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ABSTRACT. Riley “defined” the Heckoid groups for 2-bridge links as Kleinian groups,
with nontrivial torsion, generated by two parabolic transformations, and he constructed
an infinite family of epimorphisms from 2-bridge link groups onto Heckoid groups. In
this paper, we make Riley’s definition explicit, and give a systematic construction of
epimorphisms from 2-bridge link groups onto Heckoid groups, generalizing Riley’s
construction.

1. Introduction

In [17], Riley introduced an infinite collection of Laurent polynomials,
called the Heckoid polynomials, associated with a 2-bridge link K, and ob-
served, through extensive computer experiments, that these Heckoid polyno-
mials define the affine representation variety of certain groups, the Heckoid
groups for K. To be more precise, he “defines” the Heckoid group of index
g > 3 for K to be a Kleinian group generated by two parabolic transformations
which are obtained by choosing a “right” root of the Heckoid polynomials (see
[17, the paragraph following Theorem A in p. 390]). The classical Hecke
groups, introduced in [6], are essentially the simplest Heckoid groups. Riley
discussed relations of the Heckoid polynomials with the polynomials defining
the nonabelian SL(2,C)-representations of 2-bridge link groups introduced in
[16], and proved that each Heckoid polynomial divides the nonabelian rep-
resentation polynomials of 2-bridge links K, where K belongs to an infinite
collection of 2-bridge links determined by K and the index ¢. This suggests
that there are epimorphisms from the link group of K onto the Heckoid group
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of index ¢ for K, as observed in [17, the paragraph following Theorem B in
p. 391].

The purpose of this paper is (i) to give an explicit combinatorial definition
of the Heckoid groups for 2-bridge links (Definition 3.2), (ii) to prove that the
Heckoid groups are identified with Kleinian groups generated by two parabolic
transformations (Theorem 2.2), and (iii) to give a systematic construction of
epimorphisms from 2-bridge link groups onto Heckoid groups, generalizing
Riley’s construction (Theorem 2.3 and Remark 4.4).

We note that the results (i) and (ii) are essentially contained in the work
of Agol [1], in which he announces a complete classification of the non-free
Kleinian groups generated by two-parabolic transformations. Moreover, this
classification theorem gives a nice characterization of the Heckoid groups, by
showing that they are exactly the Kleinian groups, with nontrivial torsion,
generated by two-parabolic transformations.

The result (iii) is an analogy of the systematic construction of epimor-
phisms between 2-bridge link groups given in [14, Theorem 1.1]. In the sequel
[10] of this paper, we prove, by using small cancellation theory, that the
epimorphisms in Theorem 2.3 are the only upper-meridian-pair-preserving
epimorphisms from 2-bridge link groups onto even Heckoid groups. This
in turn forms an analogy of [9, Main Theorem 2.4|, which gives a com-
plete characterization of upper-meridian-pair-preserving epimorphisms between
2-bridge link groups.

This paper is organized as follows. In Section 2, we describe the main
results. In Section 3, we give an explicit combinatorial definition of Heckoid
groups. Sections 4, 5 and 6, respectively, are devoted to the proof of Theorem
2.3, the topological description of Heckoid orbifolds, and the proof of Theorem
2.2.

Throughout this paper, we denote the orbifold fundamental group of an
orbifold X by = (X).

2. Main results

Consider the discrete group, H, of isometries of the Euclidean plane R?
generated by the 7-rotations around the points in the lattice Z>. Set (S 2 P):=
(RZ,ZZ) /H and call it the Conway sphere. Then S? is homeomorphic to the
2-sphere, and P consists of four points in S*>. We also call S? the Conway
sphere. Let S:=S>— P be the complementary 4-times punctured sphere.
For each s€ Q := QU {0}, let o, be the simple loop in S obtained as the
projection of a line in R? — Z? of slope s. Then o is essential in S, i.e., it does
not bound a disk in § and is not homotopic to a loop around a puncture.
Conversely, any essential simple loop in S is isotopic to «; for a unique
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Fig. 1. A trivial tangle

se Q. Then s is called the slope of the simple loop. We abuse notation to
denote by o, the pair of conjugacy classes in 7;(S) represented by the loop o
with two possible orientations.

A trivial tangle is a pair (B?,t), where B’ is a 3-ball and 7 is a union of
two arcs properly embedded in B which is simultaneously parallel to a union
of two mutually disjoint arcs in 0B3. Let 7 be the simple unknotted arc in
B? joining the two components of ¢ as illustrated in Figure 1. We call it the
core tunnel of the trivial tangle. Pick a base point xj in int 7, and let (g, u,)
be the generating pair of the fundamental group 7;(B? — ¢, x0) each of which is
represented by a based loop consisting of a small peripheral simple loop around
a component of ¢ and a subarc of 7 joining the circle to xy. For any base
point x € B> — ¢, the generating pair of 7;(B® —t,x) corresponding to the
generating pair (u,,1,) of m (B3 —t,x) via a path joining x to x, is denoted
by the same symbol. The pair (x, ) is unique up to (i) reversal of the order,
(ii) replacement of one of the members with its inverse, and (iii) simultaneous
conjugation. We call the equivalence class of (u;,u,) the meridian pair of
1 (B% — l).

By a rational tangle, we mean a trivial tangle (B ¢) which is endowed
with a homeomorphism from (B3 ¢) to (S, P). Through the homeomor-
phism we identify the boundary of a rational tangle with the Conway sphere.
Thus the slope of an essential simple loop in dB3 — ¢ is defined. We define
the slope of a rational tangle to be the slope of an essential loop on 0B® — ¢
which bounds a disk in B* separating the components of 7. (Such a loop is
unique up to isotopy on 0B — ¢ and is called a meridian of the rational tangle.)
We denote a rational tangle of slope r by (B3, t(r)). By van Kampen’s
theorem, the fundamental group m;(B? — #(r)) is identified with the quotient
71(S) /Ko, where (o,»y denotes the normal closure.

For each r e Q, the 2-bridge link K(r) of slope r is defined to be the sum
of the rational tangles of slopes oo and r, namely, (S*, K(r)) is obtained from
(B3,t(0)) and (B?,#(r)) by identifying their boundaries through the identity
map on the Conway sphere (S2,P). (Recall that the boundaries of rational
tangles are identified with the Conway sphere.) K(r) has one or two
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components according as the denominator of r is odd or even. We call
(B3,t(c0)) and (B3,t(r)), respectively, the upper tangle and lower tangle of
the 2-bridge link. By van Kampen’s theorem, the link group G(K(r)) =
71(S3 — K(r)) is obtained as follows:

G(K(r) = m1(S* — K(r)) = m1(8)/Kbtop, oYy = 11 (B* — t(0)) /Lot D).

We call the image in the link group of the meridian pair of 7;(B3 — t(0))
(resp. 7 (B> —t(r))) the upper meridian pair (resp. lower meridian pair).

