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Abstract. The main purpose of this paper is to determine the coarse orbit types of all

non-Kählerian, symplectic homogeneous spaces G=H with G non-compact simple and H

compact. Our result, together with the results of Wang (Amer. J. Math., 1954) and

Yichao (Sci. China Ser. A, 1986), enables one to know all dual manifolds of every

Kähler C-space.

1. Introduction and the main result

The main purpose of this paper is to determine the coarse orbit types of

all non-Kählerian, symplectic homogeneous spaces G=H with G non-compact

simple and H compact (see Definition 6 (p. 17) for the definition of coarse

orbit type):

Theorem 1. The following is the coarse orbit type of every non-Kählerian,

symplectic homogeneous space G=H with G non-compact simple and H compact:

G H No.

SO0ð2k; 2l � 2k þ 1Þ
lb 2

2a ka l

BI

Uði1Þ �Uði2 � i1Þ � � � � �Uðia � ia�1Þ �Uðk � iaÞ
�Uð j1 � kÞ �Uð j2 � j1Þ � � � � �Uð jb � jb�1Þ
�SOð2l � 2jb þ 1Þ
0a aa k � 1, i0 :¼ 0, 1a i1 a i2 a � � �a ia a k � 1

0a ba l � k, j0 :¼ k, k þ 1a j1 a j2 a � � �a jb a l

1

Spðk; l � kÞ
lb 3

1a ka l � 1

Uði1Þ �Uði2 � i1Þ � � � � �Uðia � ia�1Þ �Uðk � iaÞ
�Uð j1 � kÞ �Uð j2 � j1Þ � � � � �Uð jb � jb�1Þ
�Spðl � jbÞ
0a aa k � 1, i0 :¼ 0, 1a i1 a i2 a � � �a ia a k � 1

0a ba l � k, j0 :¼ k, k þ 1a j1 a j2 a � � �a jb a l

1
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G H No.

Uðm1Þ �Uðm2 �m1Þ � � � � �Uðmc �mc�1Þ
�Spðk �mcÞ �Uðn1 � kÞ �Uðn2 � n1Þ
� � � � �Uðnd � nd�1Þ �Uðl � ndÞ
0a ca k, m0 :¼ 0, 1am1 am2 a � � �amc a k

0a da l � k � 1, n0 :¼ k,

k þ 1a n1 a n2 a � � �a nd a l � 1

2

CII

Remark. Spðk; l � kÞ=H1 ¼ Spðl � k; kÞ=H2, where we

assume H2 to be a subgroup of Spðl � k; kÞ by identifying

Spðk; l � kÞ with Spðl � k; kÞ. Here Hi are the same as

in No.i ði ¼ 1; 2Þ.

SO0ð2k; 2l � 2kÞ
lb 4

2a ka l � 2

Uði1Þ �Uði2 � i1Þ � � � � �Uðia � ia�1Þ �Uðk � iaÞ
�Uð j1 � kÞ �Uð j2 � j1Þ � � � � �Uð jb � jb�1Þ
�SOð2l � 2jbÞ
0a aa k � 1, i0 :¼ 0, 1a i1 a i2 a � � �a ia a k � 1

0a ba l � k, j0 :¼ k, k þ 1a j1 a j2 a � � �a jb a l

1

Uðm1Þ �Uðm2 �m1Þ � � � � �Uðmc �mc�1Þ
�SOð2k � 2mcÞ �Uðn1 � kÞ �Uðn2 � n1Þ
� � � � �Uðnd � nd�1Þ �Uðl � ndÞ
0a ca k, m0 :¼ 0, 1am1 am2 a � � �amc a k

0a da l � k � 1, n0 :¼ k,

k þ 1a n1 a n2 a � � �a nd a l � 1

2

DI

Remark. SO0ð2k; 2l � 2kÞ=H1 ¼ SO0ð2l � 2k; 2kÞ=H2,

where we assume H2 to be a subgroup of SO0ð2l � 2k; 2kÞ
by identifying SO0ð2k; 2l � 2kÞ with SO0ð2l � 2k; 2kÞ.
Here Hi are the same as in No.i ði ¼ 1; 2Þ.

E6ð2Þ A5 � T , A4 � A1 � T , A2 � A2 � A1 � T 1

A4 � T 2, A3 � A1 � T 2, A2 � A2 � T 2

A2 � A1 � A1 � T 2

2

A3 � T 3, A2 � A1 � T 3, A1 � A1 � A1 � T 3 3

A2 � T 4, A1 � A1 � T 4 4

A1 � T 5 5

EII T 6 6

E7ð7Þ A6 � T , A4 � A2 � T 1

A5 � T 2, A4 � A1 � T 2, A3 � A2 � T 2

A2 � A2 � A1 � T 2

2
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G H No.

A4 � T 3, A3 � A1 � T 3, A2 � A2 � T 3

A2 � A1 � A1 � T 3

3

A3 � T 4, A2 � A1 � T 4, A1 � A1 � A1 � T 4 4

A2 � T 5, A1 � A1 � T 5 5

A1 � T 6 6

EV T 7 7

E7ð�5Þ A5 � A1 � T , A3 � A2 � A1 � T , A1 �D5 � T

D6 � T

1

A5 � T 2, A4 � A1 � T 2, A3 � A2 � T 2

A3 � A1 � A1 � T 2

A2 � A2 � A1 � T 2, A2 � A1 � A1 � A1 � T 2

A1 �D4 � T 2, D5 � T 2

2

A4 � T 3, A3 � A1 � T 3, A2 � A2 � T 3

A2 � A1 � A1 � T 3

A1 � A1 � A1 � A1 � T 3, D4 � T 3

3

A3 � T 4, A2 � A1 � T 4, A1 � A1 � A1 � T 4 4

A2 � T 5, A1 � A1 � T 5 5

A1 � T 6 6

EVI T 7 7

E8ð8Þ A7 � T , A4 � A3 � T , A2 �D5 � T , D7 � T 1

A6 � T 2, A5 � A1 � T 2, A4 � A2 � T 2

A4 � A1 � A1 � T 2

A3 � A3 � T 2, A3 � A2 � A1 � T 2

A2 � A2 � A1 � A1 � T 2

A2 �D4 � T 2, A1 �D5 � T 2, D6 � T 2

2

A5 � T 3, A4 � A1 � T 3, A3 � A2 � T 3

A3 � A1 � A1 � T 3

A2 � A2 � A1 � T 3, A2 � A1 � A1 � A1 � T 3

A1 �D4 � T 3, D5 � T 3

3

A4 � T 4, A3 � A1 � T 4, A2 � A2 � T 4

A2 � A1 � A1 � T 4

A1 � A1 � A1 � A1 � T 4, D4 � T 4

4

A3 � T 5, A2 � A1 � T 5, A1 � A1 � A1 � T 5 5
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G H No.

A2 � T 6, A1 � A1 � T 6 6

A1 � T 7 7

EVIII T 8 8

E8ð�24Þ A6 � A1 � T , A4 � A2 � A1 � T , A1 � E6 � T

E7 � T

1

A6 � T 2, A5 � A1 � T 2, A4 � A2 � T 2

A4 � A1 � A1 � T 2

A3 � A2 � A1 � T 2, A2 � A2 � A1 � A1 � T 2

A1 �D5 � T 2

D6 � T 2, E6 � T 2

2

A5 � T 3, A4 � A1 � T 3, A3 � A2 � T 3

A3 � A1 � A1 � T 3

A2 � A2 � A1 � T 3, A2 � A1 � A1 � A1 � T 3

A1 �D4 � T 3, D5 � T 3

3

A4 � T 4, A3 � A1 � T 4, A2 � A2 � T 4

A2 � A1 � A1 � T 4

A1 � A1 � A1 � A1 � T 4, D4 � T 4

4

A3 � T 5, A2 � A1 � T 5, A1 � A1 � A1 � T 5 5

A2 � T 6, A1 � A1 � T 6 6

A1 � T 7 7

EIX T 8 8

F4ð4Þ A2 � A1 � T , C3 � T 1

A2 � T 2, A1 � A1 � T 2, B2 � T 2 2

A1 � T 3 3

FI T 4 4

F4ð�20Þ A2 � A1 � T , B3 � T 1

A2 � T 2, A1 � A1 � T 2, B2 � T 2 2

A1 � T 3 3

FII T 4 4

G2ð2Þ A1 � T 1

G T 2 2
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Let G be a connected, absolutely simple Lie group whose center ZðGÞ
is trivial, and let G=H be a symplectic homogeneous space. A fundamental

problem on G=H is as follows: ‘‘What is a necessary and su‰cient condition

for G=H to be Kählerian?’’ The result of Borel [Br] enables us to see the

condition (see Matsushima [Ma1] also):

( i ) The isotropy subgroup H must be compact when G=H is Kählerian;

( ii ) G=H is compact Kählerian if and only if G is compact;

(iii) G=H is non-compact Kählerian if and only if H is compact and

G=K is a Hermitian symmetric space of non-compact type. Here

K denotes a maximal compact subgroup of G such that HHK .

Case (ii): In 1954 Wang [Wa] has determined the coarse orbit types of all

compact Kählerian homogeneous spaces in Case (ii), where we need to add

two items D6 and A1 �D5 into the list of maximal semisimple C-subgroups of

E7 in Theorem VIII [Wa, p. 31] for the sake of completeness (cf. Bordemann-

Forger-Römer [Bd-Fo-Rö]). Case (iii): In 1986 Yichao [Yi] has determined

the coarse orbit types of all non-compact Kählerian homogeneous spaces in

Case (iii), where we need to read SO0ðn; 2Þ instead of SO0ð2nÞ in the case (4) of

Theorem 1 [Yi, p. 450–451]. That is to say, one knows the coarse orbit types

of all Kählerian homogeneous spaces in Cases (ii) and (iii).

Symplectic homogeneous space G=H

G H

(ii) compact — Kähler

(iii) non-compact compact Kähler or non-Kähler

Theorem 1 provides the coarse orbit types of all non-Kählerian, symplectic

homogeneous spaces G=H with G non-compact simple and H compact. From

this and Yichao’s result [Yi] one can know all dual manifolds G=V of Kähler

C-spaces GC=B in the case where GC are simple (see Gri‰ths-Schmid [Gr-Sc,

p. 260] for the definition of dual manifold of a Kähler C-space). Consequently,

Theorem 3 (p. 14) and Wang’s result [Wa] enable one to know all dual

manifolds of every Kähler C-space.

This paper is organized as follows:

§ 2 Preliminaries

In this section we recall the definition of symplectic homogeneous

space. Moreover, we introduce the notion of infinitesimal symplectic

homogeneous space (see Definition 2) and we investigate a relation

between symplectic homogeneous spaces and infinitesimal ones.

§ 3 A structure theorem

5Symplectic homogeneous spaces G=H with H compact



For a symplectic homogeneous space G=H with G non-compact

semisimple, we clarify a necessary and su‰cient condition for H to

be compact (see Theorem 2) by taking advantage of the notion of

S-element (cf. Definition 3).

§ 4 The coarse orbit types of non-Kählerian, symplectic homogeneous

spaces G=H with G non-compact simple and H compact

We determine the coarse orbit type of each non-Kählerian,

symplectic homogeneous space G=H with G non-compact simple

and H compact by use of Theorem 2.

Notations. Throughout this paper we use the following notations:

(n1) ZðGÞ: the center of a Lie group G,

(n2) Bg: the Killing form of a Lie algebra g,

(n3) Lie G: the Lie algebra of a Lie group G, i.e., the set of all left-

invariant vector fields on G,

(n4) Ad: the adjoint representation of a Lie group,

(n5) ad: the adjoint representation of a Lie algebra,

(n6) CGðWÞ: the centralizer of an element W A Lie G in a Lie group G,

i.e., CGðWÞ :¼ fg A G jAdðgÞW ¼ Wg,
(n7) cgðWÞ: the centralizer of an element W A g in a Lie algebra g,

(n8) G0: the identity component of a Lie group G,

(n9) Ag: the inner automorphism of a Lie group G determined by an

element g A G.

We sometimes denote the Lie algebra of a Lie group by the corresponding

German small letter.

2. Preliminaries

2.1. The definition of symplectic homogeneous space. Let us recall the def-

inition of symplectic homogeneous space.

Definition 1 (cf. Chu [Ch, p. 147]). Let G be a connected Lie group,

and let H be a closed subgroup of G. Then the coset space G=H is called a

symplectic homogeneous space, if it admits a G-invariant symplectic form W.

Remark 1. Definition 1 is slightly di¤erent from the original definition in

Chu [Ch, p. 147]. Indeed, we do not impose the condition ‘‘H is connected’’

on Definition 1.

2.2. The definition of infinitesimal symplectic homogeneous space. We first

introduce the notion of infinitesimal symplectic homogeneous space, and

afterwards investigate a relation between symplectic homogeneous spaces

and infinitesimal ones.

6 Nobutaka Boumuki



Definition 2. (i) Let g be a real Lie algebra, and let o be a skew-

symmetric bilinear form on g satisfying

oð½X ;Y �;ZÞ þ oð½Y ;Z�;X Þ þ oð½Z;X �;YÞ ¼ 0 ð1Þ

for all X ;Y ;Z A g. Then we call the pair ðg;oÞ or a triplet ðg; go;oÞ an

infinitesimal symplectic homogeneous space or an ISH space, where go is a

subalgebra of g defined by

go :¼ fX A g joðX ;YÞ ¼ 0 for all Y A gg: ð2Þ

(ii) We say that an ISH space ðg;oÞ is trivial if o1 0.

Let us give an example of ISH space:

Example 1. Let g be a real Lie algebra. Then ðg;og
W Þ is an ISH space

for any W A g, where o
g
W is given by

o
g
W ðX ;Y Þ :¼ BgðW ; ½X ;Y �Þ for X ;Y A g: ð3Þ

From now on we start studying a relation between symplectic homoge-

neous spaces and ISH spaces.

Lemma 1. Let ðG=H;WÞ be a symplectic homogeneous space, and let p

denote the projection from G onto G=H. Then ðg;oÞ is an ISH space, where

g :¼ Lie G and o is given by

oðX ;YÞ :¼ ðp�WÞðX ;YÞ for X ;Y A g:

Furthermore, Lie H coincides with go (see (2) for go).

