ðxÞ f2ðxÞ ¼ x1x2x3x4 � x1x
3
3 � x3

2x4 þ x2
2x

2
3 ;

Proposition 3 shows that

ðq� 1ÞN�
12 ¼

ðq� 1Þ4

q
þ q� 1

q

X
tðw1;...;w4Þ AKer jðfR12Þ

Y4
j¼1

Gðw�1
j Þ � w2w3ð�1Þ; ð2Þ

where

gR12R12 ¼

1 1 0 0

1 0 3 2

1 3 0 2

1 0 1 0

1 1 1 1

0BBBBB@

1CCCCCA:
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Since an elementary linear algebra with coe‰cient in Z=ðq� 1ÞZ shows that

Ker jðgR12R12Þ ¼ f tðw; w�1; w�1; wÞ j w A cF�
qF
�
q g, we have

ðq� 1ÞN�
12 ¼

ðq� 1Þ4

q
þ q� 1

q

X
w A bF�

qF
�
q

Gðw�1ÞGðwÞGðw�1ÞGðwÞ:

With the aid of Proposition 1, we get (after dividing both sides by q� 1)

N�
12 ¼

ðq� 1Þ3

q
þ 1

q

X
w A bF�

qF
�
q nfeg

ðqwð�1ÞÞ2 þ ð�1Þ4

0B@
1CA

¼ ðq� 1Þ3

q
þ 1

q
fq2ðq� 2Þ þ 1g ¼ 2q2 � 5qþ 3: ð3Þ

Similarly, since

f2ðxÞ f3ðxÞ ¼ x1x2x
2
4 � x2

2x3x4 � x1x
2
3x4 þ x2x

3
3 ;

ðq� 1ÞN�
23 equals (2) with gR12R12 replaced by

gR13R13 ¼

1 0 1 0

1 2 0 1

0 1 2 3

2 1 1 0

1 1 1 1

0BBBBB@

1CCCCCA:

In fact, we may directly show that Ker jðgR12R12Þ ¼ Ker jðgR13R13Þ, and therefore

we have N�
13 ¼ N�

23. Moreover, the symmetry shows N�
23 ¼ N�

13, and we

have

N�
12 ¼ N�

13 ¼ N�
23 ¼ 2q2 � 5qþ 3:

Finally, we compute the number N�
123. Since

f1ðxÞ f2ðxÞ f3ðxÞ ¼ x2
1x2x3x

2
4 � x2

1x
3
3x4 þ x1x2x

4
3 � x1x

3
2x

2
4 þ x4

2x3x4 � x3
2x

3
3 ;

Proposition 3 shows that ðq� 1ÞN�
123 equals

ðq� 1Þ4

q
þ 1

qðq� 1Þ
X

tðw1;...;w6Þ AKerðjðfR123ÞÞ

Y6
j¼1

Gðw�1
j Þðw2w4w6Þð�1Þ ð4Þ

with
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gR123R123 ¼

2 2 1 1 0 0

1 0 1 3 4 3

1 3 4 0 1 3

2 1 0 2 1 0

1 1 1 1 1 1

0BBBBBB@

1CCCCCCA:

Again, an elementary linear algebra shows that Ker jðgR123R123Þ equals

f tðw�2
4 w�2

5 w�1
6 ; w24w

3
5w

2
6 ; w

�1
4 w�2

5 w�2
6 ; w4; w5; w6Þ j w4; w5; w6 A cF�

qF
�
q g: ð5Þ

This time, we cannot simplify the sum in the second term of (4) as we did in

(3). Instead, we rewrite this sum by using a more simple character sum.

By the definition of Gauss sums, the sum in the second term in (4) equals

X
tðw1;...;w6Þ AKer jðfR123Þ

Y6
i¼1

X
ti A F�

q

yðtiÞw�1
i ðtiÞ

0@ 1Aðw4w5w6Þð�1Þ:

Now, the description (5) of Ker jðgR123R123Þ shows that this equals

X
w4;w5;w6 A

bF�
qF
�
q

X
t1;...; t6 AF

�
q

Y6
i¼1

yðtiÞ
 ! 

ðw24w25w6Þðt1Þðw�2
4 w�3

5 w�2
6 Þðt2Þðw4w25w26Þðt3Þ

w�1
4 ðt4Þw�1

5 ðt5Þw�1
6 ðt6Þðw4w5w6Þð�1Þ

!