For a rational number r (# o) and an integer n > 2, the (even) Heckoid
orbifold, S(r;n), of index n for the 2-bridge link K(r) is the 3-orbifold as shown
in Figure 2. Namely, the underlying space |S(r;n)| is E(K(r)) and the sin-
gular set is the lower tunnel, where the index of singularity is n. Here, the
lower tunnel means the core tunnel of the lower tangle. the core tunnel The
(even) Hekoid group G(r;n) is defined to be the orbifold fundamental group
71 (S(r;n)). By van Kampen’s theorem for orbifold fundamental groups (cf. [4,
Corollary 2.3]), we have

G(r;n) = 71 (8)/ Koo, 0 D = 11 (B — 1(0)) /Lo .

In particular, the even Heckoid group G(r;n) is a two-generator and one-relator
group. We call the image in G(r;n) of the meridian pair of 7; (B> — #(0)) the
upper meridian pair.

The announcement by Agol [1] and the announcement made in the second
author’s joint work with Akiyoshi, Wada and Yamashita [2, Section 3 of
Preface] (cf. Remark 6.1) suggest that the group G(r;n) makes sense even when
n is a half-integer greater than 1. The precise definition of G(r;n) with n > 1
a half-integer is given in Definition 3.2, and a topological description of the
corresponding orbifold, S(r;n), is given by Proposition 5.3 (see Figures 5 and

H/\ ’

oo

Fig. 2. The even Heckoid orbifold S(r;n) of index n for the 2-bridge link K(r), where we employ
Convention 5.1. Here (S3,K(r)) = (B #(0)) U (B3, #(r)) is the 2-bridge link with r =2/9 = [4,2]
(with a single component). The rational tangles (B3 ¢(c0)) and (B3, ¢(r)), respectively, are the
outside and the inside of the bridge sphere 2.
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6). When n > 1 is a non-integral half-integer, G(r;n) and S(r;n), respectively,
are called the (odd) Heckoid orbifold and the (odd) Heckoid group of index n
for K(r). There is a natural epimorphism from (B — t(c0)) onto the odd
Heckoid group G(r;n), and the image of the meridian pair of 7;(B* — #(o0)) is
called the upper meridian pair of G(r;n). Thus the odd Heckoid groups are
also two-generator groups. However, we show that they are not one-relator
groups (Proposition 6.8).

ReEMARK 2.1.  Our terminology is slightly different from that of [17], where
G(r;n) is called the Heckoid group of index ‘“2n” for K(r). The Heckoid
orbifold S(r;n) and the Heckoid group G(r;n) are even or odd according to
whether Riley’s index 2n is even or odd.

We prove the following theorem, which was anticipated in [17] and is
contained in [1] without proof.

THEOREM 2.2. For r a rational number and n > 1 an integer or a half-
integer, the Heckoid group G(r;n) is isomorphic to a geometrically finite Kleinian
group generated by two parabolic transformations.

In order to explain a systematic construction of epimorphisms from
2-bridge link groups onto Heckoid groups, we prepare a few notation. Let
9 be the Farey tessellation, that is, the tessellation of the upper half space H?
by ideal triangles which are obtained from the ideal triangle with the ideal
vertices 0,1, 00 € Q by repeated reflection in the edges. Then Q is identified
with the set of the ideal vertices of 2. For each re Q, let I', be the group
of automorphisms of & generated by reflections in the edges of & with an
endpoint r. Let n > 1 be an integer or a half-integer, and let C,(2n) be the
group of automorphisms of % generated by the parabolic transformation,
centered on the vertex r, by 2n units in the clockwise direction.

For r a rational number and n > 1 an integer or a half-integer, let I"(r;n)
be the group generated by I, and C,(2n). Then we have the following
systematic construction of epimorphisms from 2-bridge link groups onto
Heckoid groups.

THEOREM 2.3. Suppose that r is a rational number and that n > 1 is an
integer or a half-integer. For s€ Q, if s or s+ 1 belongs to the I'(r;n)-orbit of
00, then there is an upper-meridian-pair-preserving epimorphism from G(K(s)) to
G(r;n).

This theorem may be regarded as a generalization of Theorem B and
Theorem 3 of Riley [17]. In fact, they correspond to the case when s belongs
to the orbit of oo by the infinite cyclic subgroup C,(2n) of I'(r;n) (see Remark
44).
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The above theorem is actually obtained from the following theorem.

THEOREM 2.4. Suppose that r is a rational number and that n > 1 is an
integer or a half-integer. Let s and s' be elements of Q which belong to the
same I'(r;n)-orbit. Then the conjugacy classes oz and ag in G(r;n) are equal.
In particular, if s belongs to the I'(r;n)-orbit of oo, then oy is the trivial
conjugacy class in G(r;n).

3. Combinatorial definition of Heckoid groups

In this section, we give an explicit combinatorial definition of even/odd
Heckoid groups. Consider the (2,2,2, oo)-orbifold, O := (R> — Z?)/H, where
H is the group generated by z-rotations around the points in (%Z)z. Note
that O has a once-punctured sphere as the underlying space, and has three
cone points of cone angle n. The orbifold fundamental group of O has the
presentation

m1(0) =<P,Q,R|P? = Q*=R* = 1),

where D := (PQR) " is represented by the puncture of O (see Figure 3). For
each s € Q, the image of a straight line of slope s in R?> — Z? disjoint from the
singular set of H projects to a simple loop, B, in O disjoint from the cone
points. Thus the loop f, (with an orientation) represents a conjugacy class in
m1(0). We abuse notation to denote by f, the pair of the conjugacy classes
in 71(0) represented by f, with two possible orientations. Throughout this
paper, we choose the generating set {P, Q, R} of 7;(0) so that the conjugacy
classes ff, and S, are represented by RQ and PQ, respectively (see Figure 3
and [2, Section 2.1]).

The Conway sphere S = (R>—Z%)/H is the (Z/2Z)*-covering of O,
and hence 7;(S) is a normal subgroup of #;(0) such that x;(0)/m(S) =
(Z/ 2Z)2. Each simple loop o, in S doubly covers the simple loop S, and so
we have oy = ﬂf as conjugacy classes in 7;(0).

Fig. 3. The orbifold O
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For each reQ and integer m > 2, consider the orbifold, B(r;m), as
illustrated in Figure 4. In order to give its explicit description, we prepare
notation following [13]. For an integer m >2, let D?*(m) be the discal
2-orbifold obtained from the unit disk D> in the complex plane by taking
the quotient of the action generated by the 27/m-rotation z — e?*/"z,  We call
the product 3-orbifold D?(m) x I with I =[0,1] a 2-handle orbifold. The
quotient orbifold of the unit 3-ball B> in R* by the dihedral subgroup, D,
of SO(3) of order 2m is denoted by B*(2,2,m) and is called a 3-handle
orbifold. By using this notation, the orbifold B(r;m) has the following
description (see Figure 4). Let O be the compact 2-orbifold obtained from
O by removing an open regular neighborhood of the puncture. Then B(r;m)
is obtained from the product orbifold O x [0,1] by attaching 2- and 3-handle
orbifolds as follows.