Proof. It is natural that o is a skew-symmetric bilinear form on g. Let

us show that o satisfies (1). Since W is G-invariant, o is left-invariant. Hence

one knows that, for any X ;Y A g,

oðX ;YÞ is a constant function ð4Þ

(ref. Matsushima [Ma2, p. 193]). Besides, o is closed (i.e., do ¼ 0) because W

is closed. Consequently, it follows from (4) that for any X ;Y ;Z A g,

0 ¼ ðdoÞðX ;Y ;ZÞ

¼ XðoðY ;ZÞÞ � Y ðoðX ;ZÞÞ þ ZðoðX ;YÞÞ

� oð½X ;Y �;ZÞ þ oð½X ;Z�;YÞ � oð½Y ;Z�;XÞ

¼ �oð½X ;Y �;ZÞ þ oð½X ;Z�;YÞ � oð½Y ;Z�;X Þ:

7Symplectic homogeneous spaces G=H with H compact



This implies that o satisfies (1) because o is skew-symmetric. Now, the rest of

proof is to confirm that

h ¼ go;

where h :¼ Lie H. First, let us show that hH go. Take an element X A h.

Then dpðXÞ ¼ 0, and so one has oðX ;Y Þ ¼ WðdpðXÞ; dpðYÞÞ ¼ 0 for every

Y A g. Therefore X A go, and hH go. Next, let us deduce that the converse

inclusion also holds. Note that Wo is a symplectic form on the tangent space

ToðG=HÞ and ðdpÞe : TeG ! ToðG=HÞ is surjective, where o :¼ pðeÞ. Take an

element Z A go. Then (2) implies that for any Y A g, one obtains 0 ¼ oðZ;Y Þ
¼ WðdpðZÞ; dpðY ÞÞ; in particular, 0 ¼ WoððdpÞeðZeÞ; ðdpÞeðYeÞÞ. Hence we see

that ðdpÞeðZeÞ ¼ 0, and dpðZÞ ¼ 0 because Z is left-invariant. This shows

Z A h, and go H h. r

The following proposition will play an important role in Section 3:

Proposition 1 (cf. Matsushima [Ma1, p. 54–55]). Let ðG=H;WÞ be a

symplectic homogeneous space with G semisimple, and let ðg;oÞ denote the ISH

space constructed from ðG=H;WÞ in the way of Lemma 1. Then, there exists a

unique element W A g such that o ¼ o
g
W (see (3) for o

g
W). In this case, H lies

between CGðWÞ0 and CGðWÞ.

Proof. Théorème 1 in Matsushima [Ma1, p. 54] and its proof enable one

to conclude this proposition. r

Definition 3. With the same setting as in Proposition 1; we say that

the unique element W is the symplectic element or the S-element of ðG=H;WÞ.
Remark that the S-element W of ðG=H;WÞ satisfies two conditions (s1) and

(s2):

ðs1Þ o
g
W ¼ p�W; ðs2Þ CGðWÞ0 HHHCGðWÞ;

where p denotes the projection from G onto G=H.

3. A structure theorem

In this section we clarify a necessary and su‰cient condition for H to

be compact, for a symplectic homogeneous space G=H with G non-compact

semisimple (see Theorem 2).

3.1. Let ðG=H;WÞ be a symplectic homogeneous space with G semisimple

and H compact, and let W be the S-element of ðG=H;WÞ. Then W satisfies

CGðWÞ0 HHHCGðWÞ. We will prove H ¼ CGðWÞ0 ¼ CGðWÞ later (see

Proposition 2). For this reason we first recall the definition of elliptic element:

8 Nobutaka Boumuki



Definition 4 (cf. Kobayashi [Ko]). Let g be a real semisimple Lie

algebra. An element X A g is called semisimple, if the endomorphism ad X

of g is semisimple. A semisimple element Z A g is said to be elliptic, if all

eigenvalues of ad Z are purely imaginary.

The following lemma is known (e.g. Kobayashi-Ono [Ko-On, Lemma

(6.1), p. 83, and its proof, p. 85]), but we prove it for the sake of completeness:

Lemma 2. Let G be a connected semisimple Lie group, and let Z be an

elliptic element of g ¼ Lie G. Then, the centralizer CGðZÞ is connected.

Proof. First, let us prepare notations j, K and P for proof. Since Z

is elliptic, there exists a maximal compact subalgebra k of g containing Z.

Denote by p the orthogonal complement of k in g with respect to Bg. In this

case one gets a Cartan decomposition of g,

g ¼ kl p ðdirect sumÞ with Z A k;

and the Cartan involution y of g by setting yðAþ BÞ :¼ A� B for A A k,

B A p. Define an inner product h� ; �i on g by hX ;Yi :¼ �BgðyðXÞ;YÞ for

X ;Y A g; and consider g as a Euclidean space with respect to h� ; �i hereafter.

Then, one can obtain a di¤eomorphism j from K � P onto G defined by

j : K � P ! G; ðk; pÞ 7! k � p;

where K :¼ fg A G jAdðgÞ A OðgÞg, P :¼ expðpÞ and we denote by OðgÞ (resp.

exp) the orthogonal group on g (resp. the exponential map of G). In addition,

one can see that

Lie K coincides with k ð5Þ

and expjp : p ! P is di¤eomorphic, where we denote by expjp the restriction

of exp to p (cf. Onishchik-Vinberg [On-Vi, p. 256–257, Theorem 2 and its

proof ]1). Now, we will prove that CGðZÞ is connected by taking steps (S1),

(S2) and (S3):

(S1) CKðZÞ � CPðZÞ is homeomorphic to CGðZÞ via j, where CPðZÞ is a

closed subset of P given by CPðZÞ :¼ fp A P jAdðpÞZ ¼ Zg. Here

we equip CKðZÞ � CPðZÞ with the induced topology from K � P;

(S2) CPðZÞ is connected;

(S3) CKðZÞ is connected.

1There are some minor misprints in [On-Vi]. p. 256, " 11, Read Ad g A OðgÞ instead of

Ad g A OðgÞ; p. 256, " 6, Read Problem 7 instead of Problem 9; p. 256, " 3, Read P̂P ¼ exp ad p instead

of P̂P ¼ exp ad g; p. 257, # 1, Read one-to-one and onto instead of one-to-one; p. 257, # 3, Read

k̂k A OðgÞ instead of k̂k A OðgÞ; p. 257, # 11, Read bijective instead of injective; p. 257, " 11 and 10,

Read Cðg1; g2Þ ¼ id instead of cðg1; g2Þ ¼ id; p. 257, " 10, Read g1; g2 A G instead of g1; g2 A K.

9Symplectic homogeneous spaces G=H with H compact



(S1): Since jðCKðZÞ � CPðZÞÞHCGðZÞ is clear, it su‰ces to verify that

for any x A CGðZÞ, there exist k A CKðZÞ and p A CPðZÞ satisfying k � p ¼
jðk; pÞ ¼ x. Take any element x A CGðZÞ. Since Z ¼ AdðxÞZ one has

exp tZ ¼ exp t AdðxÞZ ¼ Axðexp tZÞ ¼ x � exp tZ � x�1 ð6Þ

for every t A R. Henceforth, we denote exp tZ by zt. There exist a unique

k A K and a unique p A P such that k � p ¼ x (because j : K � P ! G is

di¤eomorphic). Let us show that k A CKðZÞ and p A CPðZÞ. From (6) it

is obvious that zt ¼ x � zt � x�1, so that

k � p ¼ x ¼ zt � x � z�1
t ¼ ðzt � k � z�1

t Þ � ðzt � p � z�1
t Þ:

It follows from ½k; p�H p and (5) that Ad K0ðpÞH p. Since zt ¼ exp tZ A K0,

P ¼ expðpÞ and Ad K0ðpÞH p we deduce that zt � k � z�1
t A K and zt � p � z�1

t A P;

and thus k ¼ zt � k � z�1
t and p ¼ zt � p � z�1

t by the uniqueness. This yields

exp tZ ¼ zt ¼ k � zt � k�1 ¼ exp t AdðkÞZ and exp tZ ¼ exp t AdðpÞZ for every

t A R. Consequently we obtain AdðkÞZ ¼ Z ¼ AdðpÞZ; and k A CKðZÞ, p A
CPðZÞ.

(S2): Now, let us demonstrate that CPðZÞ is (arcwise) connected. Take

any element y A CPðZÞ and express it as y ¼ exp Y (Y A p). Then one deduces

zt ¼ y � zt � y�1 by arguments similar to those in (S1). Therefore we have

exp Y ¼ y ¼ AztðyÞ ¼ exp AdðztÞY :

Since exp : p ! P is injective and AdðztÞY A p, we perceive that Y ¼ AdðztÞY
¼ Adðexp tZÞY ¼ exp t ad ZðY Þ for every t A R; and hence ½Z;Y � ¼ 0. By

½Z;Y � ¼ 0 we conclude that for every t A R,

Adðexp tYÞZ ¼ exp t ad Y ðZÞ ¼
X
nb0

tn

n!
ðad YÞnZ ¼ Z:

This assures that the whole 1-parameter subgroup fexp tY j t A Rg lies in

CPðZÞ, where exp tY A P follows from P ¼ expðpÞ and Y A p. So, one can

join y ¼ exp tY jt¼1 to the unite element e ¼ exp tY jt¼0 A CPðZÞ by an arc in

CPðZÞ.
(S3): Note that K is connected because j : K � P ! G is di¤eomorphic

and both P ¼ expðpÞ and G are connected. Since k is compact one can

decompose it as

k ¼ kss l zðkÞ ðdirect sumÞ;

where kss (resp. zðkÞ) denotes the semisimple part (resp. center) of k. This

enables us to uniquely express Z as follows:

Z ¼ Zss þ Zz

10 Nobutaka Boumuki



(Zss A kss, Zz A zðkÞ). Denote by Kss and ZðKÞ0 the connected Lie subgroups

of K corresponding to kss and zðkÞ, respectively. Now, let us conclude that

CKðZÞ is connected. Since K is connected, one sees that K ¼ Kss � ZðKÞ0; so
that

CKðZÞ ¼ CKss
ðZssÞ � ZðKÞ0 ð7Þ

because AdðkÞZz ¼ Zz for any k A K , and AdðcÞX ¼ X for any c A ZðKÞ0 and

X A k. Since Kss is connected and kss is compact semisimple, Kss is com-

pact. This implies that CKss
ðZssÞ is connected, and it follows from (7) that

CKðZÞ is connected. r

Now, let us prove

Proposition 2. Let ðG=H;WÞ be a symplectic homogeneous space with G

semisimple and H compact, and let W be the S-element of ðG=H;WÞ. Then, the

following three items hold:

( i ) W is an elliptic element of g and H ¼ CGðWÞ0 ¼ CGðWÞ;
( ii ) G=H is simply connected;

(iii) H contains the center ZðGÞ, and ZðGÞ is finite.

Proof. (i): Proposition 1 assures that W satisfies

CGðWÞ0 HHHCGðWÞ: ð8Þ

Since Lie CGðWÞ ¼ Lie H and H is compact, there exists an ad W -invariant

inner product on g. Hence, W is an elliptic element of g. Therefore Lemma

2 implies that CGðWÞ is connected; and hence

H ¼ CGðWÞ0 ¼ CGðWÞ

follows from (8).

(ii): Let ð ~GG;cÞ denote the universal covering group of G. Note that

dc : ~gg ! g is a Lie algebra isomorphism. Let us identify ~gg with g via dc. In

this case W is an elliptic element of ~gg and C ~GGðWÞ is connected by Lemma 2.

Therefore ~GG=C ~GGðWÞ is simply connected, and hence G=H is also simply

connected because ~GG=C ~GGðWÞ is homeomorphic to G=CGðWÞ ¼ G=H.

(iii): On the one hand, ZðGÞ is discrete because G is semisimple. On the

other hand, ZðGÞHH comes from (i) H ¼ CGðWÞ. Consequently, we deduce

(iii) because H is compact. r

Lemma 3. For any symplectic homogeneous space G=H with G semisimple

and H compact, there exists a maximal compact subgroup of G containing H.

Proof. If G is compact, then G in itself can take on the role of the above

subgroup. So, let us consider the case where G is non-compact hereafter.
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Note that the center ZðGÞ is finite from Proposition 2. Let G ¼ K � P denote

the same decomposition as in the proof of Lemma 2. In this case K is

compact because ZðGÞ is finite (cf. Onishchik-Vinberg [On-Vi, p. 258,

Corollary 6]); and so ðG;KÞ is a Riemannian symmetric pair of non-compact

type. Hence there exists a maximal compact subgroup K 0 of G satisfying

HHK 0 by Theorem 2.1 in Helgason [He, p. 256]. r

Proposition 2 allows us to deduce

Corollary 1. Let G=H be a symplectic homogeneous space with G

semisimple and H compact, and let K be a maximal compact subgroup of G

such that HHK (ref. Lemma 3). Then rankðgÞ coincides with rankðkÞ, i.e.,
every Cartan involution of g is inner. This implies that there are no symplectic

homogeneous spaces G=H with H compact, in the case where G is one of the

following:

SLðn;RÞ with nb 3, SU �ð2nÞ with nb 2,

SO0ð2n� 2k � 1; 2k þ 1Þ with nb 4 and 0a ka n� 1,

E6ð6Þ, E6ð�26Þ,

SLðn;CÞ with nb 2, SOðn;CÞ with nb 3, Spðn;CÞ with nb 1,

GC
2 , F C

4 ,

EC
6 , EC

7 , EC
8 .

Proof. By Proposition 2 there exists an elliptic element W of g such that

CGðWÞ ¼ H. Since W is semisimple there exists a Cartan subalgebra t of g

containing W . It is obvious that tH cgðWÞ; and therefore CGðWÞ ¼ HHK

yields tH k. Hence rankðgÞ ¼ rankðkÞ. r

3.2. This subsection is devoted to proving

Theorem 2. Let ðG=H;WÞ be a symplectic homogeneous space with G

non-compact semisimple, and let W be the S-element of ðG=H;WÞ. Then the

following (I) and (II) are equivalent:

( I ) H is compact;

(II) the center ZðGÞ is finite, and there exists a maximal compact sub-

algebra k of g satisfying two conditions (c1) W A k and (c2) ad W jp is

a linear isomorphism of p. Here p denotes the orthogonal comple-

ment of k in g with respect to Bg.

Remark 2. The condition (c2) in Theorem 2 does not make sense when G

is compact, because G is compact if and only if p ¼ f0g.

