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ABSTRACT. The main purpose of this paper is to determine the coarse orbit types of all
non-Kihlerian, symplectic homogeneous spaces G/H with G non-compact simple and H
compact. Our result, together with the results of Wang (Amer. J. Math., 1954) and
Yichao (Sci. China Ser. A, 1986), enables one to know all dual manifolds of every
Kahler C-space.

1. Introduction and the main result

The main purpose of this paper is to determine the coarse orbit types of
all non-Kéhlerian, symplectic homogeneous spaces G/H with G non-compact
simple and H compact (see Definition 6 (p. 17) for the definition of coarse
orbit type):

THEOREM 1. The following is the coarse orbit type of every non-Kdhlerian,
symplectic homogeneous space G/H with G non-compact simple and H compact:

G H No.

SOQ(2k,21—2k+1) U(i])X U(iz—il) X e X U(i(,—ia,l)x U(k—ia) 1

I>2 x U(ji —k) x U(jp = j1) x = x U(jp = jb-1)

2<k<l x SO(21 - 2j, + 1)
0<a<k-1i:=01<i<ph<--<ip<k-1

BI O<b<l—k jo=k k+tl<j<jp<-<jp<lI

Sp(k,l—k) U(i1)>< U(iz—il)X'~~>< U(i(,—ia,l)x U(k—ia) 1

/=3 XU(j1 =k)x U(ja—j1) x - x U(jy = jp-1)

l<k<l-1 x Sp(l = ji)
0<a<k-1i:=01<i<ph<--<ip<k-1
O<b<l—k jo=hk ktl<ji<p<--<jy<lI
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G H No.
Uimy) x U(my —my) x -+ x U(me —me_1) 2
x Sp(k —m.) x U(ny — k) x U(ny —ny)
X X U(I’ldfndq) X U(l*l’ld)
0<c<k, my:=0,1<m<m<---<m.<k
0<d<l—k-1, np:=k,
k+1<m<m<---<ng<Il-1
Remark. Sp(k,l1—k)/H, = Sp(l — k,k)/H,, where we
assume H, to be a subgroup of Sp(I — k,k) by identifying
Sp(k,l —k) with Sp(l — k,k). Here H; are the same as
CII in Nod (i=1,2).

SOy(2k, 21 — 2k)
>4

UGi) x Ui —iy) x - X Uliyg — ig—1) X U(k — i)
x U(jy —k) x U(jr — j1) x - x U(jp — jp-1)

2<k<l-2 x SO(21 — 2j)
O<a<k-1ip=0,1<i<ib<---<i,<k-1
0<b<l—k, jo=k k+l1<jij<p<---<jp<l
U(my) x U(my —my) x --- x Ulme — me_y) 2
x SO(2k —2m.) x U(n; — k) x U(ny — ny)
X+ X U(ndfl’ld_l) X U(lfnd)
0<c<k, my:=0,1<m<m<---<m.<k
0<d<l—k—-1, ny:=k,
k+l1<m<m<---<ng<l-1
Remark. S00(2k72172k)/H1 =S00(2172k,2k)/H2,
where we assume H, to be a subgroup of SOy(2] — 2k,2k)
by identifying SOy (2k,2l — 2k) with SOy(2] — 2k, 2k).

DI Here H; are the same as in No.d (i=1,2).

E6(2) A5><T,A4><A1><T,A2><A2><A1><T 1
A4><T2,A3><A1><T2,A2><A2><T2 2
Az X A] X A] X T2
A3><T3,A2><A1><T3,A1><A1><A1><T3 3
A2><T4,A1><A1><T4 4
A1 X T5 5

EII T 6

E7(7) Ag X T, Ay x Ay x T 1
As x T? Ay x Ay x T?, A3 x Ay x T? 2

A2><A2><A]><T2
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G H No.
Ay x T3, A3 x Ay x T3, Ay x Ay x T3 3
AQ><AI><A]><T3
A3><T4,A2><A1><T4,A1><A1><A1><T4 4
A2><T5,A1><A1><T5 5
A x T® 6
EV T7 7
E7(_5> A5><A1><T,A3><A2><A]><T,A1><D5><T 1
D6><T
As x T?, Ay x Ay x T?, A3 x Ay x T? 2
A3><A1><A1><T2
A2><A2><A|><T2, A2><A|><A1><A1><T2
A1><D4><T2, D5><T2
A4><T3,A3><A1><T3,A2><A2><T3 3
Ay x A x Ay x T3
A1><A1><A1><A1><T3, D4><T3
A3><T4,Az><A1><T4,A]><A1><A]><T4 4
A2><T5,A1><A1><T5 5
A1><T6 6
EVI T7 7
Eg(g) A7><T,A4><A3><T,A2><D5><T,D7><T 1
A6><T2,A5><A1><T2,A4><A2><T2 2
Ag x A] x A} x T?
A3><A3><T2, A3><A2><A|><T2
Az><Az><A]><A]><T2
A2><D4><T2, A1><D5><T2, DGXTZ
As x T3, Ay x Ay x T3, A3 x Ay x T3 3
A3><A1><A1><T3
A2><A2><A|><T3, Az><A|><A]><A]><T3
A1><D4><T3, D5><T3
Ay x T*, A3 x Ay x T*, Ay x Ay x T* 4
Ay x A] x Ay x T*
A1><A1><A1><A1><T4, D4><T4
A3><T5,Az><A]><TS,A]><A1><A]><T5 5
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G H No.

