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Abstract. We consider a three-species competition-di¤usion system, in order to

discuss the problem of competitor-mediated coexistence in situations where one exotic

competing species invades a system that already contains two strongly competing

species. It is numerically shown that, under some conditions, there exist stable non-

constant equilibrium solutions that indicate the coexistence of two strongly competing

species. This result motivates us to develop a semi-exact representation for finding

these equilibrium solutions from an analytical viewpoint.

1. Introduction

Species diversity in ecological communities is currently investigated not

only through field research but also from a theoretical standpoint. A partic-

ularly important line of inquiry in this field is the coexistence of species

mediated by the impact of invaders, food, body sizes, and dispersal ([4], [7],

[12]). A simple but representative example is competitor-mediated coexistence

among three biological species (say U , V and W ), where one exotic species (W )

invades a system in which the other two (U and V ) are already strongly

competing. This competitor-mediated coexistence of U and V in the presence

of W can be theoretically modeled by the following three-species competitive

Lotka–Volterra system:

ut ¼ ðr1 � a1u� b12v� b13wÞu;
vt ¼ ðr2 � b21u� a2v� b23wÞv; t > 0;

wt ¼ ðr3 � b31u� b32v� a3wÞw;

8<
: ð1Þ
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where uðtÞ, vðtÞ and wðtÞ denote the population densities of U , V and W

at time t, respectively. The parameters ri, ai and bij ði; j ¼ 1; 2; 3 ði0 jÞÞ
represent the intrinsic growth rates, intra-specific competition rates and inter-

specific competition rates, respectively, which are all positive constants.

We consider (1) with the initial conditions

uð0Þ ¼ u0 > 0; vð0Þ ¼ v0 > 0; wð0Þ ¼ w0 > 0: ð2Þ

We first impose the following assumption on the interaction of the two

pre-existing competing species U and V in the absence of W :

(A1)
b12
a2
;
a1
b21

<
r1
r2
.

This implies that for the ðu; vÞ system satisfying

ut ¼ ðr1 � a1u� b12vÞu;
vt ¼ ðr2 � b21u� a2vÞv;

�
t > 0; ð3Þ

the equilibrium point
� r1
a1
; 0
�
is stable, whereas

�
0;

r2
a2

�
is unstable; that is, U

always survives and V becomes extinct. In other words, absolutely competitive

exclusion occurs between U and V .

We now consider the situation where W invades the ðU ;VÞ system. The

natural question is, ‘Is it possible for U and V to coexist in the presence of

W ?’ If the parameters in (1) are specified in such a way that a positive

equilibrium point (say ðu�; v�;w�Þ) exists and is stable, and other equilibrium

points are unstable, then the answer is obviously in the a‰rmative.

In this paper, we assume the following condition for (1):

(A2) In addition to the stability of ðu�; v�;w�Þ, ðr1=a1; 0; 0Þ is also stable

and other equilibrium points are unstable, even if they exist.

In order to explain (A2) more precisely, we make the following as-

sumptions on the interactions between U and W as well as between V

and W :

(A3)
a1

b31
<

r1
r3
<

b13
a3
.

This implies that for the ðu;wÞ system satisfying

ut ¼ ðr1 � a1u� b13wÞu;
wt ¼ ðr3 � b31u� a3wÞw;

�
t > 0; ð4Þ

both
� r1
a1
; 0
�
and

�
0;

r3
a3

�
are stable, while a positive equilibrium point (say ð�uu; �wwÞ)

is unstable; that is, strong competition exists between U and W .

(A4)
b23
a3

<
r2
r3
<

a2

b32
.

This implies that for the ðv;wÞ system satisfying

vt ¼ ðr2 � a2v� b23wÞv;
wt ¼ ðr3 � b32v� a3wÞw;

�
t > 0; ð5Þ
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both
� r2
a2
; 0
�
and

�
0;

r3
a3

�
are unstable, while a positive equilibrium point (say

ðv̂v; ŵwÞ) is stable; that is, weak competition exists between V and W , allowing

them to coexist.

If the initial value of ðuð0Þ; vð0Þ;wð0ÞÞ lies in the neighborhood of

ðu�; v�;w�Þ, (A2) indicates that competitor-mediated coexistence occurs for

U and V in (1) and (2). However, if ðuð0Þ; vð0Þ;wð0ÞÞ does not satisfy

this condition, the behavior of solutions ðuðtÞ; vðtÞ;wðtÞÞ of (1) and (2) is

not completely understood because the number of limit cycles is still unclear

(for instance, [5], [6], [8], [17], [19]). We therefore rely on numerical methods

to solve (1) and (2).

Let us specify the parameters in (1) as

r1 ¼ 576; r2 ¼
23616

11
; r3 ¼

39456

11
; ð6aÞ

a1 ¼ 572; a2 ¼ 1804; a3 ¼ 594; ð6bÞ

b12 ¼ 308; b13 ¼ 308; b21 ¼ 4420; ð6cÞ

b23 ¼ 308; b31 ¼ 5850; b32 ¼ 2970; ð6dÞ

which satisfy (A1)–(A4). Numerical simulation of (1) with (6) and (2) demon-

strates the following: if w0 is relatively small, wðtÞ immediately fades out so that

the solution ðuðtÞ; vðtÞ;wðtÞÞ tends to
� r1
a1
; 0; 0

�
¼ ð1:007 . . . ; 0; 0Þ; that is, U and

V do not coexist (Figure 1(a)), but if w0 is relatively large, ðuðtÞ; vðtÞ;wðtÞÞ
tends to ðu�; v�;w�Þ ¼ ð0:014 . . . ; 1:014 . . . ; 0:830 . . .Þ (Figure 1(b)). Conse-

quently, (1) with (6) is a bistable system, in the sense that any solution

generically tends to either
� r1
a1
; 0; 0

�
or ðu�; v�;w�Þ, as shown in Figure 2. This

indicates that U and V coexist, depending on the initial value w0.

