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Spherical means of super-polyharmonic functions in the unit ball
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ABSTRACT. For a super-polyharmonic function # on the unit ball satisfying a growth
condition on spherical means, we study a growth property of the Riesz measure of u
near the boundary.

1. Introduction and statement of result

Let R" denote the n-dimensional Euclidean space. We use the notation
B(x,r) to denote the open ball centered at x with radius r, whose boundary
is written as S(x,r) = 0B(x,r). In particular, B denotes the unit ball
B(0,1).

For a Borel measurable function « on S(0,r), letting dS denote the surface
area measure on S(0,r), we define the spherical mean over S(0,r) by

1
M(u,r) = L(Oﬂ u(x)dS(x) :} u(x)dS(x),

-1
wpt™" S(0,r)

where w, denotes the surface area of the unit sphere S(0,1).
Let m be a positive integer. Consider the Riesz kernel of order 2m
defined by

o m(—1) 22 x|*" " Jog(1/|x]) if 2m —n is an even
Rom(x) = nonnegative integer,
1)max{0, (2m—n+1)/2} |x| 2m—n

O, m (— otherwise,

where @, , is a positive constant so chosen that (—A)"%,, is the Dirac
measure at the origin.

We say that a locally integrable function u on B is super-polyharmonic
of order m in B if
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(1) (=4)™u is a nonnegative measure on B, that is,
J u(x)(—4)"p(x)dx = 0 for all nonnegative ¢ € C;°(B);
B

(2) wu is lower semicontinuous in B;

(3) every point of B is a Lebesgue point of u
(see [4] and [3]); (—4)™u is referred to as the Riesz measure of u and denoted
by .

Let u be super-polyharmonic of order m on B with the associated Riesz
measure y,. If 0 < R< 1, then u is represented as

u(x) = j P (x — Y)diy() + hi(x) (1)
B(0,R)

for x e B(0,R), where hgr is a polyharmonic function on B(0,R). This is
referred to as the Riesz decomposition (see e.g. Armitage-Gardiner [1], Axler-
Bourdon-Ramey [2], Hayman-Kennedy [5] and Mizuta [6]). With the aid of
the Riesz decomposition, one can obtain a kind of the Poisson-Jensen formula,
which assures a representation of M (u,r) by use of the Riesz measure of u
(see Lemma 1 below).

Our first aim in this note is to prove the following.

THEOREM 1. Let h be a nonincreasing function on (0,1) such that
limo h(r) = oo and let hy > 0. Suppose that for all 0 < b <1, there exists a
r—t
constant A > 0 such that

h(br) < b h(r) + 4 (2)

for all re(0,1). Let u be super-polyharmonic of order m in B and u, =
(—M)"u.  Suppose

M((=1)"u,r) < A1 + A2h(1 —r) (3)

SJor re(0,1), where Ay,A> >0 are positive constants. Then

(1) lim sup(1 — )" (1= 1) 1, (B(O, )
2m —2)\o, ( 2m — 1)’“‘*2”” -
< 1+ hy" " A,
(@2m— 1) ho o

(2) If in addition h satisfies

liminf h(1 - r)*lj (F= 0221 = )2 (1 = e = by, (4)
r—1- 12
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then

liminf (1 — )" 'h(1 — r) " 1, (B(0,7)) < 2m — 2)lw,hody. ()

r—1—
Note here that

o =Dl [ 2m— Y
2m —1)*"2 1+ ho "' Az = (2m = 2)lw,hoAs.

This gives an extension of a result by Supper ([7, Corollary 1 and Theorem
2]), who treated subharmonic functions u on B satisfying

u(x) < A(1—|x[)™7

2. Fundamental lemma on spherical means
Since A*Z,,(x) is radial, we write
AX Ry (1) = A" Ry (%)
when r = |x|.

LemMmAa 1. Let 0 <ry < 1. If u is super-polyharmonic of order m in B,
then there exist constants b; (depending on ry) such that

m—1
M (u,r) :J 117 47 R ¥ A7 Ro(y) | diz ()
B(0,r)\B(0,r9) (Z Z

Jj=0 Jj=0

+J Za/\yl T A9 R (), (v +Zbr2’
B(0,ry )} —0

for ro <r <1, where ay =1 and

YT 2+ 2). . (n+2j—2)
for j=1,2,... m—1.