A, x TO Ay x Ay x T® 6

A[XT7 7
EVIII T8 8
Eg(,24) A6><A1><T,A4><A2><A1><T,A1><E6><T 1

E7><T

Agx T? Asx Ay x T?, Ay x Ay x T? 2

A4><A1><A1><T2

A3><A2><A1><T2, A2><A2><A1><A1><T2

A1 x Ds x T?

D¢ x T?, Eg x T?

1‘15><T3,A4><A1><T3,A3><Az><T3 3

A3><A]><A]><T3

A2><A2><A1><T3, A2><A1><A1><A1><T3

A1><D4><T3, D5><T3

A4><T4,A3><A1><T4,A2><A2><T4 4

Az><A]><A|><T4

A1><A1><A]><A1><T4, D4><T4

A3><T5,A2><A1><T5,A1><A1><A1><T5 5

A, x TO Ay x Ay x T® 6

Ay x T7 7
EIX T8 8
F4(4) Ay X Ay XT, C3><T 1

Ay x T?, Ay x Ay x T?, By x T? 2

A]XT3 3
FI T* 4
F4(,20) A2 ><A1 X T, By x T 1

A2><T2,A|XA1><T2,BQ><T2 2

Ay x T3 3
FII T* 4
Gz(z) A1><T 1
G 7?2 2
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Let G be a connected, absolutely simple Lie group whose center Z(G)
is trivial, and let G/H be a symplectic homogeneous space. A fundamental
problem on G/H is as follows: “What is a necessary and sufficient condition
for G/H to be Kahlerian?” The result of Borel [Br] enables us to see the
condition (see Matsushima [Mal] also):

(1) The isotropy subgroup H must be compact when G/H is Kéhlerian;

(ii) G/H is compact Kihlerian if and only if G is compact;

(iii) G/H is non-compact Kdhlerian if and only if H is compact and

G/K is a Hermitian symmetric space of non-compact type. Here

K denotes a maximal compact subgroup of G such that H < K.
Case (ii): In 1954 Wang [Wa| has determined the coarse orbit types of all
compact Kéhlerian homogeneous spaces in Case (ii), where we need to add
two items D¢ and A4; x Ds into the list of maximal semisimple C-subgroups of
E;7 in Theorem VIII [Wa, p. 31] for the sake of completeness (cf. Bordemann-
Forger-Romer [Bd-Fo-R§]). Case (iii): In 1986 Yichao [Yi] has determined
the coarse orbit types of all non-compact Kédhlerian homogeneous spaces in
Case (iii), where we need to read SOy(n,2) instead of SOy (2n) in the case (4) of
Theorem 1 [Yi, p. 450-451]. That is to say, one knows the coarse orbit types
of all Kéhlerian homogeneous spaces in Cases (ii) and (iii).

Symplectic homogeneous space G/H

G H

(11) compact — Kahler

(iif) | non-compact | compact | Kéhler or non-Kédhler

Theorem 1 provides the coarse orbit types of all non-Kihlerian, symplectic
homogeneous spaces G/H with G non-compact simple and H compact. From
this and Yichao’s result [Yi] one can know all dual manifolds G/V of Kéihler
C-spaces G¢/B in the case where G¢ are simple (see Griffiths-Schmid [Gr-Sc,
p. 260] for the definition of dual manifold of a Kdhler C-space). Consequently,
Theorem 3 (p. 14) and Wang’s result [Wa] enable one to know all dual
manifolds of every Kéhler C-space.
This paper is organized as follows:
§2 Preliminaries
In this section we recall the definition of symplectic homogeneous
space. Moreover, we introduce the notion of infinitesimal symplectic
homogeneous space (see Definition 2) and we investigate a relation
between symplectic homogeneous spaces and infinitesimal ones.
§3 A structure theorem
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For a symplectic homogeneous space G/H with G non-compact
semisimple, we clarify a necessary and sufficient condition for H to
be compact (see Theorem 2) by taking advantage of the notion of
S-element (cf. Definition 3).