Fig. 1. Numerical simulation of (1) with (6) and (2) where u, v and w are indicated by the solid,

dashed and grey solid lines, respectively.
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Thus far, we fixed b23 ¼ 308 in Figures 1 and 2. We next take b23 as

a free parameter, leaving other parameters fixed to satisfy (6) and draw the

global structure of equilibrium points of (1) where b23 is globally varied in the

interval 0 < b23 < 500, as shown in Figure 3. We first note that
� r1
a1
; 0; 0

�
(�::� in Figure 3) is stable and

�
0;

r2
a2
; 0
�

is unstable for any b23, whereas�
0; 0;

r3
a3

�
(�:� in Figure 3) is stable for large b23. When b23 decreases,

�
0; 0;

r3
a3

�

Fig. 2. Bistable trajectories of (1) with (6) and (2) in ðu; v;wÞ-space where A ¼
� r1
a1
; 0; 0

�
,

B ¼
�
0;

r2
a2
; 0
�
, C ¼

�
0; 0;

r3
a3

�
, D ¼ ð0; v̂v; ŵwÞ and P ¼ ðu�; v�;w�Þ.

Fig. 3. Global structure of non-negative equilibrium points of (1). The dash-two dot line and the

dash-one dot line represent
� r1
a1
; 0; 0

�
and

�
0; 0;

r3
a3

�
, respectively, which are independent of b23. The

dashed line and the solid line represent ð0; v̂v; ŵwÞ and ðu�; v�;w�Þ, respectively. � is the unstable

limit cycle. Black and gray colors indicate stable and unstable solutions, m and � indicate the

stationary bifurcation points andC indicates the Hopf bifurcation point. ð�uu; 0; �wwÞ and
�
0;

r2
a2
; 0
�
are

not drawn in this figure, because they are unstable and not connected with any stable branch.
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is destabilized at b23 ¼ b�� ¼ 355:53 . . . and ð0; v̂v; ŵwÞ (���� in Figure 3)

appears (n in Figure 3). It bifurcates supercritically from
�
0; 0;

r3
a3

�
so that

it is stable. When b23 still decreases, ð0; v̂v; ŵwÞ is destablized at b23 ¼ b� ¼
322:39 . . . and a positive equilibrium point ðu�; v�;w�Þ (����� in Figure 3)

appears (e in Figure 3). It bifurcates supercritically from ð0; v̂v; ŵwÞ so that it

is stable. When b23 decreases even further, ðu�; v�;w�Þ is destablized through

Hopf bifurcation at b23 ¼ b� ¼ 74:91 . . . (C in Figure 3), where an unstable

limit cycle bifurcates subcritically from ðu�; v�;w�Þ when b23 increases

(Figure 4). This limit cycle tends to a heteroclinic cycle with ð�uu; 0; �wwÞ !�
0; 0;

r3
a3

�
! ð0; v̂v; ŵwÞ ! ð�uu; 0; �wwÞ, as b23 increases to 174:42 . . . .

Integrating the above, we find that the unique positive equilibrium solution

ðu�; v�;w�Þ is stable for b� < b23 < b�. This condition on b23 is required for

(A2) to hold.

Keeping this situation, we consider the case where the three competing

species U , V and W move by di¤usion and propose the following one-

dimensional competition-di¤usion system for uðt; xÞ, vðt; xÞ and wðt; xÞ, which
are respectively the population densities of U , V and W for time t and posi-

tion x in R:

ut ¼ d1uxx þ ðr1 � a1u� b12v� b13wÞu;
vt ¼ d2vxx þ ðr2 � b21u� a2v� b23wÞv; t > 0; x A R;

wt ¼ d3wxx þ ðr3 � b31u� b32v� a3wÞw;

8<
: ð7Þ

where di ði ¼ 1; 2; 3Þ are the di¤usion rates, which are positive constants, and ri,

ai and bij ði; j ¼ 1; 2; 3 ði0 jÞÞ satisfy (A1)–(A4). For (7), we take the initial

conditions

uð0; xÞ ¼ u0ðxÞb 0; vð0; xÞ ¼ v0ðxÞb 0; wð0; xÞ ¼ w0ðxÞb 0; x A R: ð8Þ

Fig. 4. Unstable limit cycle of (1) at b23 ¼ 100 in ðu; v;wÞ-space, where A ¼
� r1
a1
; 0; 0

�
,

B ¼
�
0;

r2
a2
; 0
�
, C ¼

�
0; 0;

r3
a3

�
and P ¼ ðu�; v�;w�Þ. Black and gray lines are an unstable limit cycle

and trajectories generically tending to either A or P, respectively.
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Then, the following questions arise: When W invades locally (in space)

into the ðU ;VÞ system, does competitor-mediated coexistence occur for U and

V? If so, does the coexistence of U and V exhibit either spatially constant or

non-constant equilibrium? These questions motivate us to study whether there

exist stable spatially nonconstant equilibrium solutions ðuðxÞ; vðxÞ;wðxÞÞ of (7).

We first note that by the concept of Turing’s di¤usion-induced instability ([16]),

local bifurcation theory can be applied to determining the existence of non-

constant equilibrium solutions with small amplitudes which bifurcate from the

spatially constant equilibrium solution ðu�; v�;w�Þ when some di¤usion rates

are suitably changed ([13]).

In this paper, we are concerned with existence and stability of non-

constant equilibrium solutions with large amplitudes, which are shown in

Figures 9 and 10. Our strategy is to use two procedures complementarily: one

is a numerical tracking procedure of drawing the global structure of equilibrium

solutions and the other is a semi-exact representation for finding non-constant

equilibrium solutions.