Proor. Let u be super-polyharmonic of order m on B and
0<rp<R<1. As mentioned in (1), we have

u(x) = Lw o ol = i () + i),

for x € B(0, R), where hg is a polyharmonic function on B(0, R). Then we see
that
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m—1
u(x) = J (ﬂZm(x -y - Z aj|x|2]4"/'%2m(y)> dp,(y)
B(0, R)\B(0, ) =

+ j o oo = D))+ H (),
0,ro

for x € B(0,R), where Hg is a polyharmonic function on B(0, R) defined by
m—1 ) 5
Hi) = Y a (J A%mmduu(y)) %+ ).
(0, R)\B(0,70)

Jj=0

If ro <r < R, then

M(u, V) - JB(O,R)\B(O,rO) <:|:S(0Ar) (*g?Zm(X - y)
m—1
— Z aj|x|2-/Af,@2m(J’)) dS(x)) du,(»)
Jj=0
+ J o) (:l\‘ o )«%2;71()( - y)dS(X))d,uu(y) + M(HR,V)

m—1 m—
- (Za]m 4 o Zarszzz )m( )
B(0,r)\B(0,r))

j=0

-1 m—1
+| Za A ) (3) + 3 O
B(0,r0) Jj= =

This implies that

m—1 m—1
> @A Hy, (0)r% =" a;47 Hp, (0)r%
=0 j=0

whenever ryp <r < R; < Ry, so that a_,AjHR(O) does not depend on R, and
hence it is a constant b; (depending on ry).
Set

m—1 m—

Im ZatZ’AJJZ,,, Zar ’Afé?zm
j=0

RemarRk 1. Let u be super-polyharmonic of order m on B and y, =
(=4)"u. By Lemma 1 and integration by parts, we have
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M(u,r) = gm(|y|,)du,(y) + O(1)
B(0,r)\B(0, )

r

= gm(tv r)d:uu(B(O?t)) + 0(1)

ro

r

= [ (= (e ) (BO.0)a1-+ 001

o

as r—1-—0.

LemMmA 2. The following hold:
(1) (=1)"gm(t,r) is positive and decreasing as a function of t in (0,r).

@) (0" g =

rlfn

m(}’— t)2l7172 fOV 0 <t<r

Proor. For fixed r >0, set g,(7) = gn(t,r). We prove this lemma by
induction on m. In case m =1, we have

() = o1 log(t/r) if n=2,
I a1 (P =2 if n > 3,

where oy 1 = w;! and o, = @, '(n—2)"". Hence (1) and (2) hold for m = 1.
Suppose that (1) and (2) hold for m — 1 when m > 2. By the assumption
on induction and g,,—;(r) =0, we have

r 1-n 1-n

: (r=p)" tdp = ————(r— )" (6)

(_1)m_1gm_](t) = J, (2m — 4)lw,

for 0 <t <r. Noting that

Agm(t) = —gm-1(2)
and

n—1 n/on— /
Agn(1) = g (1) + = —g,,(1) = £ " ("1 g, (1)),

we have
00 = 0" [ ([ 0o ap) s

[ (] e e Jas

Hence (1) holds.
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On the other hand, noting that

(=1)"gy, (1) = ' J"Pn_l(—1)"7719,1171(/7)6107

t

we have by (6)

()" g0 =70 | 5 " g o)y

r rlfn
> llfn n—1 _ 2m—3d
> L P G =3, (r—p) p

i ' 2m-3
T KT

},lfn

= Em =i, 0"

3

which implies (2). Thus the lemma is obtained.