§4 The coarse orbit types of non-Kihlerian, symplectic homogeneous
spaces G/H with G non-compact simple and H compact

We determine the coarse orbit type of each non-Kéihlerian,
symplectic homogeneous space G/H with G non-compact simple
and H compact by use of Theorem 2.

Notations. Throughout this paper we use the following notations:
(nl) Z(G): the center of a Lie group G,
(n2) By: the Killing form of a Lie algebra g,
(n3) Lie G: the Lie algebra of a Lie group G, i.e., the set of all left-
invariant vector fields on G,
(n4) Ad: the adjoint representation of a Lie group,
(n5) ad: the adjoint representation of a Lie algebra,
(n6) Cg(W): the centralizer of an element W € Lie G in a Lie group G,
ie., Co(W):={ge G|Ad(g)W = W},
(n7) ¢y(W): the centralizer of an element W eg in a Lie algebra g,
(n8) Gp: the identity component of a Lie group G,
(n9) Ay: the inner automorphism of a Lie group G determined by an
element g € G.
We sometimes denote the Lie algebra of a Lie group by the corresponding
German small letter.

=
=)

=]
3

2. Preliminaries

2.1. The definition of symplectic homogeneous space. Let us recall the def-
inition of symplectic homogeneous space.

DeFINITION | (cf. Chu [Ch, p. 147]). Let G be a connected Lie group,
and let H be a closed subgroup of G. Then the coset space G/H is called a
symplectic homogeneous space, if it admits a G-invariant symplectic form Q.

REemMARK 1. Definition 1 is slightly different from the original definition in
Chu [Ch, p. 147]. Indeed, we do not impose the condition “H is connected”
on Definition 1.

2.2. The definition of infinitesimal symplectic homogeneous space. We first
introduce the notion of infinitesimal symplectic homogeneous space, and
afterwards investigate a relation between symplectic homogeneous spaces
and infinitesimal ones.
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DEerFINITION 2. (i) Let g be a real Lie algebra, and let w be a skew-
symmetric bilinear form on ¢ satisfying

o([X, Y], Z)+o([Y,Z],X)+w([Z,X],Y)=0 (1)

for all X,Y,Zeg. Then we call the pair (g,w) or a triplet (g,g,,®) an
infinitesimal symplectic homogeneous space or an ISH space, where g, is a
subalgebra of g defined by

g, ={Xeg|lo(X,Y)=0 for all Y eg}. (2)
(i) We say that an ISH space (g,w) is trivial if w = 0.
Let us give an example of ISH space:

ExamPLE 1. Let g be a real Lie algebra. Then (g,wj,) is an ISH space
for any W eg, where wj, is given by

oy (X,Y):=By(W,[X,Y]) for X,Y eg. (3)

From now on we start studying a relation between symplectic homoge-
neous spaces and ISH spaces.

Lemma 1. Let (G/H,Q) be a symplectic homogeneous space, and let n
denote the projection from G onto G/H. Then (g,) is an ISH space, where
g:=Lie G and w is given by

o(X,Y):=#"Q)(X,Y) for X,Y eq.
Furthermore, Lie H coincides with g, (see (2) for g,).

ProOOF. It is natural that  is a skew-symmetric bilinear form on g. Let
us show that w satisfies (1). Since Q is G-invariant, o is left-invariant. Hence
one knows that, for any X, Y e€g,

o(X,Y) is a constant function 4)

(ref. Matsushima [Ma2, p. 193]). Besides, w is closed (i.e., dow = 0) because Q
is closed. Consequently, it follows from (4) that for any X, Y,Z € g,

0=(dw)(X,Y,Z)
= X(o(Y,Z)) - Y(o(X,Z)) + Z(o(X, Y))
—o([X, Y], Z) + o([X, Z], Y) — o([Y, Z], X)
= —o([X, Y],Z) + o([X, Z],Y) - o([Y, Z], X).
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This implies that w satisfies (1) because w is skew-symmetric. Now, the rest of
proof is to confirm that

b =g,

where b := Lie H. First, let us show that ) c g,. Take an element X €b.
Then drn(X) =0, and so one has w(X,Y) = Q(dn(X),drn(Y)) =0 for every
Y eg. Therefore X €g,, and h = g,. Next, let us deduce that the converse
inclusion also holds. Note that Q, is a symplectic form on the tangent space
T,(G/H) and (dn),: T.G — T,(G/H) is surjective, where o := n(e). Take an
element Z € g,. Then (2) implies that for any Y € g, one obtains 0 = w(Z, Y)
= Q(dn(Z),drn(Y)); in particular, 0 = Q,((dn),(Z.), (dn),(Y.)). Hence we see
that (dn),(Z.) =0, and dn(Z) =0 because Z is left-invariant. This shows
Zeb, and g, < b. O

The following proposition will play an important role in Section 3:

ProposITION 1 (cf. Matsushima [Mal, p. 54-55]). Let (G/H,Q) be a
symplectic homogeneous space with G semisimple, and let (g, ®) denote the ISH
space constructed from (G/H,Q) in the way of Lemma 1. Then, there exists a
unique element W € g such that o = a)%, (see (3) for co%/). In this case, H lies

between Cq(W), and Cg(W).