(1) Attach a 2-handle orbifold D?(m) x I along the simple loop f, x {0},

i.e., identify (0D?(m)) x I with an annular neighborhood of f8, x {0}
in the boundary of O x I.
(2) Cap off the spherical orbifold boundary of the resulting orbifold by a
3-handle orbifold B*(2,2,m).
Note that the 2-dimensional orbifold O sits in the boundary of B(r;m); we call
it the outer boundary of B(r;m), and denote it by 0,,B(r;m). To be precise,
as in the definition of rational tangles, B(r;m) is defined to be the orbifold as
in Figure 4 which is endowed with a homeomorphism from &,,B(r;m) to
O. Thus, by van Kampen’s theorem for orbifold fundamental groups [3,
Corollary 2.3], we can identify the orbifold fundamental group 7;(B(r;m)) with
m1(0)/LB™y = 1 (0)/LB™Y. (Here we use the fact that the inclusion map
0B*(2,2,m) — B*(2,2,m) induces an isomorphism between the orbifold fun-
damental groups.)

For a rational number r and an integer m > 2, let O(r;m) be the orbifold

obtained by identifying B(c0;2) and B(r;m), along their outer boundaries, via

1

2
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1
1
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2

Fig. 4. The orbifold B(r;m) = (O x 1)U (D*(m) x I)U B3(2,2,m) with r = o0, where we employ
Convention 5.1.
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their identification with O. By van Kampen’s theorem, the orbifold funda-
mental group of O(r;m) is given by the following formula:

m (O(r;m)) = m (0)/ LB, B

ProposiTioN 3.1.  For a rational number r and an integer n > 1, the even
Heckoid orbifold S(r;n) is a (Z/2Z)*-covering of O(r;m), where m =2n. In
particular, the even Heckoid group G(r;n) is identified with the image of the
homomorphism, y, which is the following composition of two natural homo-
morphisms

7[1(S) — 71'1(0) — 7'[1(0(1’; Wl))

ProoF. Let S be the compact 2-manifold obtained from § by removing
open regular neighborhoods of the punctures. Then we see that the even
Heckoid orbifold S(r;n) is obtained from S x [—1,1] by attaching a 2-handle
D? x I along a,, x {1} and by attaching a 2-handle orbifold D*(n) x I along
o, x {—1}. Note that the group H/H =~ (Z/2Z)* acts on S and the quotient
is identified with O. Since the loops o, and «. on S can be chosen so that
they are invariant by the action, it extends to an action on S(r;n). Moreover
the quotient of § x [0,1]U D? x I and that of § x [~1,0]U D*(n) x I are iden-
tified with B(o0;2) and B(r;m), respectively. Hence S(r;n) is a (Z/2Z)*-
covering of O(r;m). Since the covering S(r;n) — O(r;m) is “induced” by the
covering § — O, and since the natural homomorphism 7;(S) — 7;(S(r;n)) is
surjective, we see that G(r;n) is identified with Im(y). O

This motivates us to introduce the following definition.

DermNiTION 3.2, For a rational number r and a non-integral half-integer n
greater than 1, the (odd) Heckoid group G(r;n) of index n for K(r) is defined to
be the image, Im(y), of the natural map

Y m(S) — m(0) — 7 (0(r;m)),

where m =2n. The covering orbifold of O(r;m) corresponding to the sub-
group G(r;n) of 71 (O(r;m)) is denoted by S(r;n) and is called the (odd)
Heckoid orbifold for the 2-bridge link K(r) of index n. (See Section 5 for a
topological description of this orbifold.)

Note that s is equal to the composition
m1(S) = m (B — 1(0)) = 11(8)/Lao Y — m(0)/ L% Y — m(O(r;m)).

Since 7;(S) — 7m;(B* — t(0)) is surjective and since 7;(B* —t(0)) is a free
group of rank 2, the Heckoid group G(r;n) is generated by two elements.
However, no odd Heckoid group is a one-relator group (see Proposition 6.8).
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4. Proofs of Theorems 2.3 and 2.4

The following lemma, on the existence of certain self-homeomorphisms
of the orbifold B(r;m), is the heart of Theorem 2.4. For the definition of a
homeomorphism (diffeomorphism) between orbifolds, see [3, Section 2.1.3] or
[8, p. 138].

Lemma 4.1. (1) For reQ and an integer m>2, let F be a discal
2-suborbifold properly embedded in B(r;m) bounded by B,., and let ¢ be the
m-th power of the Dehn twist of the underlying space |B(r;m)|, preserving the
singular set, along the disk |F|. Then ¢ is a self-homeomorphism of the orbifold
B(r;m), which induces the identity (outer) automorphism of 7\ (B(r;m)).

(2) For an integer m > 2, let y be the reflection of |B(oo;m)| of Figure 4
in the sheet of the figure. Then y is a self-homeomorphism of the orbifold
B(oo;m).  Moreover, if m =2, then y induces the identity (outer) automorphism
of mi(B(o0;m)).

Proor. (1) To show the first assertion, we have only to check that each
singular point x of B(r;m) has a neighborhood, U,, such that the restriction
of ¢ to U, lifts to an equivariant homeomorphism from a manifold covering of
U, to that of ¢(U,). But, this follows from the following observation. Let
p:D*x[0,1] — D*(m) x [0,1] be the universal covering of the 2-handle
orbifold, given by p(z,t) = (z™,¢), where we identify both D? and |D?(m)|
with the unit disk in the complex plane. Let ¢ be the m-th power of the Dehn
twist of |[D?(m) x [0,1]| given by ¢(z,1) = (e*™z,¢). Then it is covered by
the Dehn twist, @, of D? x [0, 1], defined by ¢(z, 1) = (e*™z, {), namely we have
pop=po@. (The corresponding automorphism of the local group, Z/mZ, is
the identity map.) Thus we have shown the first assertion that ¢ is a self-
homeomorphism of the orbifold B(r;m).

To show the second assertion, we may assume r = oo without loss of
generality. Then we can see by using Figure 3 that

(0.(P),0.(0),0.(R)) = (B PB", B OB, R),

where f,, = PQ € n;(B(oo;m)). Since ) =1 in ny(B(o0;m)), we see that ¢,
is the identity map.

(2) We show that y satisfies the local condition (in the definition of a
homeomorphism between orbifolds) at every singular point x. Suppose first
that x is contained in the interior of an edge of the singular set. Then x has
a neighborhood homeomorphic to the 2-handle orbifold D?(m) x [0, 1] such
that the restriction of y to it is given by y(z,¢) = (Z,¢). This is covered by the
self-homeomorphism 7 of the universal cover D? x [0, 1], defined by 5(z, ) =
(z,1). (The corresponding automorphism of the local group, Z/mZ, of x is
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given by [k] — [—k] for every [k] € Z/mZ.) Suppose next that x is the vertex,
on which the edges of indices 2, 2, and m are incident. Then x has a
neighborhood homeomorphic to the 3-handle orbifold B3(2,2,m) = B3/D,,,.
Then the restriction of the map 7 is covered by the reflection in the disk in B3
containing the axes of the pair of order 2 generators of D,. (The corre-
sponding automorphism of the local group, D, of x is the identity map.)
Thus we have shown that y is a self-homeomorphism of the orbifold B(oo;m).
To show the second assertion, observe by using Figure 3 that

(7.(P),7.(0),7.(R)) = (P, B, 0B, B, RB,").