To begin with, we consider the problem

ut ¼ d1uxx þ ðr1 � a1u� b13wÞu;
wt ¼ d3wxx þ ðr3 � b31u� a3wÞw:

�
t > 0; x A R; ð9Þ

with the boundary conditions

lim
x!�y

ðuðt; xÞ;wðt; xÞÞ ¼ r1

a1
; 0

� �
;

lim
x!y

ðuðt; xÞ;wðt; xÞÞ ¼ 0;
r3

a3

� �
:

8>>><
>>>:

t > 0; ð10Þ

(A3) indicates that (9) and (10) possesses a stable travelling front solution

ðuðx� ctÞ;wðx� ctÞÞ (with unique velocity c [11]). If the velocity c is positive,

U is stronger than W in spatial competition. Combining this with (A1) where

U is absolutely stronger than V , we can say that U is the strongest among U ,

V and W . Therefore we may expect that only U survives after large time,

that is, the competitor-mediated coexistence does not occur. For this reason,

we assume the following:

(A5) the travelling velocity c is negative,

which indicates that in the absence of V , W is stronger than U in terms of the

spatial competition.

2. Numerical simulations

In this section, we numerically study (7) and (8) in R, with the boundary

conditions
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lim
x!�y

ðuðt; xÞ; vðt; xÞ;wðt; xÞÞ ¼ r1

a1
; 0; 0

� �
;

lim
x!y

ðuðt; xÞ; vðt; xÞ;wðt; xÞÞ ¼ 0;
r2

a2
; 0

� �
:

8>>><
>>>:

t > 0; ð11Þ

Here we assume that the parameters in (7) satisfy (6) and

d1 ¼ d2 ¼ d3 ¼ 1: ð12Þ

We first consider the problem (7), (8) and (11) in the absence of w. That is,

ut ¼ uxx þ ðr1 � a1u� b12vÞu;
vt ¼ vxx þ ðr2 � b21u� a2vÞv;

�
t > 0; x A R; ð13Þ

with

uð0; xÞ ¼ u0ðxÞ; vð0; xÞ ¼ v0ðxÞ x A R; ð14Þ

where

lim
x!�y

ðu0ðxÞ; v0ðxÞÞ ¼
r1

a1
; 0

� �
;

lim
x!y

ðu0ðxÞ; v0ðxÞÞ ¼ 0;
r2

a2

� �
:

8>>><
>>>:

ð15Þ

Then, as shown in Figure 5, the solution ðuðt; xÞ; vðt; xÞÞ behaves as if

it were a travelling front with constant velocity and constant shape, which

propagates towards the right. This behavior is easily expected from (A1).

We now consider the situation where W invades the ðU ;VÞ system. That

is, we take the initial conditions (8) as

uð0; xÞ ¼ uðt0; xÞ; vð0; xÞ ¼ vðt0; xÞ; wð0; xÞ ¼ w0ðxÞb 0; x A R; ð16Þ

Fig. 5. Numerical simulation of (13)–(15) where di, ri , ai , and bij ði; j ¼ 1; 2 ði0 jÞÞ satisfy (12)

and (6).
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where ðuðt0; xÞ; vðt0; xÞÞ is a solution of (13)–(15) for suitably fixed t0, and w0ðxÞ
is taken in some overlapped zone of uðt0; xÞ and vðt0; xÞ. We consider (7), (11)

and (16). If w0ðxÞ is relatively small, wðt; xÞ immediately fades out so that u

still propagates towards the right and becomes dominant in space, as shown

in Figure 6.

On the contrary, if w0ðxÞ is relatively large, the resulting behavior is

di¤erent: w persists, ðuðt; xÞ; vðt; xÞ;wðt; xÞÞ propagates in both directions and

ðu�; v�;w�Þ becomes dominant in space, as shown in Figures 7 and 8. More-

over, Figures 8 (g) and (h) suggest the appearance of a travelling wave solution

satisfying

lim
x!�y

ðuðt; xÞ; vðt; xÞ;wðt; xÞÞ ¼ ðu�; v�;w�Þ;

lim
x!y

ðuðt; xÞ; vðt; xÞ;wðt; xÞÞ ¼
� r1
a1
; 0; 0

�
;

8<
: ð17Þ

which propagates towards the right.

If w0 is at suitably medium value, the situation is drastically di¤erent. As

shown in Figures 9 and 10, u and v can coexist locally in space. After a large

Fig. 6. Numerical simulation of (7), (11) and (16) where di, ri, ai, and bij ði; j ¼ 1; 2; 3 ði0 jÞÞ
satisfy (12) and (6). w0ðxÞ is relatively small (width is 1:0 and height is 0:1).
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period of time, the solution decomposes into two dynamics: one is a travelling

wave of u, v and w1 0, satisfying (11) which propagates towards the right, and

the other is a non-constant, spatially symmetric standing wave of u, v and w,

satisfying

lim
jxj!y

ðuðt; xÞ; vðt; xÞ;wðt; xÞÞ ¼ r1

a1
; 0; 0

� �
: ð18Þ

Consequently, when the parameters are specified to satisfy (6), numerical

simulation suggests the existence of a stable non-constant equilibrium solution

ðuðxÞ; vðxÞ;wðxÞÞ, where the profile of wðxÞ exhibits two humps as shown in

Figure 10 (f ).