ProoF. Théoréme 1 in Matsushima [Mal, p. 54] and its proof enable one
to conclude this proposition. O

DerFmNiTION 3. With the same setting as in Proposition 1; we say that
the unique element W is the symplectic element or the S-element of (G/H, Q).
Remark that the S-element W of (G/H,Q) satisfies two conditions (sl) and
(s2):

(sl) o), =rn"Q, (s2) Cg(W)ycHc Co(W),

where 7 denotes the projection from G onto G/H.

3. A structure theorem

In this section we clarify a necessary and sufficient condition for H to
be compact, for a symplectic homogeneous space G/H with G non-compact
semisimple (see Theorem 2).

3.1. Let (G/H,Q) be a symplectic homogeneous space with G semisimple
and H compact, and let W be the S-element of (G/H,Q). Then W satisfies
Ce(W), <« H < Cg(W). We will prove H= Cg(W),=Cg(W) later (see
Proposition 2). For this reason we first recall the definition of elliptic element:
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DEerFINITION 4 (cf. Kobayashi [Ko]). Let g be a real semisimple Lie
algebra. An clement X € g is called semisimple, if the endomorphism ad X
of g is semisimple. A semisimple element Z € g is said to be elliptic, if all
eigenvalues of ad Z are purely imaginary.

The following lemma is known (e.g. Kobayashi-Ono [Ko-On, Lemma
(6.1), p. 83, and its proof, p. 85]), but we prove it for the sake of completeness:

LemMMA 2. Let G be a connected semisimple Lie group, and let Z be an
elliptic element of ¢ =Lie G. Then, the centralizer Cg(Z) is connected.

Proor. First, let us prepare notations ¢, K and P for proof. Since Z
is elliptic, there exists a maximal compact subalgebra f of g containing Z.
Denote by p the orthogonal complement of f in g with respect to By. In this
case one gets a Cartan decomposition of g,

g=t®p (direct sum) with Z ef,

and the Cartan involution 0 of g by setting (4 + B):=A4— B for Aef,
Bep. Define an inner product {-,-> on g by (X,Y):=—By(0(X),Y) for
X, Y eg; and consider g as a Euclidean space with respect to {-,-> hereafter.
Then, one can obtain a diffecomorphism ¢ from K x P onto G defined by

p:KxP— G, (k,p) — k- p,

where K := {ge G|Ad(g) € O(g)}, P:=exp(p) and we denote by O(g) (resp.
exp) the orthogonal group on g (resp. the exponential map of G). In addition,
one can see that

Lie K coincides with f (5)

and expl, : p — P is diffeomorphic, where we denote by expl|, the restriction
of exp to p (cf. Onishchik-Vinberg [On-Vi, p. 256-257, Theorem 2 and its
proof]!). Now, we will prove that Cs(Z) is connected by taking steps (S1),
(S2) and (S3):
(S1) Ck(Z) x Cp(Z) is homeomorphic to Cg(Z) via ¢, where Cp(Z) is a
closed subset of P given by Cp(Z) :={pe P|Ad(p)Z =Z}. Here
we equip Ck(Z) x Cp(Z) with the induced topology from K x P;
(S2) Cp(Z) is connected;
(S3) Ck(Z) is connected.

!There are some minor misprints in [On-Vi]. p. 256, T 11, Read Adge O(g) instead of
Ad g € 0(g); p. 256, 1 6, Read Problem 7 instead of Problem 9; p. 256, 1 3, Read P = exp ad p instead
of P= exp ad g; p. 257, | 1, Read one-to-one and onto instead of one-to-one; p. 257, | 3, Read
ke O(g) instead of ke 0(g); p- 257, | 11, Read bijective instead of injective; p. 257, 1 11 and 10,
Read ¥(gi1,¢92) =1id instead of Y¥(g1,g2) =id; p. 257, 1 10, Read g¢;, 9> € G instead of g;,¢2 € K.
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(S1): Since ¢(Ck(Z) x Cp(Z)) = C(Z) is clear, it suffices to verify that
for any x e Cg(Z), there exist k € Cx(Z) and pe Cp(Z) satisfying k- p =
¢(k,p) = x. Take any element x € Cg(Z). Since Z = Ad(x)Z one has

exp tZ =exp t Ad(x)Z = A (exp tZ) = x-exp tZ - x| (6)

for every t € R. Henceforth, we denote exp rZ by z,. There exist a unique
ke K and a unique pe P such that k-p=x (because ¢: K x P — G is
difftomorphic). Let us show that ke Cx(Z) and pe Cp(Z). From (6) it
is obvious that z, = x-z,-x~!, so that
k-p=x=z,-x-z'=(zk-z7Y) (z,-p-z7).