3. Proof of Theorem 1

First we show assertion (1). By Remark 1, we have

M((_l)mu7 r) = Jr ((_1)mlggm(lv r)),uu(B(O,t))dl—i— 0(1) as r—1-0.

o

For a >0, we find by Lemma 2 (2)

M((=1)"u,r)

' m—1 0
= J,,au,,) <(‘” a9t r>)ﬂu<3<07 1))dr + 0(1)

> (B0 —a(1 =) | N (=1 Samlen) )i+ 001

2 1 (BO.r a1 - ) | ((7 (= Ya+ 001

r—a(l-r) 2m — 2)'6071

}"]_”
= maszl(l — 12" (B0, r — a(1 — 1)) + O(1)

when r —a(l —r) > ry, so that

tim sup (1 — /)™ ~'h(1 = 1)~ 1, (B0, r — a(1 = 1)) < (2m = Dlw,a " 4,
r—1-0
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by (3). By change of variable 1 =r —a(1 —r), we obtain by (2)
lim sup(1 — )™ (1 = )", (B(0,1)) < (2m = Dlepa (1 4+a)" " 5.
t—1-0

hot2m—1 .. .. _ .
tem=l attains its minimum at @ = 2= we obtain

Now, since a~2"*!(1 + a) ho

the result.
Next, we show assertion (2). By Remark 1 and Lemma 2 (2), we have

M((~1)"ur) 2 mjw 0720, (B0, 0)di + O(1) s r—1—0,

If there exist constants 4" > (2m — 2)!w,hyA, and ry > 0 such that u,(B(0,17)) >
A'(1=1)™ h(1 — 1) for all ry <1< 1, then

1 [ 2m-2
——h(l - - B
i, 07| = 00,0y

> Ai/h(l —r)! J (r—0* 21— )" 'h(1 — t)dt

(2m —2)\w, " ’
which gives by (4)
A/
. . i —1 1\ -1
111_1}111_1101" h(1—r)" M((-1)"u,r) > am— 2w, 2)!wnho > Ay

Thus a contradiction follows from (3).

4. Corollaries
In this section, we introduce some consequences of Theorem 1.

COROLLARY 1. Let u be super-polyharmonic in B and p,= (—4)"u
Suppose

)
M1 < (log )
for re (0,1), where y >0 is a positive constant. Then

-7
(i) limlsuop(l r)zm_1<log &) 11,(B(0,r)) < 2m — e, and

21 e \7
(i) liminf (1 —r)™" (log :> 1,(B(0,7)) =0.

r—1-0

Proor. First, we show statement (i). Let #; > 0. Forall 0 <b < 1, we
can find a constant 4’ > 0 such that

log &) < b (1og €Y + 4’ (7)
gbr - gr
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whenever re(0,1). Applying Theorem 1 with 4, =0, A, =1, h(r)=
(log(e/r))", A= A" and hy = hy, we obtain

“ ) (B(O,1))

1—r

limsup (1 —r)*"" (log
r—1-0
- (2m —2)lw, (1 N 2m — 1)111+2m1h2m_1
T 2m— 1) h :

—2)! _
- (2m — 2)\w, (1+2m 1

/11
< Iy +2m— 1)1
(2m . 1)2;1172 hl ) ( 1 )

which tends to (2m — 1)lw, as h — 0.
Next, we show statement (ii). First note that

lim ( log ¢ er (r—0*72(1 =) log ¢ ydt = .
r—1-0 1—r 1/2 1—1t

Applying Theorem 1 with 4, =0, A, =1, h(r) = (log(e/r))’, A= A" and
hy = hy, we have

-7
lim inf (1 —r)z'”l(log ; ¢ ) 1,(B(0,7)) < (2m — 2)lw,hy,
r—1-— —r

which tends to 0 as /#; — 0.