By composing the inner automorphism 1 : x +— ﬂ;lx[)’%, we have

(ZOV*(P)le j/*(Q),le/*(R)) - (ﬁ;lpﬁo(/’ QvR) = (QPQ7 QvR)

If m=2, then (PQ)*=p% =1 and so 10y,(P)=Q(PQ) = Q(QP) = P.
Hence y, is the identity outer automorphism when m = 2. O

We can easily observe that the restrictions of the homeomorphisms, ¢ and
y, to the outer boundary O act on the set of essential simple loops in O by the
following rule.

(1) o(By) = PB4, ) Where A, is the automorphism of the Farey tes-
sellation & which is the parabolic transformation, centered at the
vertex r, by m units in the clockwise direction (i.e., a generator of the
infinite cyclic group C,(m)).

(2) y(ﬁs) =P

Hence we obtain the following corollary.

COROLLARY 4.2. For any re Q and an integer m > 3, the following hold.

(1) The conjugacy classes of m(B(r;m)) determined by the simple
loops f and py . are identical. So, the same conclusion also
holds for the conjugacy classes of the quotient group 7 (O(r;m)) =
m(B(r;m))/ B2 .

(2) The conjugacy classes of m(B(00;2)) determined by the simple loops
B, and p_, are identical. So, the same conclusion also holds for the
conjugacy classes of the quotient group w(O(r;m)) = 7;(B(00;2))/
«BI.

PRrOOF OF THEOREM 2.4. Suppose that s and s’ belong to the same I'(r; n)-
orbit. Since I'(r;n) of automorphisms of & is generated by the three trans-
formations s +— —s, A(..;2) and 4., with m = 2n, we see by Corollary 4.2 that
the conjugacy classes ff; and S, in 7;(O(r;m)) are equal. On the other hand,
we can easily see that the natural action of 7;(0)/n;(S) = (Z/2Z)* on the
conjugacy classes in 7;(S) preserves o, the pair of conjugacy classes repre-
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sented by the loop o, with two possible orientations. So, the same conclusion
holds for the natural action of 7;(O(r : m))/m;(S(r;n)) on the conjugacy classes
in 7;(S(r;n)). Hence the precending result implies that the conjugacy classes

oy = f% and oy = B2 in G(r;n) = 7, (S(r;n)) are equal. O

PrOOF OF THEOREM 2.3. Suppose first that s belongs to the I'(r;n)-orbit
of oo. Then the conjugacy class of o; in G(r;n) = n(O(r;m)) is trivial by
Theorem 2.4. Since the conjugacy class of a,, =% in m;(O(r;m)) is also
trivial by definition, the homomorphism 7(S) — 71(O(r;m)) descends to a

homomorphism

G(K(s)) = m1(S)/LKotoo, 5 — 71 (0) /LB, B = 71 (O(r; m)).

Since the image of this homomorphism is equal to the Heckoid group
G(r;n) by Proposition 3.1 and Definition 3.2, we obtain an epimorphism
G(K(s)) — G(r;n), which is apparently upper-meridian-pair-preserving.
Suppose next that s+ 1 belongs to the I'(r;n)-orbit of co. Then there
is an epimorphism G(K(s+ 1)) — G(r;n) by the above argument. Since there
is an upper-meridian-pair-preserving isomorphism G(K(s)) = G(K(s+ 1)), we
obtain the desired epimorphism. O

At the end of this section, we give a characterization of those rational
numbers which belong to the I'(r;n)-orbit of co. Since G(r;n) is isomorphic to
G(r+ 1;n), we may assume in the remainder of this paper that 0 <r < 1. For
the continued fraction expansion

1
r=lay,a,...a; := i
at
a + o
ay
where k > 1, (ai,...,ar) € (Z,)*, and a; >2, let a, a™', ca and ea~!, with
¢e{—,+}, be the finite sequences defined as follows:
a=(a,a,... a), a' = (ar, ax1,...,a),
ea = (eay,ean, ... eay), ca ! = (eag,ear—n, ... ear).

Then we have the following proposition, which can be proved by the argument
in [14, Section 5.1].

PrOPOSITION 4.3. Let r be as above and n>1 an integer or a half-
integer. Set m =2n. Then a rational number s belongs to the I'(r;n)-orbit of
oo if and only if s has the following continued fraction expansion:

-1 -1 -1
s =2c+ [e1a,mer, —e1a ", 2¢, 2a,mc3, —&2a ..., 2000, @, MCy—1, —¢,a >]
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for some positive integer t, c € L, (e1,¢,...,&) € {—,+} and (ci,cz,...,¢21) €
Z2t—1.

ReMARK 4.4. Riley’s Theorem B and Theorem 3 in [17] imply the
following. Let o and f be relatively prime integers with 1 < f <a. For
integers d > 2, m > 3, and e > 1, consider the 2-bridge link K(f*/a*), where
(%, ) = (?m,a?'m(e — B) + ¢). Then there is an epimorphism from the
link group G(K(f*/a*)) onto the Heckoid group G(f/o;n), where n=m/2.
This result corresponds to the case when r = (o — f8)/a and s = [a,mc, —a™'],
where ¢ = ex? with ¢ = +1 in Proposition 4.3. In fact, a simple calculation
shows

s= (@ m(a = B) + (=1)*e) /(2'm) = p7 /2",

where k is the length of @ and ¢ is chosen so that (—l)ke =e. Thus Theorem
2.3 and Proposition 4.3 imply that there is an epimorphism from the link
group G(K(f*/a*)) = G(K(s)) onto the Heckoid group G(r;n) =~ G(1 — r;n) =
G(p/x;n), recovering Riley’s result.

5. Topological description of odd Heckoid orbifolds

In this section, we show, following the sketch of Agol [1], that the orbifold
O(r;m) and the odd Heckoid orbifold S(r;n) are depicted as in Figures 5
and 6. Here, we employ the following convention.

CONVENTION 5.1. Let 2 be a trivalent graph properly embedded in a
compact 3-manifold M such that each edge e of X is given a weight w(e) €
N>>U{oo}. Here, a loop component of X is regarded as an edge. Assume
that if v is a (trivalent) vertex and e;,e;,e3 are the edges incident on v, then
either some w(e;) is oo or the following inequality holds:

1 1 1

w(er) + w(ez)  wies)

> 1.

Then the weighted graph (M, 2, w) determines the following 3-orbifold.
(a) Let X, be the subgraph consisting of those edges with weight co.
Then the underlying space of the orbifold is the complement of an
open regular neighborhood of 2.
(b) The singular set of the orbifold is the intersection of X — X, with
the underlying space, where the index is given by the weight. (We
identify an edge of the singular set with the corresponding edge of X.)
We denote the orbifold by the same symbol (M,X,w). The part of the
boundary of the orbifold (M,X w) contained in M is called the outer-
boundary of (M,X,w) and is denoted by 0, (M,Z,w).
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) 2;7:111

[

m

O(r;m)

Fig. 5. The case when K(r) is a knot and m =2n > 1 is an odd integer. Here r =2/9 = [4,2].
The odd Heckoid orbifold S(r;n) (middle right) is a Z/2Z-covering of O(r;m) (lower left). The
upper left figure is not an orbifold, but is a hyperbolic cone manifold. The odd Heckoid orbifold
S(r;n) is the quotient of the cone manifold by the z-rotation around the axis containing the singular
set.