It follows from [f,p] = p and (5) that Ad Ko(p) = p. Since z, = exp 1Z € K,
P =exp(p) and Ad Ky(p) = p we deduce that z, -k-z;' e Kand z,- p-z; ' € P;
and thus k=z,-k-z;! and p=z-p-z! by the uniqueness. This yields
exptZ=z,=k-z,-k' =exp t Ad(k)Z and exp tZ = exp t Ad(p)Z for every
teR. Consequently we obtain Ad(k)Z =Z = Ad(p)Z; and ke Cx(Z), pe
Cp(2).

(S2): Now, let us demonstrate that Cp(Z) is (arcwise) connected. Take
any element y € Cp(Z) and express it as y =exp Y (Y € p). Then one deduces
z,=y-z;-y~! by arguments similar to those in (SI). Therefore we have

exp Y =y=A.(y) =exp Ad(z,) Y.
Since exp : p — P is injective and Ad(z,)Y € p, we perceive that ¥ = Ad(z,)Y
= Ad(exp tZ)Y =exptad Z(Y) for every teR; and hence [Z,Y]=0. By
[Z,Y] =0 we conclude that for every teR,
tl’l

Ad(exp tY)Z =exptad Y(Z) = Zn'

n>0

(ad V)'Z = Z.

This assures that the whole l-parameter subgroup {exp¢Y |ze R} lies in
Cp(Z), where exp tY € P follows from P =exp(p) and Y € p. So, one can
join y =exptY|,_,; to the unite element e =exp tY|,_, € Cp(Z) by an arc in
Cp(2).

(S3): Note that K is connected because ¢ : K x P — G is diffeomorphic
and both P =exp(p) and G are connected. Since f is compact one can
decompose it as

=1 D30 (direct sum),

where I (resp. 3(f)) denotes the semisimple part (resp. center) of f. This
enables us to uniquely express Z as follows:

Z=Zs+ 7,
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(Zg € t, Z, €3(f)). Denote by Ky and Z(K), the connected Lie subgroups
of K corresponding to f and 3(f), respectively. Now, let us conclude that
Ck(Z) is connected. Since K is connected, one sees that K = K - Z(K),; so
that

Cx(Z) = Ck,(Zs) - Z(K), ()

because Ad(k)Z, = Z, for any k € K, and Ad(c)X = X for any ¢ € Z(K),, and
X el Since Ky is connected and fi is compact semisimple, K is com-
pact. This implies that Cg_ (Zs) is connected, and it follows from (7) that
Ck(Z) is connected. [

Now, let us prove

ProPOSITION 2. Let (G/H,Q) be a symplectic homogeneous space with G
semisimple and H compact, and let W be the S-element of (G/H,Q2). Then, the
following three items hold:

(i) W is an elliptic element of ¢ and H = Cq(W), = Co(W);

(ii) G/H is simply connected;

(i) H contains the center Z(G), and Z(G) is finite.

PrOOF. (i): Proposition 1 assures that W satisfies
Co(W)yc H < Co(W). (8)

Since Lie Cg(W) = Lie H and H is compact, there exists an ad W-invariant
inner product on g. Hence, W is an elliptic element of g. Therefore Lemma
2 implies that Cg(W) is connected; and hence

H = Ce(W), = Ce(W)

follows from (8).

(ii): Let (G,y) denote the universal covering group of G. Note that
dy : g — g is a Lie algebra isomorphism. Let us identify g with g via dyy. In
this case W is an elliptic element of g and Cz(W) is connected by Lemma 2.
Therefore G/Cg(W) is simply connected, and hence G/H is also simply
connected because G/Cx(W) is homeomorphic to G/Cg(W) = G/H.

(iii): On the one hand, Z(G) is discrete because G is semisimple. On the
other hand, Z(G) = H comes from (i) H = Cg(W). Consequently, we deduce
(iii) because H is compact. O

LemMmA 3. For any symplectic homogeneous space G/H with G semisimple
and H compact, there exists a maximal compact subgroup of G containing H.

Proor. If G is compact, then G in itself can take on the role of the above
subgroup. So, let us consider the case where G is non-compact hereafter.