Proof (Proof of Theorem 2). (I) ! (II): Suppose that H is compact. By

Proposition 2 we see that ZðGÞ is finite and CGðWÞ ¼ H. Moreover, Lemma
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3 assures that there exists a maximal compact subgroup K 0 of G satisfying

CGðWÞ ¼ HHK 0. Therefore it su‰ces to prove that

ad W jp 0 : p 0 ! p 0 is bijective; ð9Þ

where p 0 denotes the orthogonal complement of k 0 ¼ Lie K 0 in g with respect

to Bg. Remark that g ¼ k 0 l p 0 (direct sum). Take an element Y 0 A p 0 and

suppose that ad WðY 0Þ ¼ ½W ;Y 0� ¼ 0. Then Y 0 A cgðWÞH k 0, and Y 0 A k 0 V p 0

¼ f0g. So we deduce that ad W jp 0 is injective, and hence it is bijective.

(II) ! (I): Suppose that ZðGÞ is finite, and that a maximal compact

subalgebra k of g satisfies the conditions (c1) and (c2). Recall that W satisfies

CGðWÞ0 HHHCGðWÞ because G is semisimple (cf. Proposition 1). From

(c1) one confirms that W is an elliptic element of g. Consequently Lemma 2

implies that CGðWÞ ¼ CGðWÞ0, and so

H ¼ CGðWÞ0 ¼ CGðWÞ: ð10Þ

Since ZðGÞ is finite, there exists a maximal compact subgroup K of G such that

Lie K coincides with k (see Onishchik-Vinberg [On-Vi, Theorem 2 (p. 256) and

Corollary 6 (p. 258)] again). In order to prove that H is compact, we will

only verify

cgðWÞ ¼ ckðWÞ ð11Þ

because it follows from (10) and (11) that H ¼ CGðWÞ0 ¼ CKðWÞ0 is com-

pact. Note that g ¼ kl p (direct sum). Take an element C A cgðWÞ and

express it as C ¼ Aþ B (A A k; B A p). Then 0 ¼ ½C;W � ¼ ½A;W � þ ½B;W �.
It follows from (c1) that ½A;W � A k and ½B;W � A p; so that ½A;W � ¼ 0 ¼ ½B;W �.
This, together with (c2), implies that A A ckðWÞ and B ¼ 0. Therefore C ¼
A A ckðWÞ, and cgðWÞH ckðWÞ. The converse inclusion is clear. r

3.3. Direct product. Our aim in this subsection is to assert that a symplectic

homogeneous space ðG=H;WÞ with G non-compact semisimple and H com-

pact is the direct product of simply connected, symplectic homogeneous spaces

ðGk=Hk;WkÞ with Gk simple and Hk compact (see Theorem 3). Here, the

word ‘‘direct product’’ means

Definition 5. For a finite number of symplectic homogeneous spaces

ðGk=Hk;WkÞ, 1a ka b, the direct product ðG=H;WÞ ¼ ðG1=H1;W1Þ � � � � �
ðGb=Hb;WbÞ, which is also a symplectic homogeneous space, is defined by

G :¼ G1 � � � � � Gb, H :¼ H1 � � � � �Hb and W :¼ W1 � � � � �Wb.

To accomplish the aim, we first prove Lemmas 4 and 5.

Lemma 4. Let G be a connected semisimple Lie group, let X be a non-zero

element of g, and let H be a closed subgroup of G such that CGðXÞ0 HHH
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CGðXÞ. Then, there exists a unique G-invariant symplectic form WX on G=H

such that o
g
X ¼ p�WX , where p denotes the projection from G onto G=H (see

(3) for o
g
X). In this case, X becomes the S-element of ðG=H;WX Þ.

Proof. (Uniqueness): Suppose that there exists a G-invariant symplectic

form W 0 on G=H satisfying o
g
X ¼ p�W 0. Since p�WX ¼ o

g
X ¼ p�W 0 one sees

that ðWX Þo ¼ ðW 0Þo at the origin o A G=H. Therefore WX ¼ W 0 follows from

both WX and W 0 being G-invariant.

(Existence): Let aX denote a 1-form on g given by

aX ðYÞ :¼ BgðX ;YÞ for Y A g:

It is known that the coadjoint orbit G=CGðX Þ of G through aX admits a

G-invariant symplectic form WX which satisfies

aX ð½Y ;Z�Þ ¼ ðp�WX ÞðY ;ZÞ for any Y ;Z A g

(e.g. Guillemin-Sternberg [Gu-St, p. 178]), where p denotes the projection from

G onto G=CGðXÞ. Denote by Pr the projection from G=H onto G=CGðX Þ,
gH 7! gCGðX Þ. Then WX :¼ Pr� WX is a G-invariant symplectic form on

G=H, where we should remark that ðd PrÞo : ToðG=HÞ ! ToðG=CGðX ÞÞ is lin-

early isomorphic by virtue of CGðX Þ0 HHHCGðXÞ. Furthermore, WX sat-

isfies o
g
X ¼ p�WX ¼ p�WX because p�WX ¼ p�WX follows from Pr � p ¼ p and

o
g
X ðY ;ZÞ ¼ BgðX ; ½Y ;Z�Þ ¼ aX ð½Y ;Z�Þ ¼ ðp�WX ÞðY ;ZÞ for all Y ;Z A g. r

Lemma 5. Let L be a connected simple Lie group with the trivial center,

let l ¼ kl p denote a Cartan decomposition, and let T be a non-zero element

of k ðH lÞ. Then, the adjoint orbit L=CLðTÞ of L through T satisfies conditions

(i) and (ii):

( i ) L=CLðTÞ is simply connected;

(ii) L acts on L=CLðTÞ e¤ectively.

In addition; if L is non-compact and T satisfies the condition (c2) in Theorem 2:

ðc2Þ ad T jp is a linear isomorphism of p;

then L=CLðTÞ satisfies a further condition (iii): CLðTÞ is compact.

Proof. (i): Lemma 2 and T A k allow us to conclude that L=CLðTÞ is

simply connected (ref. the proof of Proposition 2-(ii)).

(ii): (ii) comes from L being simple and the center ZðLÞ ¼ feg.
(iii): We deduce (iii) by Theorem 2 and ZðLÞ ¼ feg. r

Now, we are in a position to demonstrate

Theorem 3. Let ðG=H;WÞ be a symplectic homogeneous space with G non-

compact semisimple and H compact, where G acts on G=H e¤ectively. Then,
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ðG=H;WÞ is the direct product of simply connected, symplectic homogeneous

spaces ðGk=Hk;WkÞ with Gk simple and Hk compact. Furthermore, each Gk

acts on Gk=Hk e¤ectively.

Remark 3. Though the above G is non-compact, the product of

ðGk=Hk;WkÞ may include compact factors ðGj=Hj ;WjÞ.

Proof (Proof of Theorem 3). First, we are going to consider relation a

between an infinitesimal decomposition of ðG=H;WÞ and a Cartan decompo-

sition of g ¼ Lie G. Let W be the S-element of ðG=H;WÞ. By Proposition 2

we see that W satisfies

ðs1Þ o
g
W ¼ p�W; ðs2Þ H ¼ CGðWÞ; ð12Þ

where p denotes the projection from G onto G=H. Moreover, by Theorem 2

there exists a maximal compact subalgebra k of g such that

ðc1Þ W A k; ðc2Þ ad W jp is a linear isomorphism of p; ð13Þ

where p denotes the orthogonal complement of k in g with respect to Bg. Here

one has a Cartan decomposition g ¼ kl p. Let us denote by y the Cartan

involution of g with respect to g ¼ kl p. Express g as g ¼ 0a

i¼1
gi l

0b

j¼aþ1
gj (direct sum), where all gi (resp. gj) are non-compact (resp. compact)

simple ideals of g. Then Corollary 1 means that yðgkÞH gk for any 1a ka b.

Therefore we deduce that

gi ¼ ki l pi is a Cartan decomposition of gi for 1a ia a;

gj ¼ kj for aþ 1a ja b;

�
ð14Þ

where kk :¼ kV gk and pk :¼ pV gk for 1a ka b. By considering the decom-

position g ¼ 0a

i¼1
gi l0b

j¼aþ1
gj, we express W as W ¼

Pa
i¼1 Wi þ

Pb
j¼aþ1 Wj .

In order to complete the proof of Theorem 3 we need the following:

Lemma 6. With the above setting, the following five items hold for the

S-element W ¼
Pa

i¼1 Wi þ
Pb

j¼aþ1 Wj:

( i ) Wk 0 0 for any 1a ka b;

( ii ) Wk A kk for any 1a ka b;

(iii) ad Wijpi is a linear isomorphism of pi for every 1a ia a;

(iv) o
g
W ¼ o

gk
Wk

on gk � gk for any 1a ka b;

( v ) h ¼ cgðWÞ ¼ 0b

k¼1
cgk ðWkÞ (direct sum).

Proof. Since all gk are simple ideals of g ¼ 0b

t¼1
gt, one sees that

½gn; gm� ¼ f0g if n0m: ð15Þ
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(i): Suppose that there exists 1a ca b such that Wc ¼ 0. By (15) we deduce

½W ; gc� ¼ ½
Pb

k¼1 Wk; gc� ¼ ½Wc; gc� ¼ f0g, and therefore it follows from (12)-(s2)

that h ¼ cgðWÞ contains the non-trivial ideal gc of g. That is a contradiction

because G is e¤ective on G=H. For this reason (i) holds.

(ii): yðWkÞ ¼ Wk, for each k, is immediate from (13)-(c1),
Pb

t¼1 yðWtÞ ¼
yðWÞ ¼ W ¼

Pb
t¼1 Wt, yðgtÞH gt and g ¼ 0b

t¼1
gt (direct sum). Thus (ii)

follows.

(iii): Take an element Yi A pi and suppose that ½Wi;Yi� ¼ 0. From (15)

one obtains ½W ;Yi� ¼ ½Wi;Yi� ¼ 0, and Yi ¼ 0 because of (13)-(c2). This

implies that ad Wijpi is injective; and so (iii) holds.

(iv): Since gk is an ideal of g, the Killing form Bgk
of gk coincides with

the restriction of Bg to gk � gk. Hence (iv) follows from (3) and (15).

(v): h ¼ cgðWÞ is immediate from (12)-(s2). cgðWÞ ¼ 0b

k¼1
cgk ðWkÞ fol-

lows from W ¼
Pb

k¼1 Wk, (15) and g ¼ 0b

k¼1
gk (direct sum). r

Let us continue proving Theorem 3. From now on, we are going to

consider a global decomposition of ðG=H;WÞ. Note that the center ZðGÞ is

trivial because (12)-(s2) and G acts on G=H e¤ectively. Accordingly one may

assume that G is the adjoint group of g. First let us prove that

G ¼ G1 � � � � � Gb; ð16Þ

where Gk denotes the adjoint group of gk for 1a ka b. Let G be a simply

connected Lie group with Lie G ¼ g, and let G ¼ G1 � � � � � Gb denote the

decomposition of G corresponding to g ¼ 0b

k¼1
gk, where gk ¼ Lie Gk for 1a

ka b. Then it follows that ZðGÞ ¼ ZðG1 � � � � � GbÞ and ZðG1 � � � � � GbÞ
¼ ZðG1Þ � � � � � ZðGbÞ. Therefore one has G=ZðGÞ ¼ G1=ZðG1Þ � � � � �
Gb=ZðGbÞ. This implies (16) because G ¼ G=ZðGÞ and Gk ¼ Gk=ZðGkÞ for

all 1a ka b. Now, let us assume that gk ¼ Lie Gk for 1a ka b. Lemma

6-(v) enables us to have CGðWÞ ¼ CG1
ðW1Þ � � � � � CGb

ðWbÞ because it follows

from Lemmas 2 and 6-(ii) that all CGðWÞ and CGk
ðWkÞ are connected. Hence

(12)-(s2) yields

H ¼ CG1
ðW1Þ � � � � � CGb

ðWbÞ: ð17Þ

For each 1a ka b, Lemma 4 allows us to get a unique Gk-invariant sym-

plectic form Wk on Gk=CGk
ðWkÞ satisfying o

gk
Wk

¼ ðpkÞ�Wk, where pk denotes

the projection from Gk onto Gk=CGk
ðWkÞ. By (12) and Lemma 6-(iv) we

conclude

W ¼ W1 � � � � �Wb:

Therefore it is immediate from (16) and (17) that ðG=H;WÞ is the direct

product of ðGk=CGk
ðWkÞ;WkÞ, k ¼ 1; . . . ; b. Consequently, the rest of proof is
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to demonstrate that (A) Gk=CGk
ðWkÞ is simply connected, (B) Gk is simple, (C)

CGk
ðWkÞ is compact and (D) Gk acts on Gk=CGk

ðWkÞ e¤ectively. However,

(B) is clear and both (A) and (D) come from Lemma 5 and Lemma 6-(i),

(ii). So, it su‰ces to show that (C) CGk
ðWkÞ is compact. On the one hand,

if 1a ka a, then Gk is non-compact in view of (14), and so Lemmas 5 and

6-(iii) allow us to conclude that CGk
ðWkÞ is compact. One the other hand,

if aþ 1a ka b, then Gk is compact in view of (14), and hence CGk
ðWkÞ is

compact. r

4. The coarse orbit types of non-Kählerian, symplectic homogeneous spaces

G=H with G non-compact simple and H compact

The main purpose of this section is to determine the coarse orbit type of

each non-Kählerian, symplectic homogeneous space G=H with G non-compact

simple and H compact (cf. Subsections 4.4 through 4.14). Here, the word

‘‘coarse orbit type’’ means

Definition 6. Let G=H and G=H 0 be two homogeneous spaces of a

connected Lie group G. Then we say that they are of the same coarse orbit

type, if H is isomorphic to H 0 as a Lie group.

Remark 4. (i) G=H and G=H 0 are of the same coarse orbit type in the

case where Lie H is Lie algebra isomorphic to Lie H 0 and both H and H 0 are

connected. (ii) The sense of coarse orbit type is di¤erent from that of orbit

type. Indeed, for compact Kählerian homogeneous space G2=H there are two

classes G2=ðA1 � TÞ, G2=T
2 in the sense of coarse orbit type, but three classes

in the sense of orbit type (ref. Bordemann-Forger-Römer [Bd-Fo-Rö, p. 643]).

4.1. Reduction. Borel’s result [Br] (cf. Section 1) and Corollary 1 enable us

to accomplish the main purpose by only considering the case where G is one

of the following Lie groups:

List I

BI: SO0ð2k; 2l � 2k þ 1Þ with lb 2 and 2a ka l

CII: Spðk; l � kÞ with lb 3 and 1a ka l � 1

DI: SO0ð2k; 2l � 2kÞ with lb 4 and 2a ka l � 2

EII: E6ð2Þ EV: E7ð7Þ EVI: E7ð�5Þ EVIII: E8ð8Þ

EIX: E8ð�24Þ FI: F4ð4Þ FII: F4ð�20Þ G: G2ð2Þ
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It has been shown that for a non-Kählerian, symplectic homogeneous space

G=H with G non-compact simple and H compact, the isotropy subgroup H is

connected (cf. Proposition 2). Consequently one can achieve the main purpose

by arguments in the Lie algebra level. For this reason we will review root

systems and Cartan decompositions of non-compact, absolutely simple Lie

algebras.