3. Global structure of equilibrium solutions

In this section, motivated by Figure 10 (f ), we study the non-constant

equilibrium solutions of (7) and (18). By (A5) in Section 2, we first note that

there exists an unstable non-constant equilibrium solution (say ðuðxÞ; wðxÞÞ) of
(9) with the boundary conditions

lim
jxj!y

ðuðt; xÞ;wðt; xÞÞ ¼ r1

a1
; 0

� �
; ð19Þ

Fig. 7. Numerical simulation of (7), (11) and (16) where di, ri, ai, and bij ði; j ¼ 1; 2; 3 ði0 jÞÞ
satisfy (12) and (6). w0ðxÞ is relatively large (width is 1:0 and height is 3:0).
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Fig. 8. Snapshots of ðu; v;wÞ in Figure 7 where u, v and w are represented by the solid line, dotted

line and grey solid line, respectively.
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as shown in Figure 11 ([9], [10] and [11]). This implies that ðuðxÞ; 0; wðxÞÞ is

an unstable trivial non-constant equilibrium solution of (7) and (18) for any b23.

By using AUTO ([3]), we numerically plotted the global structure of

spatially non-constant equilibrium solutions of (7) and (18) for various b23
leaving other parameters fixed to satisfy (6) and (12). From this structure,

shown in Figure 12, several conclusions can be drawn regarding the non-

constant equilibrium solutions.

(1) The unstable trivial branch of ðuðxÞ; 0; wðxÞÞ (say B0) exists for any b23.

When b23 increases, a nontrivial branch of ðu��ðxÞ; v��ðxÞ;w��ðxÞÞ (say

B1) is bifurcated from B0 at BP (b23 ¼ bBPð¼ 110:63 . . .Þ) where vðxÞb0

but is not identically zero. This nontrivial branch B1 is still unstable.

(2) As b23 increases, the unstable nontrivial branch B1 becomes stable

through Hopf bifurcation at HB (b23 ¼ bHBð¼ 223:09 . . .Þ) so that it

is stable for b23 > bHB.

(3) Along the stable branch B1, there occurs a saddle node bifurcation

at SN (b23 ¼ bSNð¼ 308:04 . . .Þ) so that it loses stability at b23 ¼ bSN
and an unstable branch B2 exists for bLIMITð¼ 307:97 . . .Þ < b23 <

Fig. 9. Numerical simulation of (7), (11) and (16) where di, ri, ai, and bij ði; j ¼ 1; 2; 3 ði0 jÞÞ
satisfy (12) and (6). w0ðxÞ is relatively medium (width is 1:0 and height is 2:0).
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bSN , so that there coexist two nontrivial equilibrium branches B1 and

B2 where the lower branch B1 is stable, whereas the upper branch B2

is unstable.

(4) For b23 > bSN , there is no nontrivial branch.

The global structure in Figure 12 indicates that for b23 satisfying

bLIMIT < b23 < bSN , (7) and (18) possess (a) a stable trivial constant equilibrium

Fig. 10. Snapshots of ðu; v;wÞ in Figure 9 where u, v and w are drawn by a solid line, a dotted line

and a grey solid line, respectively.
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� r1
a1
; 0; 0

�
, (b) an unstable trivial non-constant equilibrium ðuðxÞ; 0; wðxÞÞ, (c)

a stable nontrivial non-constant equilibrium, and (d) an unstable nontrivial

non-constant equilibrium. When the parameters satisfy (6), the equilibrium

solutions (a)–(d) are as shown in Figures 13 (a)–(d).

Our next problem is to show the existence of the stable nontrivial non-

constant equilibrium solution (c), which indicates the competitor-mediated

coexistence of U and V . The standard approach is to begin with the sixth-

order autonomous ODEs derived from (7) to obtain non-constant solutions

Fig. 11. The unstable trivial non-constant equilibrium solution ðuðxÞ; wðxÞÞ of (9) with (19), where

u and w are drawn by a solid line and a gray line, respectively.

Fig. 12. Bifurcation diagram of spatially non-constant equilibrium solutions of (7) and (18). The

solid (resp. gray solid) line represents the stable (resp. unstable) equilibrium branches. The

parameters are fixed to satisfy (6) and (12) except for b23. B0 indicates the trivial branch

consisting of ðuðxÞ; 0; wðxÞÞ where ðuðxÞ; wðxÞÞ is shown in Figure 11. B1 and B2 indicate a

nontrivial branch where vðxÞb 0 but is not identically zero. BP (b23 ¼ bBP ¼ 110:65 . . .), HB

(b23 ¼ bHB ¼ 223:09 . . .) and SN (b23 ¼ bSN ¼ 308:04 . . .) indicate the stationary bifurcation point on

which B1 bifurcates from B0, the Hopf bifurcation point at which B1 recovers its stability, and the

saddle node point at which B1 loses its stability, respectively.
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(c). However, this is quite di‰cult because the solutions exhibit strong inho-

mogeneity, as shown in Figures 13 (c) and (d). Therefore, we instead pursue

an alternative approach: we apply a new approach which generalizes the

method of finding exact travelling wave solutions developed in [2] and obtain

semi-exact standing wave (equilibrium) solutions of (7) and (18). This is

described in the next section.

4. Semi-exact representation of equilibrium solutions

In this section, we consider the following stationary problem:

0 ¼ d1uxx þ ðr1 � a1u� b12v� b13wÞu;
0 ¼ d2vxx þ ðr2 � b21u� a2v� b23wÞv; x A R;

0 ¼ d3wxx þ ðr3 � b31u� b32v� a3wÞw:

8><
>: ð20Þ

Fig. 13. Spatial profiles of constant and non-constant equilibrium solutions of (7) and (18), where

u, v and w are represented by the solid line, dotted line and grey solid line, respectively. The

parameters are specified to satisfy (6) and (12).
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with the boundary conditions

lim
jxj!y

ðu; v;wÞðxÞ ¼ r1

a1
; 0; 0

� �
: ð21Þ

As mentioned above, ðu; v;wÞðxÞ1
� r1
a1
; 0; 0

�
and ðuðxÞ; 0; wðxÞÞ are trivial

solutions of (20) and (21) (Figures 13 (a) and (b)). Our goal is to seek

nontrivial solutions with profiles similar to (c) and (d) in Figure 13. Our new

approach, which is basically developed in [2], finds exact travelling wave

solutions of (7) under a di¤erent situation from the present one.