12 Nobutaka Boumuki

Note that the center Z(G) is finite from Proposition 2. Let G = K - P denote
the same decomposition as in the proof of Lemma 2. In this case K is
compact because Z(G) is finite (cf. Onishchik-Vinberg [On-Vi, p. 258,
Corollary 6]); and so (G,K) is a Riemannian symmetric pair of non-compact
type. Hence there exists a maximal compact subgroup K’ of G satisfying
H <= K' by Theorem 2.1 in Helgason [He, p. 256]. O

Proposition 2 allows us to deduce

CorOLLARY 1. Let G/H be a symplectic homogeneous space with G
semisimple and H compact, and let K be a maximal compact subgroup of G
such that H = K (ref. Lemma 3). Then rank(g) coincides with rank(f), ie.,
every Cartan involution of g is inner. This implies that there are no symplectic
homogeneous spaces G/H with H compact, in the case where G is one of the
following:

SL(n,R) with n >3, SU*(2n) with n > 2,
SO¢(2n—2k — 1,2k + 1) with n>4 and 0 <k <n-—1,

Es(6), Es(_26),

SL(n,C) with n>2, SO(n,C) with n >3, Sp(n,C) with n>1,
Gy, Fy,

EE, ES, EE.

Proor. By Proposition 2 there exists an elliptic element W of g such that
Ce(W)=H. Since W is semisimple there exists a Cartan subalgebra t of g
containing W. It is obvious that t < ¢;(W); and therefore Co(W)=H < K
yields t = f. Hence rank(g) = rank(f). ]

3.2. This subsection is devoted to proving

THEOREM 2. Let (G/H,Q) be a symplectic homogeneous space with G
non-compact semisimple, and let W be the S-element of (G/H,Q). Then the
Sfollowing (1) and (11) are equivalent:

(I) H is compact;

(I) the center Z(G) is finite, and there exists a maximal compact sub-

algebra t of g satisfying two conditions (c1) W et and (c2) ad W|, is
a linear isomorphism of p. Here p denotes the orthogonal comple-
ment of ¥ in g with respect to By

REMARK 2. The condition (c2) in Theorem 2 does not make sense when G
is compact, because G is compact if and only if p = {0}.

PrOOF (Proof of Theorem 2). (I) — (II): Suppose that H is compact. By
Proposition 2 we see that Z(G) is finite and Cq(W) = H. Moreover, Lemma
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3 assures that there exists a maximal compact subgroup K’ of G satisfying
Cq(W)=H < K'. Therefore it suffices to prove that

ad W1, :p" — p’ is bijective, 9)

where p’ denotes the orthogonal complement of ' = Lie K’ in g with respect
to B,. Remark that g=1 @ p’ (direct sum). Take an element Y’ ep’ and
suppose that ad W(Y’) = [W,Y']| =0. Then Y'e¢,(W)c=t,and Y et'Nyp’
={0}. So we deduce that ad W/, is injective, and hence it is bijective.

(I) — (I): Suppose that Z(G) is finite, and that a maximal compact
subalgebra T of g satisfies the conditions (cl) and (c2). Recall that W satisfies
Ce(W)y, <« H < Cg(W) because G is semisimple (cf. Proposition 1). From
(c1) one confirms that W is an elliptic element of g. Consequently Lemma 2
implies that Cq(W) = Cg(W),, and so

H = Co(W), = Ce(W). (10)

Since Z(G) is finite, there exists a maximal compact subgroup K of G such that
Lie K coincides with f (see Onishchik-Vinberg [On-Vi, Theorem 2 (p. 256) and
Corollary 6 (p. 258)] again). In order to prove that H is compact, we will
only verify

(W) = (W) (11)

because it follows from (10) and (11) that H = Cg(W), = Cx(W), is com-
pact. Note that g=f@ p (direct sum). Take an element C e ¢;(W) and
express it as C=A4A+ B (A€t Bep). Then 0= [C,W]=[4, W]+ B, W].
It follows from (cl) that [4, W] et and [B, W] € p; so that [4, W] =0 = [B, W].
This, together with (c2), implies that 4 € (W) and B=0. Therefore C =
Ae (W), and ¢(W) < (W). The converse inclusion is clear. ]

3.3. Direct product. Our aim in this subsection is to assert that a symplectic
homogeneous space (G/H,Q) with G non-compact semisimple and H com-
pact is the direct product of simply connected, symplectic homogeneous spaces
(Gk/Hy, Q) with G) simple and Hj compact (see Theorem 3). Here, the
word “direct product” means

DerFINITION 5. For a finite number of symplectic homogeneous spaces
(Gk/Hi, Qr), 1 <k <b, the direct product (G/H,Q)=(G/H,Q;) X X
(Gy/Hp, Qp), which is also a symplectic homogeneous space, is defined by
G .= G1 X--~><Gb, HZ:H1 X---XHb and Q::.Ql X---XQb.

To accomplish the aim, we first prove Lemmas 4 and 5.