4.2. Root system and Cartan decomposition. Let gC be a complex simple Lie

algebra, let tC be a Cartan subalgebra of gC, and let sðgC; tCÞ denote the set of

all non-zero roots of gC with respect to tC. Then there exists a basis (so-called,

Weyl basis) fXa j a AsðgC; tCÞg of gC such that

½Xa;X�a� ¼ Ha; ½H;Xa� ¼ aðHÞ � Xa for H A tC;

½Xa;Xb� ¼ 0 if aþ b0 0 and aþ b BsðgC; tCÞ;

½Xa;Xb� ¼ Na;b � Xaþb if aþ b AsðgC; tCÞ;

where the real constants Na;b satisfy Na;b ¼ �N�a;�b (cf. Helgason [He,

Theorem 5.5, p. 176]). Here Ha is an element of tC given by BgC
ðH;HaÞ ¼

aðHÞ for H A tC. The Weyl basis gives rise to a compact real form gu of gC
as follows:

gu :¼ itR l 0
a AsðgC; tCÞ

spanRfXa � X�agl spanRfiðXa þ X�aÞg ð18Þ

(see the proof of Theorem 6.3 in Helgason [He, p. 181]), where tR denotes

a real vector subspace of tC defined by tR :¼ spanRfHa j a AsðgC; tCÞg
(¼ fH A tC j aðHÞ A R for all a AsðgC; tCÞg). Now, let PsðgC; tCÞ denote the

set of all simple roots in sðgC; tCÞ, and let y be an involution of gC satisfying

four conditions

ðv1Þ yðguÞH gu; ðv2Þ y0 id on gu; ðv3Þ yðtCÞH tC;

ðv4Þ tyðPsðgC; tCÞÞ ¼ PsðgC; tCÞ:

Denote by k and p� the ðþ1Þ-eigenspace and ð�1Þ-eigenspace of y in gu,

respectively. Then one gets a non-compact real form g of gC by setting

g :¼ kl p; p :¼ ip�:

Remark 5. (i) y becomes a Cartan involution of g and g ¼ kl p is its

Cartan decomposition. (ii) kV itR is a maximal abelian subalgebra of k, because

it follows from (v4) that y leaves fixed a regular element of gC contained in tC
(see Murakami [Mu2, Proposition 1, p. 106]). (iii) Every non-compact, ab-

solutely simple Lie algebra can be, up to isomorphism, given by the above fashion
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(cf. Murakami [Mu3]). Henceforth, we assume that each non-compact, abso-

lutely simple Lie algebra g is given by the above fashion, and we identify AutðgÞ
and AutðguÞ with ff A AutðgCÞ j fðgÞH gg and fc A AutðgCÞ jcðguÞH gug, re-

spectively. Here we denote by AutðuÞ the group of automorphisms of a Lie

algebra u.

Define an element Za A tR by abðZaÞ :¼ da;b for fabg l
b¼1 ¼ PsðgC; tCÞ

(a ¼ 1; . . . ; l). Then Murakami [Mu3, p. 297] provides us with the following

inner involutions y of gC which satisfy the above conditions (v1), (v2), (v3) and

(v4) (see Borel-de Siebenthal [Br-dS] also):

List II: the inner and non-Hermitian types (ref. Murakami [Mu3])

gu Dynkin diagram y k g

Bl

lb2

exp p adðiZkÞ
2a ka l

Dk �Bl�k soð2k; 2l� 2kþ 1Þ
BI

Cl

lb3

exp p adðiZkÞ
1a ka l � 1

Ck �Cl�k spðk; l � kÞ
CII

Dl

lb4

exp p adðiZkÞ
2a ka l � 2

Dk �Dl�k soð2k; 2l � 2kÞ
DI

E6 exp p adðiZ3Þ A5 � A1 EII: e6ð2Þ

exp p adðiZ2Þ A7 EV: e7ð7Þ

E7

exp p adðiZ1Þ A1 �D6 EVI: e7ð�5Þ

exp p adðiZ1Þ D8 EVIII: e8ð8Þ

E8

exp p adðiZ8Þ A1 � E7 EIX: e8ð�24Þ

exp p adðiZ1Þ A1 � C3 FI: f4ð4Þ
F4

exp p adðiZ4Þ B4 FII: f4ð�20Þ

G2 exp p adðiZ2Þ A1 � A1 G: g2ð2Þ
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Remark 6. There are di¤erences with respect to numbering of simple roots

in the Dynkin diagrams of type E6, E7, E8 and G2, between Murakami [Mu3]

and Bourbaki [Bu].2 Throughout this paper, we apply the numbering in

Bourbaki [Bu] to our arguments.

For every involution y listed above, one has

kV itR ¼ itR: ð19Þ

Hence, itR is a maximal abelian subalgebra of k in List II. Taking List II into

consideration, we settle a simple root system PsðkC; tCÞ for sðkC; tCÞ:

List III

g k PsðkC ; tCÞ

BI soð2k; 2l � 2k þ 1Þ faa;�mgk�1
a¼1 Ufabg l

b¼kþ1

lb 2, 2a ka l Dk � Bl�k, y ¼ exp p adðiZkÞ m :¼ a1 þ 2
P l

j¼2 aj

CII spðk; l � kÞ faa;�mgk�1
a¼1 Ufabg l

b¼kþ1

lb3, 1aka l � 1 Ck � Cl�k, y ¼ exp p adðiZkÞ m :¼ 2
P l�1

j¼1 aj þ al

DI soð2k; 2l � 2kÞ faa;�mdg
k�1
a¼1 Ufabg l

b¼kþ1

lb4, 2aka l � 2 Dk �Dl�k, y ¼ exp p adðiZkÞ

EII e6ð2Þ f�m6; a2; abg
6
b¼4 U fa1g

A5 � A1, y ¼ exp p adðiZ3Þ

EV e7ð7Þ f�m7; a1; abg
7
b¼3

A7, y ¼ exp p adðiZ2Þ

2There are some minor misprints in [Bu]. p. 269, # 8, Read ei � ej ¼ instead of ei ¼ ei � ej ¼;

p. 269, # 10, Read 2
P

iak<l ak þ al instead of
P

iak<l ak þ al ; p. 271, # 8, Read
P

iak< j ak instead

of
P

i<k< j ak ; p. 289, # 9, Read 3a1 þ 2a2, a2 instead of 3a1 þ 2a2.
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g k PsðkC ; tCÞ

EVI e7ð�5Þ f�m7gU fabg7b¼2

A1 �D6, y ¼ exp p adðiZ1Þ

EVIII e8ð8Þ f�m8; abg
8
b¼2

D8, y ¼ exp p adðiZ1Þ

EIX e8ð�24Þ f�m8gU faag7a¼1

A1 � E7, y ¼ exp p adðiZ8Þ

FI f4ð4Þ f�mf gU fabg4b¼2

A1 � C3, y ¼ exp p adðiZ1Þ

FII f4ð�20Þ f�mf ; aag
3
a¼1

B4, y ¼ exp p adðiZ4Þ

G g2ð2Þ f�mgU fa1g
A1 � A1, y ¼ exp p adðiZ2Þ m :¼ 3a1 þ 2a2

Here md :¼ a1 þ 2
P l�2

j¼2 aj þ al�1 þ al , mf :¼ 2a1 þ 3a2 þ 4a3 þ 2a4, m6 :¼ a1
þ 2a2 þ 2a3 þ 3a4 þ 2a5 þ a6, m7 :¼ 2a1 þ 2a2 þ 3a3 þ 4a4 þ 3a5 þ 2a6 þ a7 and

m8 :¼ 2a1 þ 3a2 þ 4a3 þ 6a4 þ 5a5 þ 4a6 þ 3a7 þ 2a8.

With the above setting we will determine the coarse orbit types of non-

Kählerian, symplectic homogeneous spaces G=H with G non-compact simple

and H compact later (cf. Subsections 4.4 through 4.14).

4.3. A condition for centralizers to be compact. Let g be a non-compact

semisimple Lie algebra, let g ¼ kl p be a Cartan decomposition of g, and let

W be an element of kH g. Then the proof of Theorem 2 implies that the

centralizer cgðWÞ is compact if W satisfies the condition

ðc2Þ ad W jp is a linear isomorphism of p:

This condition is not suitable for us to apply the root theory to cgðWÞ. For

this reason we rewrite it as follows:
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Lemma 7. With the above setting; the following items (i), (ii) and (iii) are

equivalent:

( i ) the centralizer cgðWÞ is compact;

( ii ) ad W jp is a linear isomorphism of p;

(iii) cgðWÞ ¼ ckðWÞ.

Proof. (i) ! (ii): Suppose that (i) cgðWÞ is compact. Take an element

Y A p and suppose that ½W ;Y � ¼ 0. Then Y A cgðWÞ. On the one hand, by

virtue of (i) there exists an ad Y -invariant inner product on g, and thus

all eigenvalues of ad Y are purely imaginary. On the other hand, ad Y is

symmetric with respect to the inner product h� ; �i on g because Y A p (see the

proof of Lemma 2 for h� ; �i), and thus all eigenvalues of ad Y are real. These

imply that Y ¼ 0 and ad W jp is injective. Hence it is a linear isomorphism

of p.

(ii) ! (iii): Suppose that (ii) holds. Then one can obtain cgðWÞ ¼ ckðWÞ
from W A k and (ii) (see the proof of (11)).

(iii) ! (i): Clear. r

4.4. An outline of argument for determining the coarse orbit types, and the

coarse orbit type of type BI. In this subsection we will determine the

coarse orbit type of symplectic homogeneous spaces G=H such that G ¼
SO0ð2k; 2l � 2k þ 1Þ and H is compact (see Proposition 4). The arguments

in this subsection will be helpful for the reader to understand the arguments

in the coming Subsections 4.5 through 4.13.

Let G=H be a non-Kählerian, symplectic homogeneous space with G non-

compact simple and H compact. Recall that we assume Lie G ¼ g ¼ kl p

to be given by a compact simple Lie algebra gu ¼ kl ip (cf. Subsection 4.2).

The main purpose of this paper is to determine the coarse orbit type of

G=H. By virtue of Proposition 2, it su‰ces to determine, up to isomorphism,

the centralizers cgðWÞ of elliptic elements W A g such that cgðWÞ are com-

pact. For this reason we need to search elliptic elements W A g whose

centralizers cgðWÞ are compact. One may assume that such an element

W A g ¼ kl p belongs to a fixed positive Weyl chamber Wk of k. Let us

explain the reason why one may assume W to belong to Wk, from now on.

Let W be an elliptic element of g such that cgðWÞ is compact. Since W is

elliptic there exists a maximal compact subalgebra k 0 of g containing W . In

this case we have a Cartan decomposition g ¼ k 0 l p 0 with W A k 0, where p 0

denotes the orthogonal complement of k 0 in g with respect to Bg. According to

Helgason [He, p. 183, Theorem 7.2], there exists an inner automorphism c of g

satisfying cðk 0Þ ¼ k and cðp 0Þ ¼ p. Then cðWÞ A k and cðcgðWÞÞ ¼ cgðcðWÞÞ
is compact. This implies that one may assume W to belong to the fixed
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maximal compact subalgebra k of g from the beginning, as far as determining

the centralizer cgðWÞ which is compact (up to inner automorphism). So, one

may assume W A Wk because any element of k can be mapped into Wk by

an inner automorphism of k (H g).

Remark 7. The above arguments assure that one can determine the cen-

tralizers cgðWÞ which are compact (up to isomorphism) by means of determining

the centralizers cgðTÞ which are compact with T A Wk.

This subsection consists of three paragraphs.

§ 4.4.1 A dual basis of PsðkC; tCÞ and a positive Weyl chamber Wk

Following List III (ref. p. 20) we define a dual basis fTig l
i¼1

of PsðkC; tCÞ (cf. (b1.1)) and fix a positive Weyl chamber Wk of k in

tR (see (b1.2) and Remark 8).

§ 4.4.2 A condition for the centralizer cgðTÞ of an element T A Wk to be

compact

We first read o¤ a vector space structure of pC from List III

(see (b1.3)) and afterwards investigate a condition for the central-

izer cgðTÞ of an element T A Wk to be compact by taking (b1.3)

into consideration (cf. Lemma 8). Moreover, we obtain (b1.9)

from Lemmas 8, 9 and 10. This (b1.9) assures that one can

determine the centralizers cgðT 0Þ which are compact with T 0 A Wk

(up to isomorphism) by means of determining all elements ckðTÞ A
CBI

K ðkÞ (see (b1.8) for CBI
K ðkÞ).

§ 4.4.3 A result for type BI

We determine all elements of CBI
K ðkÞ and assert Proposition 4.

4.4.1. A dual basis of PsðkC; tCÞ and a positive Weyl chamber Wk.

g k PsðkC ; tCÞ

BI soð2k; 2l � 2k þ 1Þ faa;�mgk�1
a¼1 U fabg l

b¼kþ1

lb 2, 2a ka l Dk � Bl�k, y ¼ exp p adðiZkÞ m :¼ a1 þ 2
P l

j¼2 aj

Let ba :¼ ak�a for 1a aa k � 1, bk :¼ �m, and bb :¼ ab for k þ 1a ba l.

Denote by fTig l
i¼1 the dual basis of fbig

l
i¼1 ¼ PsðkC; tCÞ. Then one can express

it as follows:

Tc ¼ Zk�c � Zk for 1a ca k � 2; Tk�1 ¼ Z1 � Zk=2;

Tk ¼ �Zk=2; Tb ¼ �Zk þ Zb for k þ 1a ba l
ðb1:1Þ
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by means of the dual basis fZig l
i¼1 of faig l

i¼1 ¼ PsðgC; tCÞ. Now, let us fix a

positive Weyl chamber Wk of k in tR:

Wk :¼ fT A tR j biðTÞb 0 for all 1a ia lg ðb1:2Þ

(see Subsection 4.2 for tR). Needless to say, T ¼
P l

i¼1 liTi belongs to Wk

if and only if li b 0 for all 1a ia l. We will consider a condition for the

centralizer cgðTÞ of an element T A Wk to be compact in the next paragraph.

Remark 8. Throughout this paper, we regard each element of Wk as an

element of k by identifying T A tR with iT A itR H k (cf. (19)).

