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ABSTRACT. In this paper we investigate the C’ versions of contact and right equiv-
alences of real semi-quasihomogeneous C? function germs, 1 </ < co. The C’-right
equivalence implies C’-contact equivalence for any 1 </ < o and in this work we
show, up to certain conditions, that for semi-quasihomogeneous C’ function germs the
converse is also true (Theorem 1). As a consequence, concerning the particular case
of quasihomogeneous C’ function germs, we also have a similar result (Corollary 1)
which recover a known result of M. Takahashi [14] for / = 0. We note that we are
considering semi-quasihomogeneous function germs with no additional hypothesis of
isolated singularity at zero.

1. Introduction

For any / with 1 </ < oo, two C’ function germs f,g: (R",0) — (R,0)
are:
e C’-right equivalent if there exists a C’-diffeomorphism germ / : (R",0)
— (R",0) such that g = foh.

e C’-contact equivalent if there exist a C’-diffeomorphism germ / : (R”,0)
— (R",0) and a non-zero C’ function germ M : (R",0) — R, with
M(0) # 0, such that g=M - foh.

These two equivalence relations are denoted by C’-# and C’-#" equiv-
alences, respectively. Also, when [ = co we just write £ instead of C*-# and
A" instead of C*-", respectively.

It is easy to see that C’-Z-equivalence implies C’-# -equivalence, but
the converse does not hold in general. For instance, if /= oo, the germs
f(x) =x? and g(x) = —x? are ¥ -equivalent but they are not Z-equivalent.
Hence, it seems an important problem to clarify the relationship between C’-%
and C’-A equivalences. Recently, this subject was studied by some authors
when /= oo and for the class of quasihomogeneous C* function germs (cf.
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[14], [1], [2], [3]). However, there are few results investigating the C’-versions
of these two equivalence relations for C/ function germs, 1 </ < co. Kuiper
in [6] studied the C'-Z-equivalence of functions near isolated critical points.
Bromberg and Medrano in [5] treated the C’/-Z-sufficiency of quasihomoge-
neous functions. In [11], Ruas and Saia gave estimates for the degree of C’-%
and C’-# determinacy of quasihomogeneous C* map germs.

In this paper we consider the class of semi-quasihomogeneous C’ function
germs. The main result is Theorem 1, where we give a sufficient condition
under which C’-#-equivalence implies C’-#-equivalence for C’ function
germs. This result is inspired in the Takahashi’s paper [14]. As a conse-
quence, concerning the particular case of quasihomogeneous C’ function
germs, 1 </ < oo, we also have a similar result (Corollary 1) which recover
the Takahashi’s result ([14, Theorem 1.1 p. 830]) when / = o

2. Definitions and notations

For any ¢ with 1 </ < oo denote by é@n[/’] the set of all germs of C’
functions (R”,0) — R. We shall not distinguish between germs and represen-
tative functions Denote by my) = {feé&N|£(0)=0}. Given a function
germ f € é" , Jf denotes the Jacobian ideal of f.

The C/ %’ equlvalence between two C’ function germs f and g will be
denoted by f <" g, while the C’-# -equivalence of them will be denoted by
RSN

A C’ function germ f : (R",0) — (R,0) is called quasihomogeneous of

type (r1,...,rs;d) if it satisfies the following equation
FO-x) =2 (x1,. .., x0)
for all 1 >0 and x = (x1,...,x,), where 2-x= (A"x1,...,4™"x,).
With respect to the given weights (ry,...,r,), for each monomial x* =

n
Xt xpn, where o = (oq,...,a,), call fil(x*) = Zla,-r,-. A filtration in &) is
=

defined via the function

o'f
5 (0) 2 0}

fil(f) = mm{ﬁl( )

for each feé/]

DeriNITION 1. A C’/ function germ f : (R”,0) — (R,0) is called semi-
quasihomogeneous of type (ri,...,ry;;d) if f=¢q+ ¢ where g(x1,...,x,) is a
quasihomogeneous C’ function germ of type (r1,...,7,;d) and ¢ is a C’
function germ with fil(¢) > fil(f).
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We remark that a quasihomogeneous germ is clearly semi-
quasihomogeneous, because the filtration of null polynomial is equal to
infinity. Notice also that we are not considering any finite determinacy
condition for both functions f and g¢.