As a scalar version of (1), we have the Fisher–KPP equation

ut ¼ duxx þ ðr� auÞu; ð22Þ

for which it is well known that some travelling wave solution can be formulated

explicitly in terms of tanh function ([1]). For systems of two equations,

Rodrigo and Mimura ([14] and [15]) developed a systematic method to find

exact travelling wave solutions. In their result, the tanh function again plays

a key role in many cases. In the previous paper [2], an attempt was made

to generalize Rodrigo and Mimura’s method to find exact travelling wave

solutions of system (7). Unfortunately, due to the high complexity of a system

of three equations, there seems to be no simple systematic analytical method as

in the two-equation cases to find exact solutions of (7). However, from the

examples of exact solutions obtained for one equation and two equations, we

make the following observations:

(P1)
d tanh x

dx
¼ 1� tanh2 x; that is, the derivative of tanh is a simple

polynomial of tanh;

(P2) It seems natural to assume that u, v and w are quadratic poly-

nomials of tanh.

From (P1) and (P2), very interesting exact travelling solutions of (7) were

obtained [2] with the help of the software MATHEMATICA ([18]). To apply

this approach to find solutions similar to (c) and (d) in Figure 13, we assumed

that u, v and w are polynomials of tanh with degree greater than two in order

to have more complicated profiles. Unfortunately, we failed to find any exact

solution similar to (c) or (d) in Figure 13 under this assumption. Therefore,

it is natural to think that the exact solutions should be expressed in terms of

some function TðxÞ other than tanh. To mimic (P1) and (P2), we make two

assumptions as follows:

(H1) TðxÞ ! �1 as x ! �y and TðxÞ ! 1 as x ! y.
dTðxÞ
dx

is a

simple polynomial of TðxÞ containing the factor 1� T 2ðxÞ.
(H2) u, v, and w are simple polynomials of TðxÞ.

193Semi-exact solutions for R-D systems



In (H1), we must assume
dTðxÞ
dx

contains the factor 1� T 2ðxÞ so that

dTðxÞ
dx

! 0 as jxj ! y. If the degrees of the polynomials in (H1) and (H2) are

high, we have on the one hand more free coe‰cients, but on the other hand,

more algebraic conditions to satisfy when the relations in (H1) and (H2) are

put in (20). To keep the numbers of free coe‰cients and algebraic restrictions

balanced, it is better to set some of the degrees of the polynomials in (H1) and

(H2) to values greater than 2 but not too large.

Following this idea, with the help of the software MATHEMATICA, we

can obtain two types of solutions with a family of parameter n for the problem

represented by (20) and (21), for which the following two conditions on the

parameters in (20) are assumed, respectively:

d1 ¼ d2 ¼ d3 ¼ 1;

r1 ¼ 4ð2þ nÞ2; r2 ¼ 4ð2þnÞ2ð16þ11nÞ
1þn

; r3 ¼ 4ð2þnÞ2ð21þ16nÞ
1þn

;

a1 ¼ 4ð1þ nÞð2þ nÞ; b12 ¼ 4nð1þ nÞ; b13 ¼ 10ð1þ nÞ2;
b21 ¼ 20ð2þ nÞð4þ 3nÞ; a2 ¼ 4ð1þ nÞð16þ 11nÞ; b23 ¼ 28ð1þ nÞ2;
b31 ¼ 20ð2þ nÞð5þ 4nÞ; b32 ¼ 16ð1þ nÞð5þ 4nÞ; a3 ¼ 54ð1þ nÞ2;

8>>>>>>><
>>>>>>>:

ð23Þ

and

d1 ¼ d2 ¼ d3 ¼ 1;

r1 ¼ 4ð2þ nÞ2; r2 ¼ 2ð2þnÞ2ð12þ7nÞ
1þn

; r3 ¼ 2ð2þnÞ2ð17þ12nÞ
1þn

;

a1 ¼ 4ð1þ nÞð3þ nÞ; b12 ¼ 4ð�3þ nÞð1þ nÞ; b13 ¼ 28ð1þ nÞ;
b21 ¼ 10ð3þ nÞð4þ 3nÞ; a2 ¼ 2ð1þ nÞð12þ 7nÞ; b23 ¼ 28ð1þ nÞ;
b31 ¼ 10ð3þ nÞð5þ 4nÞ; b32 ¼ 6ð1þ nÞð5þ 4nÞ; a3 ¼ 54ð1þ nÞ:

8>>>>>><
>>>>>>:

ð24Þ

In the formulas (23) and (24), we have a free parameter n which is

constant. We are now in a position to give type-I and type-II solutions of

(20) and (21) as follows:

Theorem 1 (Type-I solution). Assume that (23) with a free parameter

n > 0 is satisfied. Then the problem represented by (20) and (21) admits a

solution of the form

uðxÞ ¼ 1

1þ n
½1þ ð1þ nÞT 2ðxÞ�;

vðxÞ ¼ ½1� T 2ðxÞ�2;

wðxÞ ¼ 1

1þ n
½1þ ð1þ nÞT 2ðxÞ�½1� T 2ðxÞ�2;

8>>>>>><
>>>>>>:

ð25Þ
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where T ¼ TðxÞ is the solution of the following problem

d

dx
TðxÞ ¼ ½1� T 2ðxÞ�½1þ ð1þ nÞT 2ðxÞ�; x A R;

Tð0Þ ¼ 0:

8<
: ð26Þ

We note that the solution of (26) can be obtained implicitly to give

1

2nþ 4
ln

1þ TðxÞ
1� TðxÞ

� �
þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

nþ 2
tan�1½

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
TðxÞ� ¼ x: ð27Þ

If TðxÞ of (26) or (27) is solved numerically, the profile of the solution

ðuðxÞ; vðxÞ;wðxÞÞ of (20) and (21) can be explicitly given; Figure 14 shows some

examples. This procedure is therefore called the semi-exact representation of

the solution of (20) and (21).