Now, let us state Proposition 3 which will streamline the procedure for

computing cgðTÞ later:

Proposition 3 (cf. Wolf-Gray [Wo-Gr, p. 83–84]). Let T ¼
P l

i¼1 liTi A
Wk. Suppose that lp 0 0 for all p A fiagk

a¼1 and lq ¼ 0 for all q A f1; . . . ; lgn
fiagk

a¼1, where 1a i1 a � � �a ik a l. Then, fbqgq A f1;...; lgnfiagk
a¼1

is a simple root

system for sðckðTÞ; tRÞ.

Proof. One can get the conclusion by the proof of Proposition 2.8 in

Wolf-Gray [Wo-Gr, p. 83]. r

Remark 9. Proposition 3 implies the following (i) and (ii):

( i ) For T ¼
P l

i¼1 liTi A Wk, the structure of ckðTÞ depends only on whether

each li is zero or not.

(ii) For any 1a ka l and real number z > 0, both T ¼
P l

i¼1 liTi A Wk

and T 0 :¼
Pk�1

a¼1 laTa þ zlkTk þ
P l

b¼kþ1 lbTb give rise to the same cen-

tralizer ckðTÞ ¼ ckðT 0Þ in k.

Note that cgðTÞ does not always coincide with cgðT 0Þ even if ckðTÞ ¼ ckðT 0Þ.

4.4.2. A condition for the centralizer cgðTÞ of an element T A Wk to be

compact. Recall that we assume soð2k; 2l � 2k þ 1Þ ¼ g ¼ kl p to be given

by compact simple Lie algebra soð2l þ 1Þ ¼ gu ¼ kl ip with involution y ¼
exp p adðiZkÞ (cf. Subsection 4.2). Since ip is the ð�1Þ-eigenspace of y in gu
we confirm that

pC ¼ 0
a Asþðak ;1Þ

spanCfXagl spanCfX�ag ðdirect sumÞ;

sþðak; 1Þ :¼
X l

i¼1
niai AsþðgC; tCÞ j nk ¼ 1

n o

¼
P

pasaq as ð1a pa ka qa lÞ;P
pat<r at þ 2

P
ratal at ð1a pa k < ra lÞ

( ) ðb1:3Þ

(see Subsection 4.2 for XGa; Plate II in Bourbaki [Bu, p. 265]), where pC
denotes the ð�1Þ-eigenspace of y in gC ¼ soð2l þ 1;CÞ. Now, we want to
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clarify a condition for the centralizer cgðTÞ of an element T A Wk to be

compact. Lemma 7 enables us to see that cgðTÞ is compact if and only if

aðTÞ0 0 for all a Asþðak; 1Þ ðb1:4Þ

because of (b1.3) and ½T ;Xa� ¼ aðTÞ � Xa. Taking (b1.4) into consideration

we are going to clarify the condition. Take an element T ¼
P l

i¼1 liTi A Wk

and express it as follows:

T ¼
Xl

i¼1

liTi ¼
Xk�1

a¼1

lk�aZa �
 Xk�2

c¼1

lc þ lk�1=2þ lk=2

þ
Xl

b¼kþ1

lb

!
Zk þ

Xl

b¼kþ1

lbZb ðb1:5Þ

by means of (b1.1). A direct computation, combined with aaðZbÞ ¼ da;b, givesX
pasaq

asðTÞ ¼ �
Xk�1

i¼k�pþ1
li þ lk�1=2� lk=2�

X l

j¼qþ1
lj

ð1a pa ka qa lÞ; ðb1:6Þ
X

pat<r
at þ 2

X
ratal

at

� �
ðTÞ

¼ �
Xk�1

i¼k�pþ1
li þ lk�1=2� lk=2þ

X l

h¼r
lh

ð1a pa k < ra lÞ: ðb1:7Þ

Let us clarify a necessary and su‰cient condition for cgðTÞ to be compact:

Lemma 8 (BI). With the above setting; for T ¼
P l

i¼1 liTi A Wk, the

centralizer cgðTÞ is compact if and only if (i) ‘‘lk�1 > 0 or lk > 0’’ and (ii)

cgðTÞ ¼ ckðTÞ.

Proof. ()): Suppose that cgðTÞ is compact. Then it follows from (b1.4)

and (b1.6)p¼2;q¼l that lk�1 þ lk 0 0. Therefore lk�1 > 0 or lk > 0 because

lk�1; lk b 0. Besides, the supposition and Lemma 7 allow us to have cgðTÞ ¼
ckðTÞ. ((): It is clear, since ckðTÞ is compact. r

Now, let CBI
K ðk � 1Þ, CBI

K ðkÞ and CBI
G denote the following sets defined by

CBI
K ðk � 1Þ :¼ ckðTÞ jT ¼

X l

i¼1
liTi A Wk with lk�1 > 0

n o
;

CBI
K ðkÞ :¼ ckðTÞ jT ¼

X l

i¼1
liTi A Wk with lk > 0

n o
;

CBI
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg;

ðb1:8Þ
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respectively. Our aim is to determine all elements of CBI
G up to isomorphism.

Lemma 8 implies that

CBI
G HCBI

K ðk � 1ÞUCBI
K ðkÞ:

We will prove Lemmas 9 and 10 later. By Lemma 9 one can deduce

CBI
K ðkÞHCBI

G . Lemma 10 provides us with an outer involution c of g satisfy-

ing cðCBI
K ðkÞÞ ¼ CBI

K ðk � 1Þ and cðCBI
G Þ ¼ CBI

G . Accordingly Lemmas 9 and

10 allow us to conclude

CBI
G ¼ CBI

K ðkÞUcðCBI
K ðkÞÞ: ðb1:9Þ

This means that for our aim, it is enough to determine all elements of CBI
K ðkÞ.

Let us prove Lemmas 9 and 10.

Lemma 9 (BI). With the above setting; for any T ¼
P l

i¼1 liTi A Wk with

lk > 0, there exists an element T 0 A Wk such that (i) cgðT 0Þ is compact and (ii)

cgðT 0Þ ¼ ckðTÞ.

Proof. It is easy to get a real number z > 0 satisfying

lk�1=2� zlk=2þ
X l

b¼kþ1
lb < 0

since lk > 0. By use of z we define an element T 0 A Wk as follows:

T 0 :¼
Pk�1

a¼1 laTa þ zlkTk þ
P l

b¼kþ1 lbTb. Since lc b 0 for all 1a ca l we see

that T 0 satisfiesX
pasaq

asðT 0Þ ¼ �
Xk�1

i¼k�pþ1
li þ lk�1=2� zlk=2�

X l

j¼qþ1
lj

a lk�1=2� zlk=2þ
X l

b¼kþ1
lb < 0

in Case (b1.6); and ð
P

pat<r at þ 2
P

ratal atÞðT 0Þ < 0 in Case (b1.7). So it

follows from (b1.3) that aðT 0Þ < 0 for all a Asþðak; 1Þ. Hence Lemma 7 and

(b1.4) imply that cgðT 0Þ is compact and cgðT 0Þ ¼ ckðT 0Þ. Remark 9-(ii) allows

us to have ckðT 0Þ ¼ ckðTÞ. This yields cgðT 0Þ ¼ ckðTÞ. r

Lemma 10 (BI). There exists an outer involution c of g ¼
soð2k; 2l � 2k þ 1Þ, lb 2 and 2a ka l, satisfying cðkÞH k, cðTk�1Þ ¼ Tk

and cðThÞ ¼ Th for any 1a ha l with h0 k � 1; k.

Proof. Define an involutive linear map c of tR by setting

tcða1Þ :¼ �m ¼ �a1 � 2
X l

t¼2
at

� �
; tcðajÞ :¼ aj for 2a ja l: ðb1:10Þ

Then one has

BgC
ðHai ;Haj Þ=BgC

ðHaj ;Haj Þ ¼ BgC
ðHtcðaiÞ;HtcðajÞÞ=BgC

ðHtcðajÞ;HtcðajÞÞ

for all 1a i; ja l (see Subsection 4.2 for Ha). Hence Lemme 1 in Murakami

[Mu3, p. 295] enables us to extend c to gC as involution because both faig l
i¼1
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and f�m; ajg l
j¼2 are simple root systems for sðgC; tCÞ. We denote this invo-

lution by the same notation c. Note that (i) cðguÞH gu follows from (18) and

(ii) c satisfies

cðZ1Þ ¼ �Z1; cðZjÞ ¼ �2Z1 þ Zj for 2a ja l ðb1:11Þ

because of aaðZbÞ ¼ da;b and (b1.10). This and (b1.1) yield cðTk�1Þ ¼ Tk

and cðThÞ ¼ Th for any 1a ha l with h0 k � 1; k. We can obtain c � y ¼
y � c from cðZkÞ ¼ �2Z1 þ Zk, ½Z1;Zk� ¼ 0, y ¼ exp p adðiZkÞ and id ¼
exp p adð2iZ1Þ. It follows from c � y ¼ y � c that cðgÞH g and cðkÞH k.

Thus we have constructed an involution c of g satisfying cðkÞH k, cðTk�1Þ
¼ Tk and cðThÞ ¼ Th for any 1a ha l with h0 k � 1; k. Remark that c

is an outer automorphism of g (because of Corollary 2 in Murakami [Mu1,

p. 108] and the fixed point set Fixðk;cÞ ¼ Bk�1 � Bl�k). r

4.4.3. A result for type BI. Now, let us demonstrate

Proposition 4. The following is the coarse orbit type of symplectic homo-

geneous space G=H with G ¼ SO0ð2k; 2l � 2k þ 1Þ, lb 2 and 2a ka l, and H

compact:

G H No.

SO0ð2k; 2l � 2k þ 1Þ
lb 2

2a ka l

BI

Uði1Þ �Uði2 � i1Þ � � � � �Uðia � ia�1Þ �Uðk � iaÞ
�Uð j1 � kÞ �Uð j2 � j1Þ � � � � �Uð jb � jb�1Þ
�SOð2l � 2jb þ 1Þ
0a aa k � 1, i0 :¼ 0, 1a i1 a i2 a � � �a ia a k � 1

0a ba l � k, j0 :¼ k, k þ 1a j1 a j2 a � � �a jb a l

1

Proof. Our goal is to determine the isotropy subgroups H up to iso-

morphism. Proposition 2 means that it is enough to determine the cen-

tralizers cgðWÞ which are compact (up to isomorphism). Remark 7 and (b1.9)

enable one to get the conclusion, if we determine all elements ckðTÞ A CBI
K ðkÞ

(see (b1.8) for CBI
K ðkÞ). For this reason we are going to determine each

element of CBI
K ðkÞ. Let T ¼

P l
i¼1 liTi A Wk with lk > 0. Without loss of

generality, one may assume that lp 0 0 for all p A fixga
x¼1 U f jygb

y¼1 and lq ¼ 0

for all q A f1; . . . ; k � 1; k þ 1; . . . ; lgnðfixga
x¼1 U f jygb

y¼1Þ, where 1a i1 a � � �a
ia a k � 1 and k þ 1a j1 a � � �a jb a l. Then Proposition 3 assures that

fbqgq A f1;...;k�1;kþ1;...; lgnðfixg a
x¼1Uf jyg

b
y¼1Þ

is a simple root system for sðckðTÞ; tRÞ.
Therefore we have

ckðTÞ ¼ 0
a

x¼1

uðix � ix�1Þl uðk � iaÞl 0
b

y¼1

uð jy � jy�1Þl soð2l � 2jb þ 1Þ;

where i0 :¼ 0 and j0 :¼ k. r
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4.5. The coarse orbit type of type CII. In this subsection, we will determine

the coarse orbit type of symplectic homogeneous spaces G=H with G ¼
Spðk; l � kÞ and H compact (see Proposition 5) by arguments similar to those

in Subsection 4.4.

4.5.1. A dual basis of PsðkC; tCÞ and a positive Weyl chamber Wk.

g k PsðkC; tCÞ

CII spðk; l � kÞ faa;�mgk�1
a¼1 U fabg l

b¼kþ1

lb 3, 1a ka l � 1 Ck � Cl�k, y ¼ exp p adðiZkÞ m :¼ 2
P l�1

j¼1 aj þ al

Let ba :¼ ak�a for 1a aa k � 1, bk :¼ �m and bb :¼ ab for k þ 1a ba l. We

denote by fTig l
i¼1 the dual basis of fbig

l
i¼1 ¼ PsðkC; tCÞ. Then it follows from

aaðZbÞ ¼ da;b that

Ta ¼ Zk�a � Zk for 1a aa k � 1; Tk ¼ �Zk=2;

Tc ¼ �Zk þ Zc for k þ 1a ca l � 1; Tl ¼ �Zk=2þ Zl :
ðc2:1Þ

Throughout Subsection 4.5, we fix a positive Weyl chamber Wk of k in tR
as follows: Wk :¼ fT A tR j biðTÞb 0 for all 1a ia lg (¼ f

P l
i¼1 liTi j li b 0

for all 1a ia lg).

4.5.2. A condition for the centralizer cgðTÞ of an element T A Wk to be compact.

Arguments in this paragraph will be similar to those in Paragraph 4.4.2. Re-

call that we assume spðk; l � kÞ ¼ g ¼ kl p to be given by compact simple Lie

algebra spðlÞ ¼ gu ¼ kl ip with involution y ¼ exp p adðiZkÞ (cf. Subsection

4.2). We will clarify a necessary and su‰cient condition for the centralizer

cgðTÞ of an element T A Wk to be compact (cf. Lemma 11 below). Since

y ¼ exp p adðiZkÞ one perceives that the ð�1Þ-eigenspace pC of y in gC ¼
spðl;CÞ is given by

pC ¼ 0
a Asþðak ;1Þ

spanCfXagl spanCfX�ag ðdirect sumÞ;

sþðak; 1Þ :¼
X l

i¼1
niai AsþðgC; tCÞ j nk ¼ 1

n o

¼
P

pas<q as ð1a pa k < qa lÞ;P
pat<r at þ 2

P
rat<l at þ al ð1a pa k < ra lÞ

( ) ðc2:2Þ
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(cf. Plate III in Bourbaki [Bu, p. 269]3). In this case Lemma 7 implies that

for T A Wk, the centralizer cgðTÞ is compact if and only if T satisfies

aðTÞ0 0 for all a Asþðak; 1Þ: ðc2:3Þ

Take an element T ¼
P l

i¼1 liTi A Wk and express it as follows:

T ¼
Xl

i¼1

liTi ¼
Xk�1

a¼1

lk�aZa �
 Xk�1

a¼1

la þ lk=2

þ
Xl�1

c¼kþ1

lc þ ll=2

!
Zk þ

Xl

b¼kþ1

lbZb ðc2:4Þ

by means of (c2.1). Then direct computations enable us to haveX
pas<q

asðTÞ ¼ �
Xk�1

i¼k�pþ1
li � lk=2�

X l�1

j¼q
lj � ll=2

ð1a pa k < qa lÞ; ðc2:5Þ
X

pat<r
at þ 2

X
rat<l

at þ al

� �
ðTÞ

¼ �
Xk�1

i¼k�pþ1
li � lk=2þ

X l�1

h¼r
lh þ ll=2

ð1a pa k < ra lÞ ðc2:6Þ

because of aaðZbÞ ¼ da;b. Now, let us clarify the necessary and su‰cient

condition:

Lemma 11 (CII). With the setting above; for T ¼
P l

i¼1 liTi A Wk, cgðTÞ is

compact if and only if (i) ‘‘lk > 0 or ll > 0’’ and (ii) cgðTÞ ¼ ckðTÞ.