From [11, Lemma 2] and [12, Lemma 2.1] it is possible to characterize a
large class of C’ functions of type g 1, where f; and f, are quasihomogeneous
polynomial function germs.

EXAMPLE 1. The germ f(x,y) = x®— y2 +
type (2,1;12) of class C>.

V4 e is quasihomogeneous of

10

ExXaMPLE 2. The germ f(x,y) = e

ﬁmyg is quasihomogeneous of type
(2,1;24) of class C'.

EXAMPLE 3. Let f(x,y)= YAwygg—&-(xuyg—&-x + x! y) This germ is
semi-quasihomogeneous of type (2,1;12) “of class C>. Here f—q—|—¢ with
10
40, 7) =i B y) =i+ x4 xS and fil(g) = fil (e + XM+
x1998) =16 because for the fixed weights (2,1), fil(x'* + x1%y8) = 28

3. Main results
The main result of this paper is the following:

THEOREM 1. Let f,g € 5;1[/] which are C’-contact equivalent. Suppose that
f=q+ ¢ is a semi-quasihomogeneous germ such that the following conditions
are satisfied:

(1) For all i=1,...,n, there exist C’ function germs bijem,[f] such

that

o¢ & 0q
b!
7 ) = 2B 7L 09
(2) The germ ¢ can be written as ¢(x) = 3 L a;(x) Lf"/( X) with a; in mil!,
forall j=1,....n
Under these conditions, [ is C’-%R-equivalent to g or C’-ZR-equivalent
to —g.

. Cl - . Cl—9 . . fela)
When f <" g or f <" —g we will denote it by /<" g.

Proor oF THEOREM 1. The proof of Theorem 1 follows the strategy given
by Takahashi (cf. [14, Theorem 1.1]) in the case where /= co0 and f is a
quasihomogeneous C* function germ.

STEP 1. Consider g = M - f o h, by hypothesis.

STEP 2.
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LeMMA 1. Suppose that f is a semi-quasihomogeneous C’ f/unplion germ

—9

as in Theorem 1. Then, for any non-zero constant ceR, ¢- f ~ " f.

STEP 3. For any C’-diffeomorphism /4 : (R",0) — (R",0) we have that
c-f and (c- f)oh=c-(foh) are C’-Z#-equivalent.
STEP 4.

LemMmA 2. Suppose that [ : (R",0) — (R,0) is a semi-quasihomogeneous
C’ function germ satisfying the hypotheses of Theorem 1 and let M : (R",0) —
R be a C’ function germ with M(0) #0. Then M - f and M(0) - f are C’-%-
equivalent.

Now we conclude the proof of Theorem 1. As f is semi-
quasihomogeneous, it follows from STEP 2 that for any non-zero real constant
c= M(0) #0,

Ay

f M(0)- 1.

M(0)- f oh and from STEP 4, M(0)- foh C<”

From STEP 3, M(0) - f €<

M - foh. Therefore

£ M) 1 M) foh ST M f o,
that is,
MM fon.
As M- foh=g (STEP 1), Theorem 1 is proved. O

The Lemmas 1 and 2 will be proved in the next section.
If we consider f just a quasihomogeneous C/ function germ then we have
the following consequence:

CorOLLARY 1. Let 1 </ <oco. If f,g:(R",0) — (R,0) are C’ function
germs which are C’-A -equivalent and one is quasihomogeneous then f is C’-%-
equivalent to g or C’-R-equivalent to —g.

REMARK 1. Notice if f is just a quasihomogeneous C’ function germ, then
the two hypotheses of Theorem 1 are trivially satisfied.

We also recover the result of Takahashi [14] for the special case of C®
function germs:

COROLLARY 2 ([14, Theorem 1.1 p. 830]). If f,g: (R",0) — (R,0) are C*
Sfunction germs which are K -equivalent and one is quasihomogeneous then f is
R-equivalent to g or R-equivalent to —g.
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REMARK 2. For C* map germs, replacing C’-right equivalence by C’-
right-left equivalence, Nishimura [9] proposed a systematic method for giving
some affirmative answers to the C’ recognition problem on C’-right-left equiv-
alence of two given C* map germs which are C’-contact equivalent, 1 < / < .