LeMMA 4. Let G be a connected semisimple Lie group, let X be a non-zero
element of @, and let H be a closed subgroup of G such that Co(X), <« H <
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Cg(X). Then, there exists a unique G-invariant symplectic form Qy on G/H
such that % = n*Qy, where n denotes the projection from G onto G/H (see
(3) for w%). In this case, X becomes the S-element of (G/H,Qy).

Proor. (Uniqueness): Suppose that there exists a G-invariant symplectic
form Q' on G/H satisfying v} =7*Q’. Since 1*Qy = 0} = n*Q’ one sees
that (Qy), = ('), at the origin 0 € G/H. Therefore Qy = Q' follows from
both Qx and Q' being G-invariant.

(Existence): Let ay denote a l-form on g given by

ax(Y) = By(X,Y) for Y eg.

It is known that the coadjoint orbit G/Cg(X) of G through oy admits a
G-invariant symplectic form Qy which satisfies

ax([Y,Z]) = (7*Qx)(Y,Z) for any Y, Zeg

(e.g. Guillemin-Sternberg [Gu-St, p. 178]), where 7 denotes the projection from
G onto G/Cg(X). Denote by Pr the projection from G/H onto G/Cg(X),
gH +— gCg(X). Then Qy:=Pr* Qy is a G-invariant symplectic form on
G/H, where we should remark that (d Pr), : T,(G/H) — T,(G/Cg(X)) is lin-
early isomorphic by virtue of Cg(X), < H = Cg(X). Furthermore, Qy sat-
isfies w§ = 7*Qy = n*Qx because 7*Qy = n*Qy follows from Proz =7 and
w3 (Y,Z) = By(X,[Y,Z]) = ax([Y,Z]) = (7*Qx)(Y,Z) for all Y,Zeg. [

LemMA 5. Let L be a connected simple Lie group with the trivial center,
let 1=Y@ p denote a Cartan decomposition, and let T be a non-zero element
of t (). Then, the adjoint orbit L/Cr(T) of L through T satisfies conditions
(i) and (ii):

(i) L/Cp(T) is simply connected;

(1) L acts on L/CL(T) effectively.

In addition; if L is non-compact and T satisfies the condition (c2) in Theorem 2:

(c2) ad T|, is a linear isomorphism of ¥,
then L/C(T) satisfies a further condition (iii): Cr(T) is compact.

Proor. (i): Lemma 2 and T €f allow us to conclude that L/C.(T) is
simply connected (ref. the proof of Proposition 2-(ii)).

(ii): (ii) comes from L being simple and the center Z(L) = {e}.

(iii):  We deduce (iii) by Theorem 2 and Z(L) = {e}. O

Now, we are in a position to demonstrate

THEOREM 3. Let (G/H,Q) be a symplectic homogeneous space with G non-
compact semisimple and H compact, where G acts on G/H effectively. Then,
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(G/H,Q) is the direct product of simply connected, symplectic homogeneous
spaces (Gy/Hy, Q) with Gy simple and Hy compact. Furthermore, each Gy
acts on Gy/Hy effectively.

REMARK 3. Though the above G is non-compact, the product of
(Gx/Hy,Qk) may include compact factors (Gj/Hj, ;).

PrOOF (Proof of Theorem 3). First, we are going to consider relation a
between an infinitesimal decomposition of (G/H,Q) and a Cartan decompo-
sition of g = Lie G. Let W be the S-element of (G/H,Q). By Proposition 2
we see that W satisfies

(s1) @l =n"Q, (2) H=Cg(W), (12)

where 7 denotes the projection from G onto G/H. Moreover, by Theorem 2
there exists a maximal compact subalgebra f of g such that

(cl) Wet, (c2) ad W], is a linear isomorphism of p, (13)

where p denotes the orthogonal complement of f in g with respect to B;. Here
one has a Cartan decomposition g =t@ p. Let us denote by 0 the Cartan
inV](J)lution of g with respect to g=t@®p. Express g as g= @;’:1 0; D
(—Bj:a .1 9; (direct sum), where all g; (resp. g;) are non-compact (resp. compact)
simple ideals of g. Then Corollary 1 means that 0(g,) < g, for any 1 <k < b.