Proof. ()): Suppose that cgðTÞ is compact. From (c2.5)p¼1;q¼l and

(c2.3) we obtain lk þ ll 0 0, and so lk > 0 or ll > 0 because lk; ll b 0. The

rest of proof follows from the proof of Lemma 8. r

Let us consider three sets CCII
K ðkÞ, CCII

K ðlÞ and CCII
G :

CCII
K ðkÞ :¼ ckðTÞ jT ¼

X l

i¼1
liTi A Wk with lk > 0

n o
;

CCII
K ðlÞ :¼ ckðTÞ jT ¼

X l

i¼1
liTi A Wk with ll > 0

n o
;

CCII
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg:

ðc2:7Þ

3 See the footnote 2 (p. 20) again.
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By Lemma 11 one deduces CCII
G HCCII

K ðkÞUCCII
K ðlÞ. The following Lemma

12 allows us to have

CCII
G ¼ CCII

K ðkÞUCCII
K ðlÞ: ðc2:8Þ

Lemma 12 (CII). With the above setting; for any T ¼
P l

i¼1 liTi A Wk with

lk > 0 or ll > 0, there exists an element T 0 A Wk such that (i) cgðT 0Þ is compact

and (ii) cgðT 0Þ ¼ ckðTÞ.

Proof. Case lk > 0: We will consider the case lk > 0 first. Since lk > 0

there exists a real number x > 0 satisfying

�xlk=2þ
X l�1

c¼kþ1
lc þ ll=2 < 0:

Define an element T 0 A Wk by T 0 :¼
Pk�1

a¼1 laTa þ xlkTk þ
P l

b¼kþ1 lbTb. Then

(c2.5) yields
P

pas<q asðT 0Þ ¼ �
Pk�1

i¼k�pþ1 li � xlk=2�
P l�1

j¼q lj � ll=2 < 0 be-

cause li b 0 for all 1a ia l and xlk > 0. In addition, (c2.6) yields

X
pat<r

at þ 2
X

rat<l
at þ al

� �
ðT 0Þ

¼ �
Xk�1

i¼k�pþ1
li � xlk=2þ

X l�1

h¼r
lh þ ll=2

a�xlk=2þ
X l�1

c¼kþ1
lc þ ll=2 < 0:

These, together with (c2.2), mean that aðT 0Þ < 0 for every a Asþðak; 1Þ. Con-

sequently Lemma 7 and (c2.3) enable us to verify that cgðT 0Þ is compact and

cgðT 0Þ ¼ ckðT 0Þ. So Remark 9 gives us cgðT 0Þ ¼ ckðT 0Þ ¼ ckðTÞ.
Case ll > 0: Since ll > 0 there exists a real number z > 0 such that

�
Xk�1

a¼1
la � lk=2þ zll=2 > 0:

By use of z, we define an element T 00 A Wk by T 00 :¼
P l�1

j¼1 ljTj þ zllTl . By

arguments similar to those stated above, one can conclude that
P

pas<q asðT 00Þ
< 0 and ð

P
pat<r at þ 2

P
rat<l at þ alÞðT 00Þ > 0, so that aðT 00Þ0 0 for every

a Asþðak; 1Þ. This and (c2.3) assure that cgðT 00Þ is compact. Hence, the rest

of proof is to confirm that cgðT 00Þ ¼ ckðTÞ, but that is immediate (ref. Case

lk > 0). r

4.5.3. A result for type CII.

Proposition 5. The following is the coarse orbit type of symplectic homo-

geneous space G=H with G ¼ Spðk; l � kÞ, lb 3 and 1a ka l � 1, and H

compact:
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G H No.

Spðk; l � kÞ
lb 3

1a ka l � 1

Uði1Þ �Uði2 � i1Þ � � � � �Uðia � ia�1Þ �Uðk � iaÞ
�Uð j1 � kÞ �Uð j2 � j1Þ � � � � �Uð jb � jb�1Þ � Spðl � jbÞ
0a aa k � 1, i0 :¼ 0, 1a i1 a i2 a � � �a ia a k � 1

0a ba l � k, j0 :¼ k, k þ 1a j1 a j2 a � � �a jb a l

1

Uðm1Þ �Uðm2 �m1Þ � � � � �Uðmc �mc�1Þ � Spðk �mcÞ
�Uðn1 � kÞ �Uðn2 � n1Þ � � � � �Uðnd � nd�1Þ �Uðl � ndÞ
0a ca k, m0 :¼ 0, 1am1 am2 a � � �amc a k

0a da l � k � 1, n0 :¼ k, k þ 1a n1 a n2 a � � �a nd a l � 1

2

CII

Remark. Spðk; l � kÞ=H1 ¼ Spðl � k; kÞ=H2, where we assume H2

to be a subgroup of Spðl � k; kÞ by identifying Spðk; l � kÞ with

Spðl � k; kÞ. Here Hi are the same as in No.i ði ¼ 1; 2Þ.

Proof. Refer to the proof of Proposition 4 and (c2.8). Here we remark

that H1 and H2 come from elements of CCII
K ðkÞ and CCII

K ðlÞ, respectively (see

(c2.7) for CCII
K ðkÞ and CCII

K ðlÞ). r

4.6. The coarse orbit type of type DI. Our aim in this subsection is to

determine the coarse orbit type of symplectic homogeneous spaces G=H with

G ¼ SO0ð2k; 2l � 2kÞ and H compact (see Proposition 6).

g k PsðkC ; tCÞ

DI soð2k; 2l � 2kÞ faa;�mdg
k�1
a¼1 U fabg l

b¼kþ1

lb 4,

2a ka l � 2

Dk �Dl�k, y ¼ exp p adðiZkÞ

Here md ¼ a1 þ 2
P l�2

j¼2 aj þ al�1 þ al .

Arguments stated below will be similar to those in Subsection 4.4. Let

ba :¼ ak�a for 1a aa k � 1, bk :¼ �md and bb :¼ ab for k þ 1a ba l. De-

note by fTig l
i¼1 the dual basis of fbig

l
i¼1 ¼ PsðkC; tCÞ. In this case it follows

from aaðZbÞ ¼ da;b that

Tp ¼ Zk�p � Zk for 1a pa k � 2; Tk�1 ¼ Z1 � Zk=2;

Tk ¼ �Zk=2; Tq ¼ �Zk þ Zq for k þ 1a qa l � 2;

Tr ¼ �Zk=2þ Zr for r ¼ l � 1; l:

ðd1:1Þ
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Take an element T ¼
P l

i¼1 liTi A Wk :¼ f
P l

i¼1 liTi j li b 0 for all 1a ia lg.
Then a direct computation, together with (d1.1), gives us

T ¼
Xl

i¼1

liTi ¼
Xk�1

a¼1

lk�aZa �
 Xk�2

p¼1

lp þ lk�1=2þ lk=2þ
Xl�2

q¼kþ1

lq

þ ll�1=2þ ll=2

!
Zk þ

Xl

b¼kþ1

lbZb: ðd1:2Þ

On can deduce the following (d1.3) by (d1.2) and arguments similar to those in

Paragraph 4.4.2:

CDI
G ¼ CDI

K ðk � 1ÞUCDI
K ðkÞUCDI

K ðl � 1ÞUCDI
K ðlÞ; ðd1:3Þ

where CDI
G , CDI

K ðk � 1Þ, CDI
K ðkÞ, CDI

K ðl � 1Þ and CDI
K ðlÞ are defined as follows:

CDI
K ðxÞ :¼ ckðTÞ jT ¼

X l

i¼1
liTi A Wk with lx > 0

n o
for x ¼ k � 1; k; l � 1; l;

CDI
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg:

ðd1:4Þ

Now, let us demonstrate Lemmas 13 and 14 which provide outer involu-

tions f and c of g satisfying fðCDI
G Þ ¼ CDI

G , fðCDI
K ðkÞÞ ¼ CDI

K ðk � 1Þ and

fðCDI
K ðrÞÞ ¼ CDI

K ðrÞ for r ¼ l � 1; l, and cðCDI
G Þ ¼ CDI

G , cðCDI
K ðsÞÞ ¼ CDI

K ðsÞ for

s ¼ k � 1; k and cðCDI
K ðlÞÞ ¼ CDI

K ðl � 1Þ, respectively. In terms of f and c

we can reduce (d1.3) to

CDI
G ¼ CDI

K ðkÞUCDI
K ðlÞU fðCDI

K ðkÞÞUcðCDI
K ðlÞÞ: ðd1:5Þ

Lemma 13 (DI). There exists an outer involution f of g ¼ soð2k; 2l � 2kÞ,
lb 4 and 2a ka l � 2, satisfying fðkÞH k, fðTk�1Þ ¼ Tk and fðThÞ ¼ Th for

any 1a ha l with h0 k � 1; k.

Proof. Define an involutive linear map f of tR by

tfða1Þ :¼ �md ¼ �a1 � 2
X l�2

t¼2
at � al�1 � al

� �
; tfðajÞ :¼ aj for 2a ja l:

Then it follows from aaðZbÞ ¼ da;b that

fðZ1Þ ¼ �Z1; fðZcÞ ¼ �2Z1 þ Zc for 2a ca l � 2;

fðZrÞ ¼ �Z1 þ Zr for r ¼ l � 1; l:

This and (d1.1) imply that fðTk�1Þ ¼ Tk and fðThÞ ¼ Th for any 1a ha l with

h0 k � 1; k. Accordingly we can get the conclusion because one can extend
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f to g as involution (ref. the proof of Lemma 10), where we remark that

½y; f� ¼ 0 and fðkÞH k follow from fðZkÞ ¼ �2Z1 þ Zk and y ¼ exp p adðiZkÞ.
r

Lemma 14 (DI). There exists an outer involution c of g ¼ soð2k; 2l � 2kÞ,
lb 4 and 2a ka l � 2, satisfying cðkÞH k, cðTl�1Þ ¼ Tl and cðTjÞ ¼ Tj for

any 1a ja l � 2.

Proof. Define an involutive linear map c of tR by

tcðajÞ :¼ aj for 1a ja l � 2; tcðal�1Þ :¼ al ;
tcðalÞ :¼ al�1:

One can complete this proof by arguments similar to those in the proof of

Lemma 13. r

Now, we are in a position to state

Proposition 6. The following is the coarse orbit type of symplectic

homogeneous space G=H with G ¼ SO0ð2k; 2l � 2kÞ, lb 4 and 2a ka l � 2,

and H compact:

G H No.

SO0ð2k; 2l � 2kÞ
lb 4

2a ka l � 2

Uði1Þ �Uði2 � i1Þ � � � � �Uðia � ia�1Þ �Uðk � iaÞ
�Uð j1 � kÞ �Uð j2 � j1Þ � � � � �Uð jb � jb�1Þ
�SOð2l � 2jbÞ
0a aa k � 1, i0 :¼ 0, 1a i1 a i2 a � � �a ia a k � 1

0a ba l � k, j0 :¼ k, k þ 1a j1 a j2 a � � �a jb a l

1

Uðm1Þ �Uðm2 �m1Þ � � � � �Uðmc �mc�1Þ
�SOð2k � 2mcÞ �Uðn1 � kÞ �Uðn2 � n1Þ
� � � � �Uðnd � nd�1Þ �Uðl � ndÞ
0a ca k, m0 :¼ 0, 1am1 am2 a � � �amc a k

0a da l � k � 1, n0 :¼ k,

k þ 1a n1 a n2 a � � �a nd a l � 1

2

DI

Remark. SO0ð2k; 2l � 2kÞ=H1 ¼ SO0ð2l � 2k; 2kÞ=H2,

where we assume H2 to be a subgroup of SO0ð2l � 2k; 2kÞ
by identifying SO0ð2k; 2l � 2kÞ with SO0ð2l � 2k; 2kÞ.
Here Hi are the same as in No.i ði ¼ 1; 2Þ.

Proof. Refer to the proof of Proposition 4 and (d1.5). Here we remark

that H1 and H2 come from elements of CDI
K ðkÞ and CDI

K ðlÞ, respectively (see

(d1.4) for CDI
K ðkÞ and CDI

K ðlÞ). r

4.7. The coarse orbit type of type EII. Our goal in this subsection is to

determine the coarse orbit type of symplectic homogeneous spaces G=H with
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G ¼ E6ð2Þ and H compact (see Proposition 7). We need to treat an exceptional

Lie group in this subsection. For this reason we are going to construct

arguments in detail. Notice the proofs of Lemmas 15 and 16.

4.7.1. A dual basis of PsðkC; tCÞ and a positive Weyl chamber Wk.

g k PsðkC; tCÞ

EII e6ð2Þ f�m6; a2; abg
6
b¼4 U fa1g

A5 � A1, y ¼ exp p adðiZ3Þ

Here m6 ¼ a1 þ 2a2 þ 2a3 þ 3a4 þ 2a5 þ a6.

Let b1 :¼ a1, b2 :¼ �m6, b3 :¼ a2 and bb :¼ ab for 4a ba 6. Denote by

fTig6i¼1 the dual basis of fbig
6
i¼1 ¼ PsðkC; tCÞ. Then aaðZbÞ ¼ da;b yields

T1 ¼ Z1 � Z3=2; T2 ¼ �Z3=2; T3 ¼ Z2 � Z3;

T4 ¼ �3Z3=2þ Z4; T5 ¼ �Z3 þ Z5; T6 ¼ �Z3=2þ Z6:
ðe2:1Þ

In view of (e2.1) we can express an element T ¼
P6

i¼1 liTi A Wk as follows:

T ¼
X6
i¼1

liTi ¼ l1Z1 þ l3Z2 � ðl1=2þ l2=2þ l3 þ 3l4=2

þ l5 þ l6=2ÞZ3 þ
X6
b¼4

lbZb: ðe2:2Þ

Here Wk :¼ f
P6

i¼1 liTi j li b 0 for all 1a ia 6g. From (e2.2) we will obtain

a necessary and su‰cient condition for the centralizer cgðTÞ of an element

T A Wk to be compact in the next paragraph.