In this section, we prove the following propositions.

ProrosITION 5.2.  For a rational number r and an integer m > 2, the
orbifold O(r;m) is homeomorphic to the orbifold (S K(r)Ut, Ut_,w), where
74 and t_ are the upper and lower tunnels of K(r) and the weight function w is
defined by the following rule.
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O(r;m)

Fig. 6. The case when K(r) is a 2-component link and m =2n>1 is an odd integer. Here
r=9/56=1[6,4,2]. The odd Heckoid orbifold S(r;n) (middle right) is a Z/2Z-covering of O(r;m)
(lower left). The upper left figure is not an orbifold, but is a hyperbolic cone manifold. The odd
Heckoid orbifold S(r;n) is the quotient of the cone manifold by the z-rotation around the axis
containing the singular set.

(@) w(ty) =2 and w(z_) =m.
(b) One of the four edges, say J, of K(r)Ut, Ut_ contained in K(r) has
weight oo and the remaining three edges have weight 2.
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ProPOSITION 5.3. For a rational number r = q/p, where p and q are
relatively prime integers such that 0 < q < p, and a non-integral half-integer n
greater than 1, the odd Heckoid orbifold S(r;n) is described as follows.

(1)  Suppose that K(r) is a knot, i.e., p is odd (see Figure 5). Consider the
2-bridge knot K(7), where ¥ = (q/2)/p or ((p+4q)/2)/p according to
whether q is even or odd. Let t_ be the lower tunnel of K(F), and let
J1 and Jy be the edges of K(F)Uz_ such that K(f) =JUJy. Then
S(r;n) is homeomorphic to the orbifold (S* K(#)Ut_, W), where the
weight function W is defined as follows.

(@) w(r_) =m with m = 2n.
(b) w(J1) = o0 and w(J) = 2.

(2) Suppose that K(r) has two components, ie., p is even (see Figure
6). Consider the 2-bridge link K(F), where ¥ = q/(p/2). Let t, and
7_ be the upper and lower tunnels of K(F), and let J, and J, be
the union of mutually disjoint arcs of K(¥) = t(c0) U t(F) bounded by
0(t Utl) such that K(7) = 1 UJy and such that J;Nt(0) (i=1,2)
is equal to the closure of the intersection of t(c0) with a component
of B®> — Dy, where Dy is a “horizontal” disk embedded in (B>, t(0))
bounded by the slope 0 simple loop «y, which intersects t(o0) trans-
versely in two points and contains the core tunnel t, of (B3, t(0))
(see Figure 7(b)). Then S(r;n) is homeomorphic to the orbifold
(S}, K(#)Ut Ut_, W), where the weight function W is defined as
follows.

(@) w(ty) =2 and w(z-) =m.
(b) The (two) components of Ji have weight oo, and the (two)
components of J, have weight 2.

REMARK 5.4. (1) Because of the (Z/2Z)*-symmetry of 2-bridge links, the
choice of the edge J in K(r) in Proposition 5.2 and that of the edges J; and J,
in K(#) in Proposition 5.3 do not affect the homeomorphism class of the
resulting orbifolds.

(2) By the announcement in [2, Section 3 of Preface|, there exist
hyperbolic cone manifolds as illustrated in the upper left figures in Figures
5 and 6. The odd Heckoid orbifolds are Z/2Z-quotients of the cone
manifolds.

PrOOF OF ProposITION 5.2. Recall that O(r;m) = B(o0;2) U B(r;m) and
note that (S K(r)Ut, Ut ,w) = (B t(0)Ur,wy)U(B t(r)Ut_,w_),
where w4 are “restrictions” of w. We can observe that there are homeo-
morphisms f, : B(c0;2) — (B, t(0)Uz,w,) and f : B(r;m) — (B, t(r)Ut_,
w_) such that the restriction of each of fi to the outer-boundary determines
a homeomorphism from O to the 2-orbifold, S, obtained from the Conway
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sphere S by removing an open regular neighborhood of a puncture and filling
in order 2 cone points to the remaining punctures. Moreover, each of the
homeomorphisms maps the (isotopy class of the) simple loop S, in O to the
the (isotopy class of the) simple loop o, in § for every se Q. Thus we can
choose f4 so that they are consistent with the gluing maps in the constructions
of O(r;m) and (S3 K(r)Ut,.Uz_,w); so, f; and f_ determine the desired
homeomorphism from O(r;m) to (S°, K(r)Ut, Ut_,w). O

ProOF OF ProposITION 5.3. By Definition 3.2, the odd Heckoid group
G(r;n) is equal to the kernel of the natural projection

m1(0(r;m)) — m(O(r;m)) /(71 (S)),

where m =2n is an odd integer. Thus the Heckoid orbifold S(r;n) is the
regular covering of O(r;m) with the covering transformation group

71 (0(r; m)) /(w1 (8)) = 71(0)/ K1 (S), B2, B -

Note that 7,(0)/n(S) = (Z/2Z)* is generated by the homology classes [f)]
and [f]. Since [f,] = plfo] + ¢[f..] and since m is odd, the covering trans-
formation group is isomorphic to

[Bol: Bl PlBo) + 4lBo]D 2y = Z/2Z,

where the suffix (2) represents that this is a presentation as a Z/2Z-module.
Let B(c0;2) and B(r;m), respectively, be the inverse images of the suborbifolds
B(o0;2) and B(r;m) under the 2-fold covering S(r;n) — O(r;m). Then, by the
above description of the covering transformation group, the covering orbifold
l?(oo;2) and its covering involution, /., are described as follows.

(a) If (p,q) = (1,0) (mod 2), then B(c0;2) is identified with the orbifold
(B3,t(c0),w, ), where the weight function W, takes the value oo
on one of the components of #(co) and the value 2 on the other
component. Under this identification, the covering involution /i, is
the m-rotation whose axis contains the core tunnel (see Figure 7(a)).

(b) If (p,q) = (0,1) (mod 2), then B(o0;2) is identified with the orbifold
(B3, t(c0)Ut,,Ww,), where 7, is the core tunnel, and the weight
function w, is given by the following rule: W, (z.) =2, and W,
takes the value oo on a pair of edges whose interiors are contained
in one of the components the complement of the horizontal disk Dy
in B?, and the value 2 on the remaining pair of edges. Under this
identification, s, is the n-rotation whose axis bisects 7, (see Figure

7(b))-
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(@) (p,¢g)=(1,0) mod?2

iy 13
—
1 14
B(0:2) B(0;2)
() (p,g)=(0,1) mod2
1 13
Do A—_A —
0 : o0
| I 4
B(0:2) B(0;2)

Fig. 7. The covering orbifold B(c0;2) of B(0;2)

We can ecasily observe the following:

CLAIM. Under the identifications of the outer-boundaries aoml?(oo;Z) and
CourB(00;2) with (an orbifold obtained from) S, as in the above and in the
proof of Proposition 5.2, the covering projection 0y, B(00;2) — 0 B(00:2) maps
the pair of simple loops (ag,04,) to (ag,0%) or (43,04) according to whether

(p,q) = (1,0) or (0,1) (mod 2).