Theorem 2 (Type-II solution). Suppose that (24) is satisfied for any n > 3.

Then the problem represented by (20) and (21) admits a solution of the

form

uðxÞ ¼ 1

ð1þ nÞð3þ nÞ ½1þ ð1þ nÞT 2ðxÞ�2;

vðxÞ ¼ ½1� T 2ðxÞ�2;
wðxÞ ¼ ½1þ ð1þ nÞT 2ðxÞ�½1� T 2ðxÞ�2;

8>>>><
>>>>:

ð28Þ

where T ¼ TðxÞ is the solution of (26) or (27).

Figure 15 shows some examples of type-II solutions. We remark that

when n ¼ 10 in (24), the parameters are identical to those in (6) and (12). This

indicates that the stable non-trivial non-constant equilibrium solution numer-

ically obtained in Figure 13 (c) is given by the semi-exact equilibrium solution

of type-II (see Figures 13 (c) and 15 (d)).

Both Theorems 1 and 2 can be verified in MATHEMATICA directly.

However, without knowing the relations (23)–(26) and (28) in advance, it is

di‰cult to find them since the computation is quite involved. The requisite

formulas (23)–(26) and (28) can be obtained as follows: First assume TðxÞ has
a particular form, e.g. the one in (26), and n is assigned a particular prime

number, say 7. If the computation is not impractically complex and some

exact solutions can be found, together with suitable coe‰cients in the nonlinear

terms of (20), then we change to another prime number n to find corresponding

exact solutions and coe‰cients. We repeat this procedure several times. In
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each iteration, the coe‰cients in (20) obtained are factorized into prime factors.

We observe how the prime factors in these coe‰cients change according to

di¤erent prime n and determine that the linear factors nþ 1, 5þ 4n, 16þ 11n,

etc., should appear in (23)–(25) and (28). This procedure a¤ords general

formulas of exact solutions with parameter n.

It is interesting to note that type-I solutions satisfy the special relation

w ¼ uv, whereas type-II solutions satisfy w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 3Þ

p ffiffiffi
u

p
v. In the

Fig. 14. TðxÞ and semi-exact solutions of one hump ðuðxÞ; vðxÞ;wðxÞÞ of Type-I where u, v and w

are represented by the solid line, dashed line and grey solid line, respectively.
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appendix, we show more generalized versions of the semi-exact representation

of non-constant equilibrium solutions.

The formulas for type-I and type-II solutions reveal very interesting phe-

nomena when the parameter n tends to y. Let s� and sþ satisfy TðsGÞ ¼
G1=2. We consider the scaling z¼ nx, UnðzÞ ¼ uðz=nþ sÞ, VnðzÞ ¼ vðz=nþ sÞ,
WnðzÞ ¼ wðz=nþ sÞ and SnðzÞ ¼ Tðx=nþ sÞ, where s will be taken as s� or

sþ. Let UðzÞ, VðzÞ, WðzÞ and SðzÞ denote the limits of UnðzÞ, VnðzÞ, WnðzÞ

Fig. 15. TðxÞ and semi-exact solutions of two humps ðuðxÞ; vðxÞ;wðxÞÞ of Type-II where u, v and

w are represented by the solid line, dashed line and grey solid line, respectively.
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and SnðzÞ as n ! y respectively. Then for type-I solution, as n ! y, the

limit of (20) divided by n2 converges to the following system, which constitutes

the limit equations for U , V and W ,

0 ¼ d1Uzz þ ð4� 4U � 4V � 10WÞU ;

0 ¼ d2Vzz þ ð44� 60U � 44V � 28WÞV ; x A R

0 ¼ d3Wzz þ ð64� 80U � 64V � 54WÞW ;

8><
>: ð29Þ

with the boundary condition at �y

lim
z!�y

ðU ;V ;WÞðxÞ ¼ ð1; 0; 0Þ: ð30Þ

Moreover, SðzÞ satisfies the equation

d

dz
SðzÞ ¼ ½1� S2ðzÞ�S2ðZÞ; z A R;

Sð0Þ ¼ � 1
2 if s ¼ s�;

1
2 if s ¼ sþ:

�
8>>><
>>>:

ð31Þ

Note that lim
z!�y

SðzÞ ¼ �1 and lim
z!y

SðzÞ ¼ 0 if s ¼ s�; lim
z!�y

SðzÞ ¼ 0, and

lim
z!y

SðzÞ ¼ 1 if s ¼ sþ. By ODE theory or standard elliptic estimates, one

can show that UnðzÞ, VnðzÞ, WnðzÞ and SnðzÞ converge to UðzÞ, VðzÞ, WðzÞ and
SðzÞ, respectively, in C2 on any compact set as n ! y.

Therefore we have the following theorem:

Theorem 3 (One-hump solution—I). Let s ¼ s�. The problem repre-

sented by (29) and (30) admits a solution of the form

UðzÞ ¼ S2ðzÞ;
VðzÞ ¼ ½1� S2ðzÞ�2;
WðxÞ ¼ S2ðzÞ½1� S2ðzÞ�2;

8><
>: ð32Þ

where SðzÞ is the solution of (31).

Fig. 16. SðxÞ, the solution of (31)
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In [2], a one-hump travelling wave of three species is first constructed by

using the tanh function. It is fascinating that through taking a limit of the

two-hump solutions, the above theorem a¤ords a one-hump solution that can

be represented by the function SðzÞ, which di¤ers from tanh. If we take

s ¼ sþ, another one-hump solution can be constructed which equals the

solution in the above theorem with z replacing by �z.