COROLLARY 2. Let u be super-polyharmonic in B and p,= (—4)"u.
Suppose

M((=1)"u,r) < (1—=r)7"

for re (0,1), where y >0 is a positive constant. Then

(1)
: m— (2m — 2)\w, 2m— 1\t
limsup (1 — )" 4, (B(0,1)) < P G p-l,

and
(i) liminf (1 — )" ', (B0, 7)) < wuy,,, where p,, = (y+2m —2)(y +

r—l—

2m—3)...p.

For a proof, apply Theorem 1 with h(r) =r=7.
In the superharmonic case, Corollary 2 is reduced to the following:

COROLLARY 3. Let u be superharmonic in B and u, = —Au. Suppose

M(—u,r) < (1—r)"7
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SJor re (0,1), where y >0 is a positive constant. Then
) 1 y+1
1 msup (1l —r)"" " w,(BO,r) <w,|1+- Y, an
i) i 1— 1), (BO 1 5 d
r—1-0
(i) liminf (1 — )" 4, (B(0, 7)) < wpy.

r—1-0

5. Best possibility of Theorem 1 for m =1

Here we discuss the best possibility of “limsup” and “liminf”” in Theorem
1 for m=1.

ExampLE 1. For a¢>1 and y >0, we can find a measure u satisfying

(i) limsup (1 —r)"™ u(B(0,r) =1,
r—1-0

(it) liminf (1 — )" u(B(0,r)) =a 7" and
o [ o (a—1) y I+
(i) h,.rflsllop(l —7) Joﬂ(B(OJ))dt—y IHWH}I—H] .

Set @, =1 —a™" and b, = a"0*V. Define u =" (b, — by_1)Jy,, Where
Xy = (ay,0,...,0) € B and by = 0.
For a, <r < a,., note that

ﬂ(B(0>r)) =b,

and
r n—1
|, B0, = Y byt = @) + (= b,
=
n—1 a—1 .
= Z a’’ + (r —a,)b,
‘ a
j=1
=C, + (}’ - an)bm
-1 ;
where C, = (a—1) (a"™ —a”). Hence we have
ala’ — 1)

(I—r) L:,U(B(O,t))dt ={Cy+ (1 —an)by}(1 = 1) = by(1 - ")Hy

which attains the maximum at

—{Co+ (1 —an)b,}y+b,(14+y)(1—r)=0,

or

lfr:{Cn/b,,nL(l—an)}lLH.
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Here, note that a, < r < a,,; for sufficiently large n since

1 - -1 1
+7 ya< a

ya alam—1) vy

Hence

r 14+
1—=n)7 | u(B(0,1))dt = by [{Cufbu+ (1 — a)} ——
Jmax (1= | aB0.0)dt = by (Gl + (1= ) -

for sufficiently large n. Since the right hand term in the above equality is
increasing on n, the above equality gives

I el o

Further, we have

limsup (1 — )" u(B(0,r)) =1

r—1-0
and

lim inf (1 P (B0, 1) =a 71,
as required.
Now, we show that Theorem 1 is best possible for m = 1. Let u be as in
Example 1. For 0 <4< 1 and y >0, find a > 1 such that

@-1 "7
— 41 =A".
{aw "
If we set v =aw,(l +%)l+yyA,u, then
(1) limsup (1 — r)va(B(O,r)) = a)n(l —&—%)H"yA;

r—1-—

(2') Timinf (1= )7 v(B(0,r) = a a1 +5"7p4; and
(3) limsup (1 — r)’J v(B(0,1))dt = w,.
r—1-0 0

As a superharmonic function # whose Riesz measure is v, we may consider
the potential

u(x) = j Ku2(x, ) dv(y);

see [3] for the definition of K r(x,y). With the aid of Remark 1, (3) gives

(4) limsup (1 —r)"M(—u,r) < 1.
r—1-0
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By (1’) and (4), if we let 4 — 1, then we see that (i) of Corollary 3 is

best possible. Further, by (2’) and (4), if we let @ — 1 (and hence A~' —
(%—i— 1)l+y), then we see that (ii) of Corollary 3 is best possible.
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