On the other hand, B(r;m) is identified with the orbifold (B3, Uz_,w_),
where (B?,¢_) is a 2-string trivial tangle, 7_ is the core tunnel of (B?,¢_), and
where the weight function W_ is given by the following rule: Ww_(z_) =m, and
w_ takes the value oo on one of the four edges of 7 U7_ whose union is equal
to ¢z, and the value 2 on the remaining three edges. The covering involution,
h_, of B(r;m)= (Bt Ut _,Ww_) is the n-rotation whose axis bisects 7_
(cf. Figure 7(b)).

By these observations concerning the suborbifolds B(co;2) and B(r;m), the
odd Heckoid orbifold S(r;n) = B(c0;2) U B(r;m) is regarded as the union of
the orbifold (B, Ur_,w_) and the orbifold (B3, #(c0),W,) or (B t(0)Ut,,
w, ) according to whether (p,q) = (1,0) or (0,1) (mod 2). This implies that
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O(r;n) is constructed from some 2-bridge link as in the proposition. The
remaining task is to identify the slope, 7, of the 2-bridge link. To this end,
pick a disk D properly embedded in (B*,7_ Uz_,w_) = B(r;m) which intersects
the singular set transversely in a single point in the interior of z_, such that D
is mapped homeomorphically by the covering projection to a disk in B(r;m)
bounded by the loop «,. Then the slope 7 of the 2-bridge link is equal to the
slope of the simple loop dD in 8,,B(c0;2). (Here 0,,B(o0;2) is identified
with the outer boundary of (B3, #(c0),w,) or (B t(c0)Uz,,Ww,); so the slope
of D in it is defined.) By using the Claim in the above, we can see that 7 =
(q/2)/p or q/(p/2) according as (p,q) = (1,0) or (0,1) (mod 2). This com-
pletes the proof of the proposition except when (p,q) = (1,1) (mod 2). This
remaining case can be settled by using the fact that there is a homeomorphism
from (S3 K(q/p)) to (S, K((p+q)/p)) sending the upper/lower tunnels of

K(q/p) to those of K((p+q)/p). O

6. Heckoid groups as two-parabolic Kleinian groups

In this section, we prove Theorem 2.2, which is contained in the an-
nouncement by Agol [1]. As noted in [1], the proof relies on the orbifold
theorem and is analogous to the arguments in [7, Proof of Theorem 9].

REMARK 6.1. This theorem also follows from the announcement made in
the second author’s joint work with Akiyoshi, Wada and Yamashita [2, Section
3 of Preface]. Note, however, that there is an error in the assertion 5 in Page
IX in Preface, though a special case is treated correctly in [2, Proposition
5.3.9]. In fact, the first sentence of the assertion should be read as follows:
The holonomy group of M(0~,0%) is discrete if and only if 6* e {2n/n|
ne IN.,}U{0}. The second author would also like to note that this asser-
tion can be proved by using the argument of Parkkonen in [15, Lemma 7.5];
this was forgotten to mention in [2], though the paper is included in the
bibliography.

In order to prove Theorem 2.2, we prove that O(r;m) with m =
2n >3 admits a hyperbolic structure. Throughout this section, we identify
O(r; m) with the orbifold (S3, K(r)Ut, Uz_,w) in Proposition 5.2. We denote
by B} and B? the 3-balls of S* bounded by the bridge sphere of K(r) such
that

(83, K(r)Ury Ur_,w) = (B, t(o0) Uz, wy) U (B t(r)Ut_,w_).

We refer to [4, Introduction and Section 8] (cf. [3, Chapter 2], [5, Chapter 2]
and [8, Chapter 6]) for standard terminologies for orbifolds.
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LEMMA 6.2. For a rational number r and an integer m > 3, the following
hold.

(1) O(r;m) does not contain a bad 2-suborbifold.

(2) Any football S*(p,p) in O(r;m) bounds a discal 3-suborbifold.

(3) O(r;m) does not contain an essential turnover.

(4) O(r;m) is topologically atoroidal, i.e., it does not contain an essential

orientable toric 2-suborbifold.

Proor. (1) Suppose that O(r;m) contains a bad 2-suborbifold, F. Then
F is either a teardrop S*(p) or a spindle S*(p,q) with 1 < p < ¢. Since the
indices of the singular set of O(r;m) are 2 and m(> 3), and since the underlying
2-sphere |F| intersects K(r) in an even number of points, we see that |F| is
disjoint from K(r) and intersects (at least) one of the unknotting tunnels 74
transversely in a single point, where F =~ S%(2), S?(m) or S*(2,m). Since the
endpoints of each of the unknotting tunnels are contained in K(r), this implies
that K(r) is a split link, a contradiction. Hence O(r;m) cannot contain a bad
2-suborbifold.

(2) Let F be a suborbifold of O(r;m) which is a football. As in (1), we
see that one of the following holds.

(i) |F| intersects K(r) in two points, where F = 52(2,2).

(i) |F] is disjoint from K(r) and intersects one of the unknotting tunnels

74 in two points and does not intersect the other unknotting tunnel,

where F =~ S%(2,2) or S%(m,m).
Suppose that condition (i) holds. Then |F| is disjoint from 7z, Uz_, and so
either 7, and 7_ are separated by |F|, or 7. U7_ is contained in a single
component of S*—|F|. If r, and t_ are separated by |F|, then |F| must
intersect K(r) in at least four points, a contradiction. Hence 7, U7_ is
contained in a single component of S* — |F|. Let B} and B} be the 3-balls
in S* bounded by |F|, such that 7, Ur_ = B3. Set K;=B}NK(r) (i=1,2).
Then the genus 3 open handle body S° — (K(r)Ut*Uz~) is the union of
B} — K; and B} — (K;Ut" Ut™) along the open annuls |F| — K(r), and hence
the rank 3 free group, m(S®— (K(r)UtTUz7)), is the free product of
m (B} — K;) and m(B3 — (KUt Ut™)) with the infinite cyclic amalgamated
subgroup 7;(|F| — K(r)). Since H\(B; — K;) = Z, this implies 7;(B; — K;) =
Z. Hence (Bj,K;) is a trivial 1-string tangle. Thus (Bj,B;N(K(r)Uz.U
t_)) = (B3, B NK(r)) determines a discal 3-suborbifold of O(r;m) bounded
by F, and therefore F is inessential.

Suppose that condition (ii) holds. For simplicity, we assume that |F|
intersects 7, in two points and does not intersect 7_. (The other case is treated
similarly.) Let B} be the 3-ball bounded by |F| such that Bj Nz, is a subarc
of t.. Then (B}, BiN(K(r)Ut,Uz_))=(B3},B;Nt,) is a trivial 1-string
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tangle, because 7, is contained in a trivial constituent knot in the spatial graph
K(r)UzyUz_. Hence it determines a discal 3-suborbifold of O(r;m) bounded
by F.