For type-II solutions in (28), we take the same scaling as above except

that we let WnðzÞ ¼ 1=nwðz=nþ sÞ. Then as n ! y, the limit of (20) divided

by n2 converges to the following system, which constitutes the equations for the

limit functions U , V and W :

0 ¼ d1Uzz þ ð4� 4U � 4V � 28WÞU ;

0 ¼ d2Vzz þ ð14� 30U � 14V � 28WÞV ; x A R

0 ¼ d3Wzz þ ð24� 40U � 24V � 54WÞW ;

8><
>: ð33Þ

with the boundary condition at �y

lim
z!�y

ðU ;V ;WÞðzÞ ¼ ð1; 0; 0Þ: ð34Þ

We then have the following result:

Theorem 4 (One-hump solution—II). Let s ¼ s�. The problem (33) and

(34) admits a solution of the form

UðzÞ ¼ S4ðzÞ;
VðzÞ ¼ ½1� S2ðzÞ�2;
WðxÞ ¼ S2ðzÞ½1� S2ðzÞ�2;

8><
>: ð35Þ

where SðzÞ is the solution of (31).

Fig. 17. One-hump solution ðuðxÞ; vðxÞ;wðxÞÞ of (29) and (30), where u, v and w are represented

by the solid line, dashed line and grey solid line, respectively.
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We can also employ scaling di¤erent from the above. We take z ¼
ffiffiffi
n

p
x

instead of z ¼ nx and let UnðzÞ ¼ uðz=
ffiffiffi
n

p
Þ, VnðzÞ ¼ vðz=

ffiffiffi
n

p
Þ, WnðzÞ ¼ wðz=

ffiffiffi
n

p
Þ

and SnðzÞ ¼ Tðx=
ffiffiffi
n

p
Þ. Let aþ and a� denote the unique positive root and

unique negative root of

1

2
ln

1þ a

1� a

� �
� 1

a
¼ 0 ð36Þ

respectively. Then from type-I solutions, we obtain the following theorem.

Theorem 5 (Singular limit). UnðzÞ, VnðzÞ, WnðzÞ and SnðzÞ converge to

UðzÞ, VðzÞ, WðzÞ and SðzÞ pointwise as n ! y respectively, where

UðzÞ ¼ S2ðzÞ;
VðzÞ ¼ ½1� S2ðzÞ�2;
WðxÞ ¼ S2ðzÞ½1� S2ðzÞ�2;

8><
>: ð37Þ

and

SðzÞ ¼

�1 for z < �p=2;

a� for z ¼ �p=2;

0 for � p=2 < z < p=2;

aþ for z ¼ p=2;

1 for z > p=2:

8>>>>><
>>>>>:

ð38Þ

Proof. By (26), �1 < SnðzÞ ¼ Tðx=
ffiffiffi
n

p
Þ < 1 and SnðzÞ is monotone.

Therefore, SnðzÞ > 0 for z > 0 and SnðzÞ < 0 for z < 0. Let z be fixed.

Assume that for some sequence nk ! y, limk!y Snk ðzÞ ¼ a and

limk!y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
Snk ðzÞ ¼ b. Multiplying (27) by

ffiffiffiffiffi
nk

p
, we obtainffiffiffiffiffi

nk
p

2nk þ 4
ln

1þ Snk ðzÞ
1� Snk ðzÞ

� �
þ

ffiffiffiffiffi
nk

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p

nk þ 2
tan�1½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
Snk ðzÞ� ¼ z: ð39Þ

Fig. 18. One-hump solution ðuðxÞ; vðxÞ;wðxÞÞ of (33) and (34), where u, v and w are represented

by the solid line, dashed line and grey solid line, respectively.
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The two terms on the left-hand side of (39) have the same sign. Thus, we haveffiffiffiffiffi
nk

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p

nk þ 2
tan�1½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
Snk ðzÞ�a z for zb 0: ð40Þ

As k ! y, (40) becomes

tan�1½b�a z for zb 0: ð41Þ
This implies

a ¼ 0; 0a b < y for 0a z < p=2: ð42Þ

Therefore, we conclude that SðzÞ ¼ limn!y SnðzÞ exists and equals 0 for 0a

z < p=2. By a similar argument, we can obtain SðzÞ ¼ limn!y SnðzÞ ¼ 0 for

�p=2 < za 0.

For z ¼ p=2, we expand (39) in terms of n to obtain

1ffiffiffiffiffi
nk

p
1

2
ln

1þ a

1� a

� �� 	
þ p

2
�
ðyffiffiffiffiffiffiffiffi

nkþ1
p

a

1

1þ z2
dzþ o

1ffiffiffiffiffi
nk

p
� �

¼ p

2
:

Let y ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
. We have

1ffiffiffiffiffi
nk

p
1

2
ln

1þ a

1� a

� �
�
ðy
a

1
1

nkþ1 þ y2
dy

( )
þ o

1ffiffiffiffiffi
nk

p
� �

¼ 0: ð43Þ

Since Snk is increasing, we have ab 0. (43) implies a > 0, otherwise the

integral on the left-hand side of (43) will tend to infinity as nk ! y. In

addition, we have a < 1, otherwise the leading term on the left-hand side of

(43) will become unbounded and (43) cannot be balanced. Let nk ! y. The

leading term in (43) must satisfy

1

2
ln

1þ a

1� a

� �
�
ðy
a

1

y2
dy ¼ 1

2
ln

1þ a

1� a

� �
� 1

a
¼ 0: ð44Þ

From this, we conclude that Sðp=2Þ ¼ limn!y Snðp=2Þ exists and Sðp=2Þ ¼ aþ.

Similarly, we can show that Sð�p=2Þ ¼ a�.