4. Proof of the Lemmas

ProoF oF LEMMA 1. Consider the family F, = ¢+ t$, where ¢ and ¢
are as in Theorem 1. Without loss of generality, we assume the weights
rn<r,<---<r, Then, Fy=gq, Fl—q+¢ f and aF’—qﬁ.

We construct a vector field &: (R" x [0,1],0) — (R",0) satisfying the
equation
OF;, OF, o
7575)6067 éi(oﬂt)*(xl*lv"'an' (1)

This is equivalent to

which in turn is equivalent to
0
>[S00+ 15209 + 40 =0 ©)
Using the hypotheses (1) and (2) in Theorem 1 we can rewrite (2) as

Zg xt[ +th'

. . oq .
where aj,b] € mn , for all i,j=1,...,n. Notice that the coefficient of A is
equal to i

T Zaxx);—g(x) G
J

|
—
S

LY bi&+ &t a, Vi
k=1

If ¢ satisfies the following condition

<! —day

& )
A(x,t) | . .

I
—

~
N

én —day
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where the matrix A4, omitting the variables, is given by

(1+ b)) th} . th)
w1+ - b}
4= ;
thy tb} o (L+1b))

then there exists a vector field ¢ such that (1) holds.

Since a;(0) =0 and also b/(0)=0 for all i,j=1,...,n (because
ak,bl-jem,[ﬂ), evaluating the matrix A(x,7) in (0,7) one has det A(0,7) #0
and Equation (4) can be solved with respect to &;(x, ).

Remark that &;(0,7) =0 and by Thom-Levine type Theorem [10], the
family F, is C’-#-trivial and then f is C’-Z-equivalent to q. Consequently,
c-f and c-gq are C’-#-equivalent for any non-zero constant c € R.

As q is quas1horn0geneous it is an immediate consequence of the Euler
relation that ¢- ¢ & g for a non-zero constant ¢ € R.

Then
cla C'-2 -2
fo~Tg ~ T eqg ~Te f
That is, ¢- f f for any non-zero constant c¢ € R, as required. [

REMARK 3. [In the particular case where f is a quasihomogeneous C’
function germ, 1 < /¢ < o0, the Lemma 1 is trivial thanks to Euler relation and
thus it is unnecessary.

ProOOF OF LEMMA 2. Write f = ¢g+ ¢ where g(xi,...,x,) is a quasiho-
mogeneous C’ function germ of type (r,...,r,;d) with r; <r, <--- <r, and
¢ is a C’ function germ with fil(¢) > fil(f), then

FOMX1, A x) = A%, x) + (A X, AT x). (5)
. 0¢ noi. 0q . -
From the hypothesis a(x) => b (x)a(x) and differentiating the ex-
i J=1 J
pression (5) with respect to 1 one has
S—f;()b”xl, e }.'"xn)r,;/l""flx

i=1

=d2" " q(x) + ;sz (A xp, ., AT A x

_ N N oq -
=d2 g (x) + bI(A" X1, . A ) — (A x, . AT A
q(x) ; ; P(A7x )ax,-( 1 )
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As f =g+ ¢, omitting the variables for simplicity, it follows that

of 09 0 _ % b 561
ox; 0x; 5_xl ox; +g ()
Since ¢ is quasihomogeneous, we get the famous Euler relation:
7= Z a~ 6x1 (7)

To prove that M - f and M(0)- f are C’-Z-equivalent we construct an
appropriate family F(x, ) with Fy = M(0) - f, Fy = M - f such that F, is C/-%-
trivial.

Let F:(R" x[0,1],0) — (R,0) be given by

F(x,t) = M(tx) f(x), xeR" tel0,1].