(3) Suppose that O(r;m) contains an essential turnover F = S%(p,q,r).
Then either |F| is disjoint from K(r), or |F| intersects K(r) in two points. In
the first case, |F| intersects 7, U7_ in three points and hence |F| intersects 7
or 7_ in an odd number of points. As in (1), it follows that K(r) is a split
link, a contradiction. Hence we may assume that |F| intersects K(r) in two
points, and therefore |F| is disjoint from 7, or t_. For simplicity, we assume
that |F| is disjoint from 7_. (The other case is treated similarly.) By using
the fact that |F| is also disjoint from 0O(r;m) and the fact that (B3, #(r)Uz_)
is a relative regular neighborhood of z_ in (S3 K(r)Uz, Uz_), we can see that
F is isotopic to a 2-suborbifold which is disjoint from the suborbifold
(B3,1(r)Uz_,w_). Hence we may assume that F is contained in the interior
of the suborbifold (BI,#(c0)Uzs,wy). Let 1; (1 <i<4) be the edges of
t(oo)Uz,; as illustrated in the right figures in Figure 7. Note that #(c0) =
U?Zl ti, wi(t1) = o0 and wi(t;) =2 (2<i<4). Thus |F| is disjoint from #
and |F| intersects (#(c0) — #;) Uz, transversely in three points. Let D, be the
disk properly embedded in B3 determined by the plane in which Figure 7 is
drawn. Then D, contains the graph #(c0)Ut;. We may assume that |F| is
transversal to D, and hence |F|N D, consists of mutually disjoint circles. By
using the irreducibility of B — (1(c0)Ut,), we may assume, by a standard
argument, that no component of |F|ND, bounds a disk disjoint from
t(0)U7;. Then it follows that |F|N D, must consist of a single circle which
intersects 7., 3 and 4 in a single point. Let Dg be the disk in D, bounded by
the circle D, N|F|, and let B} be the 3-ball in B} bounded by |F|. Then D is
properly embedded in Bj, and Bj N (t(co)Ut,) = DrN(#(0)Ut,). Hence
(B3, B3N (t(c0) Uty )) determines a discal 3-orbifold bounded by the turnover
F, a contradiction.

(4) Suppose that O(r;m) contains an essential pillow F =~ $?(2,2,2,2).
Then |F| is disjoint from 7_, which has index m >3, and hence we may
assume, as in (3), that |F| is contained in the suborbifold (B3, #(c0)Uty,w.).
Under the notation in (3), |F| is disjoint from #; and |F| intersects #(c0) U7y
transversely in four points. We may also assume that |F| is transversal to the
disk Dy, introduced in (3) and hence |F| N D, consists of mutually disjoint circles.
By using the irreducibility of BY — (¢(o0)Uty) and the assumption that F is
essential, we may assume that no component of |F| N D;, bounds a disk disjoint
from 7(c0)Ut,. Hence we see that either (i) |F| N Dy, consists of a single loop
which intersects (#(o0) — #;) Uz, in four points, or (ii) |F| N D, consists of two
loops each of which intersects (¢(co0) — ;) Uz, in two points. In either case, we
can find an “outermost disk” ¢ in D satisfying the following conditions.
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(@) JON|F| is an arc, ¢, in 00.

(b) oN(t(o0)Uty) is an arc, ¢’, in 65 which is contained in the interior of

an edge of the graph #(o0)U7,.

() do=cUc.

(d) 6 is contained in the 3-ball, B, in B} which is bounded by |F]|.
Then the frontier of a regular neighborhood of ¢ in Bj is a disk properly
embedded in Bj disjoint from the singular set, whose boundary is an essential
loop in the pillow F. This contradicts the assumption that F is essential.
Hence O(r;m) does not contain an essential pillow.

Assume that O(r;m) contains an essential torus, F. Then F is a torus
contained in S* — (K(r)Ut; Utr_), which is a genus 3 open handlebody.
Hence F must be compressible in S* — (K(r)Uz, Ut_), a contradiction.

By the classification of toric 2-orbifolds, an orientable toric 2-orbifold is a
torus, a turnover or a pillow. Hence by (3) and the above arguments, O(r;m)
does not contain an essential orientable toric 2-orbifold. O

LemMMa 6.3. For a rational number v and an integer m > 3, the orbifold
O(r;m) is Haken, i.e., it is irreducible and does not contain an essential turnover,
but contains an essential 2-suborbifold.

Proor. By Lemma 6.2(1), O(r;m) does not contain a bad 2-suborbifold.
By Lemma 6.2(2) and (3), every orientable spherical 2-suborbifold of O(r;m)
with nonempty singular set bounds a discal 3-suborbifold. Moreover any
2-sphere (i.e., spherical 2-suborbifold with empty singular set) of O(r;m)
bounds a 3-ball in O(r;m), because Proposition 5.2 implies that the comple-
ment of an open regular neighborhood of the singular set of O(r;m) is
homeomorphic to a genus 3 handlebody. Hence the orbifold O(r;m) is
irreducible. Moreover, it does not contain an essential turnover by Lemma
6.2(3). Since 00(r;m) = S*(2,2,2,m) is not a turnover, we see by [3, Proposi-
tion 4.6] that O(r;m) is Haken (see [4, Definition 8.0.1]). O

LemMA 6.4. For a rational number r and an integer m > 3, the orbifold
O(r;m) is homotopically atoroidal, i.e., m1(O(r;m)) is not virtually abelian and
every rank 2 free abelian subgroup of m1(O(r;m)) is peripheral.

Proor. Since O(r;m) is Haken by Lemma 6.3, we see by [19, Theorem A]
(cf. [4, Proposition 8.2.2]) that O(r;m) is good, i.e., it has a manifold cover.
Suppose on the contrary that O(r;m) is not homotopically atoroidal (see [4,
Definition 8.2.13]). Then, since O(r;m) is topologically atoroidal by Lemma
6.2(4), we see by [4, Proposition 8.2.11] that O(r;m) is either Euclidean or
Seifert fibered. (Here, we use the fact that O(r;m) is good.) This contradicts
the fact that 00(r;m) = S%(2,2,2,m) is not Euclidian. Hence the orbifold
O(r;m) is homotopically atoroidal. O
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COROLLARY 6.5. For a rational number r and an integer m > 3, the interior
of O(r;m) has a geometrically finite hyperbolic structure. In particular, O(r;m)
is very good, ie., it has a finite cover which is a manifold.

ProorF. By Lemmas 6.3 and 6.4, O(r;m) is a homotopically atoroidal
Haken 3-orbifold. Hence, by the orbifold theorem for Haken orbifolds [4,
Theorem 8.2.14], O(r;m) is hyperbolic. Moreover, it follows from the proof of
the theorem that the hyperbolic structure can be chosen to be geometrically
finite. The last assertion follows from Selberg’s Lemma [18] (cf. [12, Theorem
2.29)). O

Let P =cl(0B(0;2) — 0pyB(0;2)). Then P =~ D?*(2,2) is an annular
2-suborbifold in 0O0(r;m), and the following lemma shows that (O(r;m), P)
is a pared 3-orbifold (see [4, Definition 8.3.7]).

LeEmMMA 6.6. For a rational number r and an integer m > 3, the pair
(O(r;m), P) satisfies the following conditions, and hence it is a pared 3-orbifold.

(1) O(r;m) is irreducible and very good.

(2) P is incompressible.

(3) Every rank 2 free abelian subgroup of m(O(r;m)) is conjugate to a
subgroup of m(P). (In fact, m(O(r;m)) does not contain a rank 2
free abelian subgroup.)