¼
X

t1;...; t6 AF
�
q

y
X6
i¼1

ti

 !0B@ X
w4 A
bF�
qF
�
q

w4ð�t21 t
�2
2 t3t

�1
4 Þ

X
w5 A
bF�
qF
�
q

w5ð�t21 t
�3
2 t23 t

�1
5 Þ

X
w6 A
bF�
qF
�
q

w6ð�t1t
�2
2 t23 t

�1
6 Þ

1CA:

Applying Lemma 1 (iii), this equals

ðq� 1Þ3
X

t1; t2; t3 AF
�
q

yðt1 þ t2 þ t3 � t21 t
�2
2 t3 � t21 t

�3
2 t23 � t1t

�2
2 t23Þ;

and therefore, we get the equation

N�
123 ¼

ðq� 1Þ3

q
þ q� 1

q

X
t1; t2; t3 AF

�
q

yðt1 þ t2 þ t3 � t21 t
�2
2 t3 � t21 t

�3
2 t23 � t1t

�2
2 t23Þ:

Now, we summarize the calculation and we get the result.
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Theorem 1. Let L be the sum

L ¼
X

t1; t2; t3 AF
�
q

yðt1 þ t2 þ t3 � t21 t
�2
2 t3 � t21 t

�3
2 t23 � t1t

�2
2 t23Þ:

Then, aVðFqÞ ¼ �2q2 þ 6q� 1þ ððq� 1ÞL� 1Þ=q.

Proof. Substituting the results above in the equation (1), we get

aVðFqÞ ¼ 2þ 3ðq� 1Þ2 � 3ð2q2 � 5qþ 3Þ þ ðq� 1Þ3=qþ ðq� 1ÞL=q:

As a corollary, we obtain an explicit description of the exponential

sum L.

Corollary 1. L ¼ 2q2 � 3q� 1.

Proof. Since aVðFqÞ ¼aP1ðFqÞ ¼ qþ 1, Theorem 1 gives an equation

on L. Solving it gives the corollary.

This corollary can be viewed as an explicit description of the trace function

of a rank-one l-adic sheaf.

Corollary 2. Define a morphism f : G3
m ! A1 by

f ðt1; t2; t3Þ ¼ t1 þ t2 þ t3 � t21 t
�2
2 t3 � t21 t

�3
2 t23 � t1t

�2
2 t23 ;

and denote the Artin–Schreier sheaf on A1 associated to y by Ly. Then, the

equation

Xy
i¼0

ð�1Þ i TrðFrob;Hi
cðG3

m �Fq
Fq; f

�LyÞÞ ¼ 2q2 � 3q� 1:

holds.

Proof. The left-hand side equals L by the Grothendieck trace formula

[8, III B 1.3].

Remark 3. Corollary 1 can be also rewritten in terms of general hyper-

geometric functions [7, 8.1], [6], which Lei Fu [5] calls GKZ hypergeometric

sum. In fact, let A be the 3� 6-matrix

A ¼
1 0 0 2 2 1

0 1 0 �2 �3 �2

0 0 1 1 2 2

0B@
1CA;

and let Hypyðx1; x2; x3; x4; x5; x6; w1; w2; w3Þ denote the GKZ hypergeometric

sum associated to A with parameters w1; w2; w3. Then the exponential sum L
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coincides with the value Hypyð1; 1; 1;�1;�1;�1; e; e; eÞ. In other words, let

Hypyðw1; w2; w3Þ denote the l-adic GKZ hypergeometric sheaf associated to the

matrix A with parameters w1; w2; w3 A
cF�
qF
�
q ; this is a mixed perverse sheaf on A6

of weightsa 9 [5, Theorem 0.3 (i)]. Then, setting x ¼ ð1; 1; 1;�1;�1;�1Þ A A6

and taking arbitrary geometric point x lying above x, we have

TrðFrobx;Hypyðe; e; eÞxÞ ¼ ð�1Þ9L ¼ �2q2 þ 3qþ 1:

4. The image of Segre embedding P1 � P2 ,! P5

In this section, we give another example of counting rational points, the

image V of the Segre embedding P1 � P2 ,! P5, and show that the character

sum L defined in Theorem 1 again appears in the calculation. The variety V

is defined in P5 ¼ ProjðFq½x1; x2; . . . ; x6�Þ by the following three polynomials:

f1ðxÞ ¼ x1x5 � x2x4; f2ðxÞ ¼ x1x6 � x3x4; f3ðxÞ ¼ x2x6 � x3x5:

We again work under the notations in Remark 2. This time, the symmetry

shows that N�
1 ¼ N�

2 ¼ N�
3 and that N�

12 ¼ N�
23 ¼ N�

13; we therefore have

aVðFqÞ ¼ N0 þ 3N�
1 � 3N�

12 þN�
123: ð6Þ

Firstly, we compute N0. Although we may again describe all points in V0

(or may, at the beginning, proceed not along Remark 2 but along the original

Observation 1), it here seems easier to identify V as P1 � P2. For a sub-

scheme W of Pn, let W0 denote the set of rational points of W at least one

of whose components is zero; therefore N0 ¼aV0 under this notation. The

identification V ¼ P1 � P2 gives

V0 ¼ fðP1Þ0 � P2ðFqÞgU fP1ðFqÞ � ðP2Þ0g;

and it is easy to see that aðP1Þ0 ¼ 2 and aðP2Þ0 ¼ 3q. Now, we see that

N0 ¼ 2ðq2 þ qþ 1Þ þ ðqþ 1Þ3q� 2 � 3q ¼ 5q2 � qþ 2.