4.7.2. A condition for the centralizer cgðTÞ of an element T A Wk to be

compact. Recall that we assume e6ð2Þ ¼ g ¼ kl p to be given by compact

Lie algebra e6 ¼ gu ¼ kl ip with involution y ¼ exp p adðiZ3Þ. Since p is the

ð�1Þ-eigenspace of y in g, we have

pC ¼ 0
a Asþða3;1Þ

spanCfXagl spanCfX�ag ðdirect sumÞ;

sþða3; 1Þ :¼
X6

i¼1
niai AsþðgC; tCÞ j n3 ¼ 1

n o ðe2:3Þ
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(see Subsection 4.2). Here pC is the ð�1Þ-eigenspace of y in gC ¼ eC6 . We

want to clarify a necessary and su‰cient condition for the centralizer cgðTÞ of

an element T A Wk to be compact. Lemma 7 implies that for T A Wk, cgðTÞ is

compact if and only if T satisfies

aðTÞ0 0 for all a Asþða3; 1Þ ðe2:4Þ

because of ½T ;Xa� ¼ aðTÞ � Xa and (e2.3). Now, let us clarify the necessary

and su‰cient condition:

Lemma 15 (EII). With the above setting; for T A Wk, the centralizer

cgðTÞ is compact if and only if (i) ‘‘l1 > 0, l2 > 0, l4 > 0 or l6 > 0’’ and

(ii) cgðTÞ ¼ ckðTÞ.

Proof. ()): Suppose that cgðTÞ is compact. Note that b :¼ a2 þ a3 þ
a4 þ a5 (¼ e2 þ e4) belongs to sþða3; 1Þ (cf. Plate V in Bourbaki [Bu, p. 275]).

A direct computation, combined with (e2.2) and aaðZbÞ ¼ da;b, enables us to

have

bðTÞ ¼ �ðl1 þ l2 þ l4 þ l6Þ=2:

Therefore (e2.4) assure that l1 þ l2 þ l4 þ l6 0 0, so that ‘‘l1 > 0, l2 > 0,

l4 > 0 or l6 > 0’’ because li b 0 for every 1a ia 6. Besides, cgðTÞ ¼ ckðTÞ
follows from Lemma 7. ((): Clear. r

Define five sets CEII
K ð1Þ, CEII

K ð2Þ, CEII
K ð4Þ, CEII

K ð6Þ and CEII
G by

CEII
K ðxÞ :¼ ckðTÞ jT ¼

X6

i¼1
liTi A Wk with lx > 0

n o
for x ¼ 1; 2; 4; 6;

CEII
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg:

ðe2:5Þ

Our aim is to determine all elements of CEII
G up to isomorphism. Lemma 15

means that CEII
G HCEII

K ð1ÞUCEII
K ð2ÞUCEII

K ð4ÞUCEII
K ð6Þ. The converse inclu-

sion also holds by virtue of the following Lemma 16; and hence

CEII
G ¼ CEII

K ð1ÞUCEII
K ð2ÞUCEII

K ð4ÞUCEII
K ð6Þ: ðe2:6Þ

This implies that for the aim, it is enough to determine all elements of CEII
K ð1Þ,

CEII
K ð2Þ, CEII

K ð4Þ and CEII
K ð6Þ.

Lemma 16 (EII). With the above setting; let T ¼
P6

i¼1 liTi be an element

of Wk. Suppose that l1 > 0, l2 > 0, l4 > 0 or l6 > 0. Then, there exists an

element T 0 A Wk satisfying (i) cgðT 0Þ is compact and (ii) cgðT 0Þ ¼ ckðTÞ.
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Proof. Case l4 > 0: First, let us consider the case l4 > 0. Divide

sþða3; 1Þ into two subsets sþða3; 1 : a4;a 1Þ and sþða3; 1 : a4;b 2Þ:

sþða3; 1Þ ¼sþða3; 1 : a4;a 1Þ tsþða3; 1 : a4;b 2Þ ðdirect sumÞ;

sþða3; 1 : a4;a 1Þ :¼
X6

i¼1
niai Asþða3; 1Þ j n4 a 1

n o
;

sþða3; 1 : a4;b 2Þ :¼
X6

i¼1
miai Asþða3; 1Þ jm4 b 2

n o
:

For b ¼
P2

a¼1 naaa þ a3 þ
P6

b¼4 nbab As
þða3; 1 : a4;a 1Þ we have

bðTÞ ¼ l1n1 þ l3n2 � ðl1=2þ l2=2þ l3 þ 3l4=2

þ l5 þ l6=2Þ þ
X6
b¼4

lbnb ðe2:7Þ

by virtue of (e2.2) and aaðZbÞ ¼ da;b. Similarly one has

gðTÞ ¼ l1m1 þ l3m2

� ðl1=2þ l2=2þ l3 þ 3l4=2þ l5 þ l6=2Þ þ
X6
b¼4

lbmb ðe2:8Þ

for g ¼
P2

a¼1 maaa þ a3 þ
P6

b¼4 mbab Asþða3; 1 : a4;b 2Þ. Notice that the

coe‰cient of l4 is negative in (e2.7) and is positive in (e2.8), indeed it

is ðn4 � 3=2Þ in (e2.7) and is ðm4 � 3=2Þ in (e2.8). This assures that if

l4 is su‰ciently large value, then one can assert that bðTÞ < 0 for all

b Asþða3; 1 : a4;a 1Þ and gðTÞ > 0 for all g Asþða3; 1 : a4;b 2Þ—that is,

aðTÞ0 0 for every a Asþða3; 1Þ, where we remark that sþða3; 1Þ ¼
sþða3; 1 : a4;a 1Þ tsþða3; 1 : a4;b 2Þ is a finite set. Accordingly T 0 :¼P3

c¼1 lcTc þ zl4T4 þ
P6

d¼5 ldTd is an element of Wk and satisfies aðT 0Þ0 0

for every a Asþða3; 1Þ, if we take a su‰ciently large number z > 0. Hence

Lemma 7 and (e2.4) imply that cgðT 0Þ is compact and cgðT 0Þ ¼ ckðT 0Þ. In

addition, Remark 9 tells us that cgðT 0Þ ¼ ckðT 0Þ ¼ ckðTÞ.
Case l1 > 0, l2 > 0 or l6 > 0: One can get the conclusion in Cases

l1 > 0, l2 > 0, and l6 > 0 by taking sþða3; 1 : a1; 0Þ tsþða3; 1 : a1; 1Þ,
sþða3; 1Þ, and sþða3; 1 : a6; 0Þ tsþða3; 1 : a6; 1Þ into consideration, respec-

tively. Here sþða3; 1 : aj ; pÞ :¼ f
P6

i¼1 niai As
þða3; 1Þ j nj ¼ pg for j ¼ 1; 6

and p ¼ 0; 1. r

We can reduce (e2.6) to

CEII
G ¼ CEII

K ð1ÞUCEII
K ð2ÞUCEII

K ð4ÞU fðCEII
K ð2ÞÞ ðe2:9Þ

by proving
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Lemma 17 (EII). There exists an outer involution f of g ¼ e6ð2Þ satisfying

fðkÞH k, fðT1Þ ¼ T1, fðT2Þ ¼ T6, fðT3Þ ¼ T5 and fðT4Þ ¼ T4.

Proof. Define an involutive linear map f of tR by

tfða1Þ :¼ a1;
tfða2Þ :¼ a5;

tfða3Þ :¼ a3;
tfða4Þ :¼ a4;

tfða5Þ :¼ a2;
tfða6Þ :¼ �m6ð¼ �a1 � 2a2 � 2a3 � 3a4 � 2a5 � a6Þ:

See the proof of Lemma 10. r

4.7.3. A result for type EII. The proof of Proposition 4, together with (e2.9),

allows us to assert

Proposition 7. The following is the coarse orbit type of symplectic homo-

geneous space G=H with G ¼ E6ð2Þ and H compact:

G H No.

E6ð2Þ A5 � T , A4 � A1 � T , A2 � A2 � A1 � T 1

A4 � T 2, A3 � A1 � T 2, A2 � A2 � T 2, A2 � A1 � A1 � T 2 2

A3 � T 3, A2 � A1 � T 3, A1 � A1 � A1 � T 3 3

A2 � T 4, A1 � A1 � T 4 4

A1 � T 5 5

EII T 6 6

4.8. The coarse orbit type of type EV. In this subsection we determine the

coarse orbit type of symplectic homogeneous spaces G=H with G ¼ E7ð7Þ and H

compact (see Proposition 8).

g k PsðkC ; tCÞ

EV e7ð7Þ f�m7; a1; abg
7
b¼3

A7, y ¼ exp p adðiZ2Þ

Here m7 ¼ 2a1 þ 2a2 þ 3a3 þ 4a4 þ 3a5 þ 2a6 þ a7.

Our arguments will be similar to those in Subsection 4.7. Let b1 :¼ �m7,

b2 :¼ a1 and bb :¼ ab for 3a ba 7. Denote by fTig7i¼1 the dual basis of

fbig
7
i¼1 ¼ PsðkC; tCÞ. Then one can express Ti as follows:
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T1 ¼ �Z2=2; T2 ¼ Z1 � Z2; T3 ¼ �3Z2=2þ Z3;

T4 ¼ �2Z2 þ Z4; T5 ¼ �3Z2=2þ Z5; T6 ¼ �Z2 þ Z6;

T7 ¼ �Z2=2þ Z7

ðe5:1Þ

by means of the dual basis fZig7i¼1 of faig7i¼1 ¼ PsðgC; tCÞ. It follows from

(e5.1) that an element T ¼
P7

i¼1 liTi A Wk can be rewritten as

T ¼
X7
i¼1

liTi ¼ l2Z1 � ðl1=2þ l2 þ 3l3=2þ 2l4

þ 3l5=2þ l6 þ l7=2ÞZ2 þ
X7
b¼3

lbTb: ðe5:2Þ

Here Wk :¼ f
P7

i¼1 liTi j li b 0 for all 1a ia 7g. By (e5.2) and arguments

similar to those in Paragraph 4.7.2 one can conclude that

CEV
G ¼ CEV

K ð1ÞUCEV
K ð3ÞUCEV

K ð5ÞUCEV
K ð7Þ; ðe5:3Þ

where CEV
K ð1Þ, CEV

K ð3Þ, CEV
K ð5Þ, CEV

K ð7Þ and CEV
G are defined as follows:

CEV
K ðxÞ :¼ ckðTÞ jT ¼

X7

i¼1
liTi A Wk with lx > 0

n o
for x ¼ 1; 3; 5; 7;

CEV
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg:

ðe5:4Þ

The following Lemma 18 allows us to reduce (e5.3) to

CEV
G ¼ CEV

K ð1ÞUCEV
K ð3ÞU fðCEV

K ð1ÞÞU fðCEV
K ð3ÞÞ: ðe5:5Þ

Lemma 18 (EV). There exists an outer involution f of g ¼ e7ð7Þ satisfying

fðkÞH k, fðT1Þ ¼ T7, fðT2Þ ¼ T6, fðT3Þ ¼ T5 and fðT4Þ ¼ T4.

Proof. Define an involutive linear map f of tR by

tfða1Þ :¼ a6;
tfða2Þ :¼ a2;

tfða3Þ :¼ a5;
tfða4Þ :¼ a4;

tfða5Þ :¼ a3;

tfða6Þ :¼ a1;
tfða7Þ :¼ �m7ð¼ �2a1 � 2a2 � 3a3 � 4a4 � 3a5 � 2a6 � a7Þ:

See the proof of Lemma 10 for the rest of proof. r
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Now, let us state

Proposition 8. The following is the coarse orbit type of symplectic

homogeneous space G=H with G ¼ E7ð7Þ and H compact:

G H No.

E7ð7Þ A6 � T , A4 � A2 � T 1

A5 � T 2, A4 � A1 � T 2, A3 � A2 � T 2, A2 � A2 � A1 � T 2 2

A4 � T 3, A3 � A1 � T 3, A2 � A2 � T 3, A2 � A1 � A1 � T 3 3

A3 � T 4, A2 � A1 � T 4, A1 � A1 � A1 � T 4 4

A2 � T 5, A1 � A1 � T 5 5

A1 � T 6 6

EV T 7 7

Proof. The proof of Proposition 4 and (e5.5) imply that it is enough to

determine all elements of CEV
K ð1Þ and CEV

K ð3Þ. We determine the elements by

Proposition 3 and direct computations. r

4.9. The coarse orbit type of type EVI. This subsection is devoted to

determining the coarse orbit type of symplectic homogeneous spaces G=H

with G ¼ E7ð�5Þ and H compact (see Proposition 9).

g k PsðkC ; tCÞ

EVI e7ð�5Þ f�m7gU fabg7b¼2

A1 �D6, y ¼ exp p adðiZ1Þ

Here m7 ¼ 2a1 þ 2a2 þ 3a3 þ 4a4 þ 3a5 þ 2a6 þ a7.

Arguments stated below are similar to those in Subsection 4.7. Let

b1 :¼ �m7, bb :¼ ab for 2a ba 7. Denote by fTig7i¼1 the dual basis of

fbig
7
i¼1 ¼ PsðkC; tCÞ. Then one can express Ti as follows:

T1 ¼ �Z1=2; T2 ¼ �Z1 þ Z2; T3 ¼ �3Z1=2þ Z3;

T4 ¼ �2Z1 þ Z4; T5 ¼ �3Z1=2þ Z5; T6 ¼ �Z1 þ Z6;

T7 ¼ �Z1=2þ Z7

ðe6:1Þ
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by means of the dual basis fZig7i¼1 of faig7i¼1 ¼ PsðgC; tCÞ. Hence, an element

T ¼
P7

i¼1 liTi A Wk is expressed as

T ¼
X7
i¼1

liTi ¼ �ðl1=2þ l2 þ 3l3=2þ 2l4

þ 3l5=2þ l6 þ l7=2ÞZ1 þ
X7
b¼2

lbZb; ðe6:2Þ

where Wk :¼ f
P7

i¼1 liTi j li b 0 for all 1a ia 7g. We can see that

CEVI
G ¼ CEVI

K ð1ÞUCEVI
K ð3ÞUCEVI

K ð5ÞUCEVI
K ð7Þ ðe6:3Þ

by (e6.2) and arguments similar to those in Paragraph 4.7.2. Here CEVI
K ð1Þ,

CEVI
K ð3Þ, CEVI

K ð5Þ, CEVI
K ð7Þ and CEVI

G are defined as follows:

CEVI
K ðxÞ :¼ ckðTÞ jT ¼

X7

i¼1
liTi A Wk with lx > 0

n o
for x ¼ 1; 3; 5; 7;

CEVI
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg:

One can determine all elements of CEVI
K ð1Þ, CEVI

K ð3Þ, CEVI
K ð5Þ and CEVI

K ð7Þ by

Proposition 3 and direct computations. Therefore, the proof of Proposition 4

and (e6.3) imply

Proposition 9. The following is the coarse orbit type of symplectic

homogeneous space G=H with G ¼ E7ð�5Þ and H compact:

G H No.