(4)  Any properly embedded annular 2-suborbifold (A,0A4) <= (O(r;m), P)
whose boundary rests on essential loops in P is parallel to P.

Proor. (1) This follows from Lemma 6.3 and Corollary 6.5.

(2) Suppose that P is compressible. Then there is a discal orbifold
(F,0F) properly embedded in (O(r;m), P) such that dF is a loop in P parallel
to OP. Since F has at most one cone point, |F| is disjoint from 7, or 7_.
For simplicity, we assume that |F| is disjoint from 7_. (The other case is
treated similarly.) By using the fact that 0F is parallel to dP in dO(r;n),
and the fact that (B®,#(r)Ut_) is a relative regular neighborhood of 7_ in
(S*,K(r)Uz,Ut_), we can see that F is isotopic to a 2-suborbifold which is
disjoint from the suborbifold (B3,#(r)Uz_,w_). Hence we may assume that
F is contained in the interior of the suborbifold (B3, #(o0)Uzy,w.). Then, by
looking at the intersection of |F| with the disk Dj as in the proof of Lemma
6.2(3), we see that this cannot happen.

(3) Suppose that 7z;(O(r;m)) contains a rank 2 free abelian subgroup,
H. Then H is conjugate to a subgroup of j.(71(00(r;m))) by Lemma 6.4,
where j is the inclusion. If j, is injective, then j.(m(00(r;m))) =
n1(5%(2,2,2,m)) is isomorphic to a Fuchsian group and hence it cannot con-
tain a rank 2 free abelian subgroup, a contradiction. So, j. is not injective.
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By the loop theorem for good orbifolds [4, p. 133], dO(r;m) is compressible.
Let F =~ D?(d) be a compressing disk for dO(r;m). Then d = 1,2 or m, and
OF is a loop in 0O(r;m) separating the 4 singular points into two pairs of
singular points. Thus the result of compression of dO(r;m) by F is a union
of two 2-suborbifolds, Fy = S*(2,2,d) and F, =~ S?’(2,m,d). If d=1, F, =
S2(2,m) is a bad 2-suborbifold, a contradiction to Lemma 6.2(1). Hence
d =2 or m, and therefore F; and F, are turnovers. By Lemma 6.2(3), they
must be inessential. Since none of them is boundary parallel, each F; is a
spherical turnover bounding a discal 3-orbifold. Note that the singular set of
O(r;m) has exactly two vertices and the boundaries of regular neighborhoods
of the vertices are S%(2,2,2) and S?(2,2,m) (see Proposition 5.2). Hence we
sce d =2 and F; and F, are the boundaries of regular neighborhoods of
the two vertices. Thus dO(r;m) is parallel to the boundary of the 3-orbifold
obtained from the regular neighborhoods of the two vertices of the singular
set by joining them by a tube around the unique edge of the singular set (of
index 2) joining the two vertices. Thus 7(O(r;m)) is a free product of the
dihedral groups of orders 4 and 2m with amalgamated subgroup isomorphic
to Z/2Z. 1t is easy to see that such a group cannot contain a rank 2 free
abelian subgroup. Hence, 7;(O(r;m)) does not contain a rank 2 free abelian
subgroup.

(4) Let (A4,04) be an annular 2-suborbifold properly embedded in
(O(r;m), P) whose boundary rests on essential loops in P.

Suppose first that 4 is an annulus. Then A4 is disjoint from 7, U7_.
Since each component of 04 is parallel to 0P in P < 00(r;m), we may
assume as in (2) that 4 is embedded in a regular neighborhood of the
2-suborbifold of (S3 K(r)Ur, Uz_,w) determined by the 2-bridge sphere.
Thus (A4,0A4) is regarded as a suborbifold of (S x [—1,1],P’), where S is
obtained from the Conway sphere S by removing an open regular neighbor-
hood of a puncture and filling in order 2 cone points to the remaining punc-
tures (cf. Proof of Proposition 5.2), and P’ is the product annulus 08 x [—1, 1].
Consider a disk properly embedded in |S| x [—1, 1] which contains the singular
set. By looking at the intersection of 4 with the disk, we can find a boundary
compressing disk for 4. By the irreducibility of the complement of the
singular set of S x [—1,1], this implies that 4 is parallel to an annulus in
P <P

Suppose next that A is homeomorphic to D?(2,2). Then A is disjoint
from 7_, which has index m > 3. Since 04 is parallel to 0P in P < 0O(r;m),
we see as in the above that 4 is contained in the suborbifold (B3, #(o0) U1y,
wy). By looking at the intersection of |4| with the disk D; as in the proof
of Lemma 6.2(3), we can see that 4 is parallel to the suborbifold of P bounded
by 04. ]
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Since 7;(O(r;m)) is not virtually abelian by Lemma 6.4, we obtain the
following proposition by Lemma 6.6 and by the orbifold theorem for Haken
pared orbifolds [4, Theorem 8.3.9].

PrOPOSITION 6.7. For a rational number r and an integer m > 3, the pared
orbifold (O(r;m), P) is hyperbolic, i.e., there is a geometrically finite hyperbolic
3-orbifold M such that for some 6 >0 and pu, (O(r;m), P) is homeomorphic to

(thick,,(C5(M)), & thick,(Cs(M)) N thin, (Cs(M)),

where Cs(M) is the closed o-neighborhood of the convex core C(M) of M, and
thick, (Cs(M)) and thin,(Cs(M)) are p-thick part and p-thin part. Here p is
chosen so that thin,(Cs(M)) consists of only cuspidal part.

PrOOF OF THEOREM 2.2. By the above proposition, there is a faithful
discrete representation p : 7 (O(r;m)) — PSL(2,C) which maps the conjugacy
class represented by the loop 0P to a parabolic transformation. Recall that
the Heckoid group G(r;n) = m;(S(r;n)) is a subgroup of 7;(O(r;m)) of index
2 or 4 by Proposition 3.1 and Definition 3.2 and that it is generated by
two elements in the conjugacy class of 0P. Hence, the restriction of p to the
subgroup G(r;n) gives the desired isomorphism from G(r;n) to a geometrically
finite Kleinian group generated by two parabolic transformations. O

At the end of this section, we prove the following proposition, which
illustrates a significant difference between odd Heckoid groups and even
Heckoid groups.

PROPOSITION 6.8. No odd Heckoid group is a one-relator group.

Proor. Consider an odd Heckoid orbifold S(r;n). By Proposition 5.3,
the singular set of S(r;n) has two or four l-dimensional strata. Note that
the above proof of Theorem 2.2 shows that S(r;n) is hyperbolic, and so the
interior of S(r;n) is homeomorphic to a hyperbolic orbifold H? /T, where I is
a Kleinian group isomorphic to 7;(S(r;n)). Hence I' = 7, (S(r;n)) has two or
four conjugacy classes of maximal finite cyclic subgroups, accordingly. On the
other hand, any one-relator group has a unique maximal finite cyclic subgroup
up to conjugacy (see [11, Theorem IV.5.2]). Hence the odd Heckoid group
G(r;n) =71 (S(r;n)) cannot be a one-relator group. O
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