Now we construct a vector field & : (R" x [0,1],0) — (R",0) satisfying the
equation

o0F OF .
—E—aogv Gi(0,0)=0,i=1,....n
Observe that
8F 5F "\ OF oF

Y ()

Xi

3+ xS (1) + ) () =

i=1

Then we obtain

> e )M (1)L ()

6M 2 dq\
+ Z (X, )1 + x/] o (tx) (q(x) + ;aj(x) 6x,> =0 (8)

where a_,»emn', for all j=1,...,n.
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. . . of . .
Using the expressions (6) and (7) we substitute al and ¢ in the expression
(8) to obtain i

if,(x, OM(2x) [a—j () + 3 bl
i=1 ¢ J=1

Reordering the expression (9)

n

Z{«kat (tx) +Z§jxt ()

k=1
—i—Z[ (X, 1)t + x;) gZ(Zx)(%‘xk—Fak(x))} }ﬂ(@ -0

Note that the coefficient of %q
axk

) (B + ) )it

+ <M(tx)b"( )+ zg—]‘f(m) (%kxk + ak(x)>)§2(x, £+

can be written as

(r(ex1pf o)

+ (M(tx)(l +bE(x)) + t%(lx) (Zcxk + ak(x)>>fk(x, £+

oM

That is,
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where the matrix A, omitting the variables, is given by

M +b))+1M4, Mby+ 134, e Mb, + 154,
. MbY+ 1M 4, MO +b3) + 1A, o MBI+ 14,
q— X1 X2 0Xn
Mb} + 12 4, Mby + 12 4, o M(1+by) 1824,
where 4, = (in—kai(x)) and
L oM 143
Bk:—ina—)Ci(tx)<Exk+ak(x)>, k=1,...,n.
i#k
Since a;(0) = 0, evaluating the matrix A(x,?) in (0,7) we obtain
M©O)(1+5(0)  M(0)by(0) - M(0)b,(0)
: M(0)bF(0)  M(0)(1+b3(0)) - M(0)b7(0)
A(0,1) = _
M(0)b7(0) M(0)b3(0) -~ M(0)(1+5;(0))

Since also bf(O) =0 for all i,j=1,...,n, then det A(0,7) = M(0)" #0
and one can solve (10) with respect to &;(x,1).

Notice that &;(0,¢) = 0 and by Thom-Levine type Theorem [10] it follows
that the flux given by integrating the C’ vector field ¢ realizes the C’-%-
triviality required of family F. Hence the proof of Lemma is complete. []

REMARK 4. In the particular case where f is a quasihomogeneous
C’ function germ, 1 </ < oo, the proof of the Lemma 2 is simpler and it
becomes essentially the same of that done by Takahashi in [14, Proposition 2.1
p. 830]. In fact, we need just replacing R-equivalence by C’-R-equivalence;
A -equivalence by C’-A -equivalence and a; € m, by a; € m,[,/] in the proof given
by Takahashi.

5. Examples

ExampLE 4. Consider g(x,y) = q(x,y) = #‘0)8 the C° quasihomogeneous

function germ of type (2,1;12). Notice that we verify the C’-differentiability
of f by applying [12, Lemma 2.1]. Let

f(x ) (e oy
X = X X
AR S Y

be semi-quasihomogeneous of type (2,1;12) of class C>.
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‘g
the hypotheses of Theorem 1 are satisfied, f O q.

s+ xHxtry®)? here q is given in

EXaMPLE 5. Let f = 4+)g+x PR 4+ys;

Example 4 and

Y4+y

Xt +y8)?

e q(x, y).

$(x, ») = x*q(x, ») +
x(xt +y8)?
x2 4y
[12, Lemma 2.1], M is a function germ of class C° and ¢ is a function germ of

class C’. ,

Note that f = M -q and then f e~ q. From Theorem 1, f and q are
C%-R +-equivalent.  Observe in this example that f is a semi-quasihomogeneous
function germ while q is a quasihomogeneous function germ.

Let M(x,y)=1+x>+ Notice that M(0) # 0 and applying

x4t + )2
given in Example 5 of class C°. Let f =q+ ¢ be a semi-quasihomogeneous
function germ of class C> where q(x y) = = f}x and ¢ is given in Example 4.

Conszder f=M-f. Then, f is nol a quaszhomogeneous function germ and
f ” " f. Then we also have f f Applying [12, Lemma 2.1] one ob-
tains lhat fis a C5 function germ and also the hypotheses of Theorem 1 are

satisfied. Then we can conclude that f N f.

EXAMPLE 6. Let M(x,y) =1+ x>+ be the function germ
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