For z > p=2, a must take the values G1, otherwise (39) cannot hold for

large nk. Since Sn is increasing and Sn a 1, we have a ¼ 1 and conclude

SðzÞ ¼ 1 for z > p=2. By a similar argument, we obtain SðzÞ ¼ �1 for

z < �p=2. The formulas for U , V , and W follow from (25) directly. The

proof is complete.

We remark that U , V , W and S in the above theorem no longer satisfy

second-order di¤erential equations. Before taking the limit, Un satisfies an

equation of the from

0 ¼ 1

n
d1ðUnÞzz þ a bounded term: ð45Þ
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The interesting point of Theorem 5 is as follows. For an equation like (45),

with its di¤usion coe‰cient tending to zero as n ! y, one usually observes

that the limit of its non-trivial solution as n ! y has only one discontinuity

across R. However, our theorem shows that in the limit n ! y, there are

two, not only one, jump discontinuities at z ¼Gp=2 across R for our problem.

To our knowledge, Theorem 5 is the first example in the literature of a

reaction-di¤usion system with this property.

For type-II solutions, we can also obtain a similar result as Theorem 5.

5. Concluding remarks

We investigated a three-species competition-di¤usion system and used

numerical methods to plot the global structures of equilibrium solutions when

some parameter was varied. From this, we found that, under some condi-

tions, stable non-constant equilibrium solutions with two humps exist. In

order to obtain these solutions, we developed a semi-exact representation

method. Ecologically speaking, this result indicates the coexistence of strongly

competing species in the presence of an exotic competing species, from the

viewpoint of competitor-mediated coexistence.

6. Appendix

We consider the problem (20) and (21). Employing a similar approach to

that used in Section 4, we show in this section that the type-I and type-II

solutions with a family of free parameter n presented in Section 4 can be

generalized into solutions with a family of five or six free parameters. Indeed,

suppose that (46) below holds.

r1 ¼
4d1ð1þ k1Þ2

k2
1

; r2 ¼
4d2ð1þ k1Þ2ð11þ 5k1Þ

k2
1

;

r3 ¼
4d3ð1þ k1Þ2ð16þ 5k1Þ

k2
1

; ð46aÞ

a1 ¼
4d1ð1þ k1Þ

k2
1

; a2 ¼
4d2ð11þ 5k1Þ

k2
1k2

; a3 ¼
54d3

k2
1

; ð46bÞ

b12 ¼
�4d1ð�1þ k1Þ

k2
1k2

; b13 ¼
10d1

k2
1

; ð46cÞ

b21 ¼
20d2ð1þ k1Þð3þ k1Þ

k2
1

; b23 ¼
28d2

k2
1

; ð46dÞ
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b31 ¼
20d3ð1þ k1Þð4þ k1Þ

k2
1

; b32 ¼
16d3ð4þ k1Þ

k2
1k2

; ð46eÞ

a ¼ 1

k1
; ð46fÞ

0 < k1 < 1; k2 > 0: ð46gÞ

We note that the free parameters in (46) are d1, d2, d3, k1, and k2. Then

Theorem 6 below follows.

Theorem 6. Assume that (46) holds. Then the problem represented by

(20) and (21) admits a solution of the form

uðxÞ ¼ k1 þ T 2ðxÞ;
vðxÞ ¼ k2½1� T 2ðxÞ�2;
wðxÞ ¼ ½k1 þ T 2ðxÞ�½1� T 2ðxÞ�2;

8><
>: ð47Þ

where T ¼ TðxÞ is the solution of the following boundary value problem

d

dz
TðxÞ ¼ ½1� T 2ðxÞ�½1þ aT 2ðxÞ�; z A R;

Tð0Þ ¼ 0:

8<
: ð48Þ

We remark here that when d1 ¼ d2 ¼ d3 ¼ k2 ¼ 1 and k1 ¼ 1
nþ1 , Theorem 6

reduces to Theorem 1.

Furthermore, assume (49) below is true.

r1 ¼ 4d1ð1þm1Þ2; r2 ¼
2d2ð1þm1Þ2ð5þ 7m1Þ

m1
;

r3 ¼
2d3ð1þm1Þ2ð5þ 12m1Þ

m1
; ð49aÞ

a1 ¼
4d1
k1

; a2 ¼
2d2m1ð5þ 7m1Þ

k2
; a3 ¼ 54d3m1; ð49bÞ

b12 ¼
4d1ð�4þm1Þm1

k2
; b13 ¼ 28d1m1; ð49cÞ

b21 ¼
10d2ð1þ 3m1Þ

k1m1
; b23 ¼ 28d2m1; ð49dÞ

b31 ¼
10d3ð1þ 4m1Þ

k1m1
; b32 ¼

6d3m1ð1þ 4m1Þ
k2

; ð49eÞ
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a ¼ m1; ð49fÞ

k1; k2 > 0; m1 > 4: ð49gÞ

We note that the free parameters in (49) are d1, d2, d3, k1, k2 and m1. Then

Theorem 7 below follows.

Theorem 7. Suppose that (49) is true. Then the problem represented by

(20) and (21) possesses a solution of the form

uðxÞ ¼ k1½1þm1T
2ðxÞ�2;

vðxÞ ¼ k2½1� T 2ðxÞ�2;
wðxÞ ¼ ½1þm1T

2ðxÞ�½1� T 2ðxÞ�2;

8><
>: ð50Þ

where T ¼ TðxÞ is the solution of the following boundary value problem

d

dz
TðxÞ ¼ ½1� T 2ðxÞ�½1þ aT 2ðxÞ�; z A R;

Tð0Þ ¼ 0:

8><
>: ð51Þ

We remark here that Theorem 7 includes Theorem 2 as a special case in

the sense that Theorem 7 becomes Theorem 2 if further conditions d1 ¼ d2 ¼
d3 ¼ k2 ¼ 1, m1 ¼ 1þ n, and k1 ¼ 1

ð1þnÞð3þnÞ are assumed.
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