E7ð�5Þ A5 � A1 � T , A3 � A2 � A1 � T , A1 �D5 � T , D6 � T 1

A5 � T 2, A4 � A1 � T 2, A3 � A2 � T 2, A3 � A1 � A1 � T 2

A2 � A2 � A1 � T 2, A2 � A1 � A1 � A1 � T 2

A1 �D4 � T 2, D5 � T 2

2

A4 � T 3, A3 � A1 � T 3, A2 � A2 � T 3, A2 � A1 � A1 � T 3

A1 � A1 � A1 � A1 � T 3, D4 � T 3

3

A3 � T 4, A2 � A1 � T 4, A1 � A1 � A1 � T 4 4

A2 � T 5, A1 � A1 � T 5 5

A1 � T 6 6

EVI T 7 7
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4.10. The coarse orbit type of type EVIII. In this subsection we determine

the coarse orbit type of symplectic homogeneous spaces G=H with G ¼ E8ð8Þ
and H compact (see Proposition 10).

g k PsðkC ; tCÞ

EVIII e8ð8Þ f�m8; abg
8
b¼2

D8, y ¼ exp p adðiZ1Þ

Here m8 ¼ 2a1 þ 3a2 þ 4a3 þ 6a4 þ 5a5 þ 4a6 þ 3a7 þ 2a8.

Our arguments in this subsection will be similar to those in Subsection

4.7. Let b1 :¼ �m8 and bb :¼ a10�b for 2a ba 8. We denote by fTig8i¼1 the

dual basis of fbig
8
i¼1 ¼ PsðkC; tCÞ. Then aaðZbÞ ¼ da;b yields

T1 ¼ �Z1=2; T2 ¼ �Z1 þ Z8; T3 ¼ �3Z1=2þ Z7;

T4 ¼ �2Z1 þ Z6; T5 ¼ �5Z1=2þ Z5; T6 ¼ �3Z1 þ Z4;

T7 ¼ �2Z1 þ Z3; T8 ¼ �3Z1=2þ Z2:

ðe8:1Þ

So an element T ¼
P8

i¼1 liTi A Wk can be expressed as follows:

T ¼
X8
i¼1

liTi ¼ �ðl1=2þ l2 þ 3l3=2þ 2l4 þ 5l5=2þ 3l6

þ 2l7 þ 3l8=2ÞZ1 þ
X8
b¼2

l10�bZb; ðe8:2Þ

where Wk :¼ f
P8

i¼1 liTi j li b 0 for all 1a ia 8g. Therefore one can confirm

CEVIII
G ¼ CEVIII

K ð1ÞUCEVIII
K ð3ÞUCEVIII

K ð5ÞUCEVIII
K ð8Þ ðe8:3Þ

by arguments similar to those in Paragraph 4.7.2. Here CEVIII
K ð1Þ, CEVIII

K ð3Þ,
CEVIII

K ð5Þ, CEVIII
K ð8Þ and CEVIII

G are defined as follows:

CEVIII
K ðxÞ :¼ ckðTÞ jT ¼

X8

i¼1
liTi A Wk with lx > 0

n o
for x ¼ 1; 3; 5; 8;

CEVIII
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg:

Proposition 3 enables us to determine all elements of CEVIII
K ð1Þ, CEVIII

K ð3Þ,
CEVIII

K ð5Þ and CEVIII
K ð8Þ; and hence we can conclude the following proposition

by the proof of Proposition 4:
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Proposition 10. The following is the coarse orbit type of symplectic

homogeneous space G=H with G ¼ E8ð8Þ and H compact:

G H No.

E8ð8Þ A7 � T , A4 � A3 � T , A2 �D5 � T , D7 � T 1

A6 � T 2, A5 � A1 � T 2, A4 � A2 � T 2, A4 � A1 � A1 � T 2

A3 � A3 � T 2, A3 � A2 � A1 � T 2, A2 � A2 � A1 � A1 � T 2

A2 �D4 � T 2, A1 �D5 � T 2, D6 � T 2

2

A5 � T 3, A4 � A1 � T 3, A3 � A2 � T 3, A3 � A1 � A1 � T 3

A2 � A2 � A1 � T 3, A2 � A1 � A1 � A1 � T 3, A1 �D4 � T 3

D5 � T 3

3

A4 � T 4, A3 � A1 � T 4, A2 � A2 � T 4, A2 � A1 � A1 � T 4

A1 � A1 � A1 � A1 � T 4, D4 � T 4

4

A3 � T 5, A2 � A1 � T 5, A1 � A1 � A1 � T 5 5

A2 � T 6, A1 � A1 � T 6 6

A1 � T 7 7

EVIII T 8 8

4.11. The coarse orbit type of type EIX. In this subsection we determine the

coarse orbit type of symplectic homogeneous spaces G=H with E8ð�24Þ and H

compact (see Proposition 11).

g k PsðkC; tCÞ

EIX e8ð�24Þ f�m8gU faag7a¼1

A1 � E7, y ¼ exp p adðiZ8Þ

Here m8 ¼ 2a1 þ 3a2 þ 4a3 þ 6a4 þ 5a5 þ 4a6 þ 3a7 þ 2a8.

Our arguments are similar to those in Subsection 4.7. Let ba :¼ aa for

1a aa 7 and b8 :¼ �m8. Denote by fTig8i¼1 the dual basis of fbig
8
i¼1 ¼

PsðkC; tCÞ. Then it follows from aaðZbÞ ¼ da;b that

T1 ¼ Z1 � Z8; T2 ¼ Z2 � 3Z8=2; T3 ¼ Z3 � 2Z8;

T4 ¼ Z4 � 3Z8; T5 ¼ Z5 � 5Z8=2; T6 ¼ Z6 � 2Z8;

T7 ¼ Z7 � 3Z8=2; T8 ¼ �Z8=2:

ðe9:1Þ
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This enables us to rewrite an element T ¼
P8

i¼1 liTi A Wk as follows:

T ¼
X8
i¼1

liTi ¼
X7
a¼1

laZa � ðl1 þ 3l2=2þ 2l3 þ 3l4 þ 5l5=2

þ 2l6 þ 3l7=2þ l8=2ÞZ8: ðe9:2Þ

Here Wk :¼ f
P8

i¼1 liTi j li b 0 for all 1a ia 8g. Accordingly we deduce

CEIX
G ¼ CEIX

K ð2ÞUCEIX
K ð5ÞUCEIX

K ð7ÞUCEIX
K ð8Þ ðe9:3Þ

by arguments similar to those in Paragraph 4.7.2. Here CEIX
K ð2Þ, CEIX

K ð5Þ,
CEIX

K ð7Þ, CEIX
K ð8Þ and CEIX

G are give by

CEIX
K ðxÞ :¼ ckðTÞ jT ¼

X8

i¼1
liTi A Wk with lx > 0

n o
for x ¼ 2; 5; 7; 8;

CEIX
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg:

One can determine all elements of CEIX
K ð2Þ, CEIX

K ð5Þ, CEIX
K ð7Þ and CEIX

K ð8Þ by

Proposition 3 and direct computations; and therefore the proof of Proposition 4

and (e9.3) allow us to conclude

Proposition 11. The following is the coarse orbit type of symplectic

homogeneous space G=H with G ¼ E8ð�24Þ and H compact:

G H No.

E8ð�24Þ A6 � A1 � T , A4 � A2 � A1 � T , A1 � E6 � T , E7 � T 1

A6 � T 2, A5 � A1 � T 2, A4 � A2 � T 2, A4 � A1 � A1 � T 2

A3 � A2 � A1 � T 2, A2 � A2 � A1 � A1 � T 2, A1 �D5 � T 2

D6 � T 2, E6 � T 2

2

A5 � T 3, A4 � A1 � T 3, A3 � A2 � T 3, A3 � A1 � A1 � T 3

A2 � A2 � A1 � T 3, A2 � A1 � A1 � A1 � T 3, A1 �D4 � T 3

D5 � T 3

3

A4 � T 4, A3 � A1 � T 4, A2 � A2 � T 4, A2 � A1 � A1 � T 4

A1 � A1 � A1 � A1 � T 4, D4 � T 4

4

A3 � T 5, A2 � A1 � T 5, A1 � A1 � A1 � T 5 5

A2 � T 6, A1 � A1 � T 6 6

A1 � T 7 7

EIX T 8 8
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4.12. The coarse orbit type of type FI. Our goal in this subsection is to

determine the coarse orbit type of symplectic homogeneous spaces G=H with

G ¼ F4ð4Þ and H compact (see Proposition 12).

g k PsðkC ; tCÞ

FI f4ð4Þ f�mf gU fabg4b¼2

A1 � C3, y ¼ exp p adðiZ1Þ mf ¼ 2a1 þ 3a2 þ 4a3 þ 2a4

Our arguments will be similar to those in Subsection 4.7. Let b1 :¼ �mf and

bb :¼ ab for 2a ba 4. Denote by fTig4i¼1 the dual basis of fbig
4
i¼1 ¼

PsðkC; tCÞ. Then one has

T1 ¼ �Z1=2; T2 ¼ �3Z1=2þ Z2; T3 ¼ �2Z1 þ Z3;

T4 ¼ �Z1 þ Z4

ðf1:1Þ

in terms of aaðZbÞ ¼ da;b. It follows from (f1.1) that an element T ¼P4
i¼1 liTi A Wk can be rewritten as

T ¼
X4
i¼1

liTi ¼ �ðl1=2þ 3l2=2þ 2l3 þ l4ÞZ1 þ
X4
b¼2

lbZb; ðf1:2Þ

where Wk :¼ f
P4

i¼1 liTi j li b 0 for all 1a ia 4g. Hence one can confirm

that

CFI
G ¼ CFI

K ð1ÞUCFI
K ð2Þ ðf1:3Þ

by arguments similar to those in Paragraph 4.7.2. Here we define sets CFI
K ð1Þ,

CFI
K ð2Þ and CFI

G by

CFI
K ð1Þ :¼ ckðTÞ jT ¼

X4

i¼1
liTi A Wk with l1 > 0

n o
;

CFI
K ð2Þ :¼ ckðTÞ jT ¼

X4

i¼1
liTi A Wk with l2 > 0

n o
;

CFI
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg;

respectively. This (f1.3) gives us

Proposition 12. The following is the coarse orbit type of symplectic

homogeneous space G=H with G ¼ F4ð4Þ and H compact:
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G H No.

F4ð4Þ A2 � A1 � T , C3 � T 1

A2 � T 2, A1 � A1 � T 2, B2 � T 2 2

A1 � T 3 3

FI T 4 4

4.13. The coarse orbit type of type FII. In this subsection we determine the

coarse orbit type of symplectic homogeneous spaces G=H with G ¼ F4ð�20Þ and

H compact (see Proposition 13).

g k PsðkC ; tCÞ

FII f4ð�20Þ f�mf ; aag
3
a¼1

B4, y ¼ exp p adðiZ4Þ mf ¼ 2a1 þ 3a2 þ 4a3 þ 2a4

Arguments stated below are similar to those in Subsection 4.7. Let b1 :¼
�mf and bb :¼ ab�1 for 2a ba 4. We denote by fTig4i¼1 the dual basis of

fbig
4
i¼1 ¼ PsðkC; tCÞ. Then it follows from abðZaÞ ¼ db;a that

T1 ¼ �Z4=2; T2 ¼ Z1 � Z4; T3 ¼ Z2 � 3Z4=2;

T4 ¼ Z3 � 2Z4:
ðf2:1Þ

So an element T ¼
P4

i¼1 liTi A Wk can be expressed as follows:

T ¼
X4
i¼1

liTi ¼
X3
a¼1

laþ1Za � ðl1=2þ l2 þ 3l3=2þ 2l4ÞZ4; ðf2:2Þ

where Wk :¼ f
P4

i¼1 liTi j li b 0 for all 1a ia 4g. Therefore one can deduce

CFII
G ¼ CFII

K ð1ÞUCFII
K ð3Þ ðf2:3Þ

by arguments similar to those in Paragraph 4.7.2. Here CFII
K ð1Þ, CFII

K ð3Þ and

CFII
G are given by

CFII
K ð1Þ :¼ ckðTÞ jT ¼

X4

i¼1
liTi A Wk with l1 > 0

n o
;

CFII
K ð3Þ :¼ ckðTÞ jT ¼

X4

i¼1
liTi A Wk with l3 > 0

n o
;

CFII
G :¼ fcgðT 0Þ j cgðT 0Þ is compact with T 0 A Wkg;
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respectively. The proof of Proposition 4, together with (f2.3), allows us to

assert

Proposition 13. The following is the coarse orbit type of symplectic

homogeneous space G=H with G ¼ F4ð�20Þ and H compact:

G H No.

F4ð�20Þ A2 � A1 � T , B3 � T 1

A2 � T 2, A1 � A1 � T 2, B2 � T 2 2

A1 � T 3 3

FII T 4 4

4.14. The coarse orbit type of type G. We know the coarse orbit type of

symplectic homogeneous spaces G=H with G ¼ G2ð2Þ and H compact from

Proposition 5.5 in Boumuki [Bm, p. 1157]:

Proposition 14. The following is the coarse orbit type of symplectic

homogeneous space G=H with G ¼ G2ð2Þ and H compact:

G H No.

G2ð2Þ A1 � T 1

G T 2 2

We conclude Theorem 1 by collecting eleven Propositions 4 through 14.

Concluding Remark. Symplectic homogeneous spaces in Theorem 1 cannot

admit any invariant Kählerian structures (ref. Section 1), but they admit

invariant pseudo-Kählerian structures (see Theorem in Dorfmeister-Guan

[Do-Gu1, p. 330] and our Proposition 2).
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