Secondly, the number ðq� 1ÞN�
1 ¼afx A ðF�

q Þ
6 j f1ðxÞ ¼ 0g can be calcu-

lated just as in the previous section, and the result is N�
1 ¼ ðq� 1Þ4.

Thirdly, we compute the number ðq� 1ÞN�
12 ¼afx A ðF�

q Þ
6 j f1 f2ðxÞ ¼ 0g.

Since

f1ðxÞ f2ðxÞ ¼ x2
1x5x6 � x1x3x4x5 � x1x2x4x6 þ x2x3x

2
4 ;

Proposition 3 shows that

ðq� 1ÞN�
12 ¼

ðq� 1Þ6

q
þ ðq� 1Þ3

q

X
tðw1;...;w4Þ AKer jðfR12Þ

Y4
j¼1

Gðw�1
j Þ � w2w3ð�1Þ;
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where

gR12R12 ¼

2 1 1 0

0 0 1 1

0 1 0 1

0 1 1 2

1 1 0 0

1 0 1 0

1 1 1 1

0BBBBBBBBBB@

1CCCCCCCCCCA
:

Since Ker jðgR12R12Þ ¼ f tðw; w�1; w�1; wÞ j w A cF�
qF
�
q g, we may calculate N�

12 as in (3)

and we get

N�
12 ¼

ðq� 1Þ5

q
þ ðq� 1Þ2

q
fq2ðq� 2Þ þ 1g ¼ ðq� 1Þ2ð2q2 � 5qþ 3Þ:

Finally, we compute the number ðq� 1ÞN�
123 ¼afx A ðF�

q Þ
6 j

f1ðxÞ f2ðxÞ f3ðxÞ ¼ 0g. Since f1ðxÞ f2ðxÞ f3ðxÞ equals

x2
1x2x5x

2
6 � x2

1x3x
2
5x6 þ x1x

2
3x4x

2
5 � x1x

2
2x4x

2
6 þ x2

2x3x
2
4x6 � x2x

2
3x

2
4x5;

Proposition 3 shows that

ðq� 1ÞN�
123 ¼

ðq� 1Þ6

q
þ q� 1

q

X
tðw1;...;w6Þ AKerðjðfR123ÞÞ

Y6
j¼1

Gðw�1
j Þðw2w4w6Þð�1Þ

with

gR123R123 ¼

2 2 1 1 0 0

1 0 0 2 2 1

0 1 2 0 1 2

0 0 1 1 2 2

1 2 2 0 0 1

2 1 0 2 1 0

1 1 1 1 1 1

0BBBBBBBBBB@

1CCCCCCCCCCA
:

We may again show that Ker jðgR123R123Þ equals

f tðw�2
4 w�2

5 w�1
6 ; w24w

3
5w

2
6 ; w

�1
4 w�2

5 w�2
6 ; w4; w5; w6Þ j w4; w5; w6 A cF�

qF
�
q g;

this space is the same as what we treated in the previous subsection. There-

fore, we may proceed the calculation just as before and show that, under the

definition of L in Theorem 1,

N�
123 ¼

ðq� 1Þ5

q
þ ðq� 1Þ3

q
L:
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Let us summarize the calculations above; substituting the results in (6), we

see that

aVðFqÞ ¼ �2q4 þ 10q3 � 12q2 þ 10qþ 1þ fðq� 1Þ3L� 1g=q:

This equation and Corollary 1 give

aVðFqÞ ¼ q3 þ 2q2 þ 2qþ 1 ¼ ðqþ 1Þðq2 þ qþ 1Þ;

which coincides with aðP1 � P2ÞðFqÞ.

Acknowledgements

This article is based on the master thesis of the second author. He would

like to express his appreciation to his advisor Shun-ichi Kimura for his close

and consistent guidance, and to Takashi Ono who wrote the textbook [10]

through which he learned algebraic number theory.

The first author also would like to express his gratitude to Shun-ichi

Kimura for his fruitful comments on this article and for his encouraging

authors to publish this result.

References

[ 1 ] P. Deligne, ‘‘La conjecture de Weil. I,’’ Inst. Hautes Études Sci. Publ. Math. 43 (1974),

273–307.

[ 2 ] J. Delsarte, ‘‘Nombre de solutions des équations polynomiales sur un corps fini,’’ in
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