Therefore we deduce that

{gi =TI ®p, is a Cartan decomposition of g, for1 <i<a; (14)

g =1 fora+1<j<b,

where T, :=fNg, and p, :=pNg, for 1 <k <b. By considering the decom-

position g = P, g; ® @j):aﬂ g, we express Was W =3"", W+ Zfzaﬂ W
In order to complete the proof of Theorem 3 we need the following:

LEMMA 6. With the above setting, the following five items hold for the
S-element W =>1" | W;+ Zf;aﬂ Wi
(1) Wi #0 for any 1 <k <b;
(ii) Wiet for any 1 <k <b;
(iii) ad Wi|p’_ is a linear isomorphism of p; for every 1 <i<a;
(iv) o), = on g, x g for any 1 <k <b
(v)

b .
h=cg(W)=EP,_, ¢ (Wi) (direct sum).
Proor. Since all g, are simple ideals of g = (—Dtb:l g,, one sees that

(9,,9,] = {0} if n#m. (15)
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(1): Suppose that there exists 1 < ¢ < b such that W, =0. By (15) we deduce
W.a,.] = [Z,le Wi, 8.l = [We, 6. = {0}, and therefore it follows from (12)-(s2)
that ) = ¢;(W) contains the non-trivial ideal g. of g. That is a contradiction
because G is effective on G/H. For this reason (i) holds.

(il):  O(Wy) = Wy, for each k, is immediate from (13)-(cl), S22, O(W,) =
OW)=Ww =S W, 0(g,) cg, and g= @t/’:l g, (direct sum). Thus (ii)
follows.

(iii): Take an element Y; € p; and suppose that [}, ¥;] =0. From (15)
one obtains [W,Y;]=[W;, Y] =0, and Y; =0 because of (13)-(c2). This
implies that ad W[, is injective; and so (iii) holds.

(iv): Since g, is an ideal of g, the Killing form By, of g, coincides with
the restriction of B, to g, x g,. Hence (iv) follows from (3) and (15).

(v): b =cy(W) is immediate from (12);7(s2). (W) = (—BZZI ¢g, (Wi) fol-
lows from W =30 W, (15) and g = @y, 9 (direct sum). O

Let us continue proving Theorem 3. From now on, we are going to
consider a global decomposition of (G/H,Q). Note that the center Z(G) is
trivial because (12)-(s2) and G acts on G/H effectively. Accordingly one may
assume that G is the adjoint group of g. First let us prove that

G=Gi % x Gy, (16)

where G denotes the adjoint group of g, for 1 <k <bh. Let G be a simply
connected Lie group with Lie G =g, and let G= G| x --- x G, denote the
decomposition of G corresponding to g = @,f:l i, where g, = Lie Gy for 1 <
k <b. Then it follows that Z(G) = Z(G; x --- x Gp) and Z(G| x -+ X Gp)
=Z(Gy) x -+ x Z(G,). Therefore one has G/Z(G)=G,/Z(G) x ---x
Gy»/Z(Gy). This implies (16) because G = G/Z(G) and Gj = G/ Z(G}) for
all 1 <k <b. Now, let us assume that g, = Lie G for 1 <k <b. Lemma
6-(v) enables us to have Cg(W) = Cg, (W1) x -+ x Cg, (W) because it follows
from Lemmas 2 and 6-(ii) that all C¢(W) and Cg, (W}) are connected. Hence
(12)-(s2) yields

H:CGI(Wl)X“'XCGb(Wb). (17)

For each 1 <k <b, Lemma 4 allows us to get a unique Gj-invariant sym-
plectic form Q; on Gy/Cgq, (W) satisfying a)gu’;k = (mx)"Qk, where 7, denotes
the projection from Gy onto Gi/Cg (Wi). By (12) and Lemma 6-(iv) we
conclude

Q=80 X X8y

Therefore it is immediate from (16) and (17) that (G/H,Q) is the direct
product of (Gx/Cq, (W), Qk), k=1,...,b. Consequently, the rest of proof is
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to demonstrate that (A) Gi/Cg, (W) is simply connected, (B) Gy is simple, (C)
Cq, (Wy) is compact and (D) Gy acts on Gi/Cgq, (W) effectively. However,
(B) is clear and both (A) and (D) come from Lemma 5 and Lemma 6-(i),
(ii). So, it suffices to show that (C) Cg, (W) is compact. On the one hand,
if 1 <k <a, then Gj is non-compact in view of (14), and so Lemmas 5 and
6-(iil) allow us to conclude that Cg (W) is compact. One the other hand,
if a+1 <k <b, then Gy is compact in view of (14), and hence Cg, (W) is
compact. ]

4. The coarse orbit types of non-Kihlerian, symplectic homogeneous spaces
G/H with G non-compact simple and H compact

The main purpose of this section is to determine the coarse orbit type of
each non-Kéhlerian, symplectic homogeneous space G/H with G non-compact
simple and H compact (cf. Subsections 4.4 through 4.14). Here, the word
“coarse orbit type” means

DeriNITION 6. Let G/H and G/H' be two homogeneous spaces of a
connected Lie group G. Then we say that they are of the same coarse orbit
type, if H is isomorphic to H' as a Lie group.

REMARK 4. (i) G/H and G/H' are of the same coarse orbit type in the
case where Lie H is Lie algebra isomorphic to Lie H' and both H and H' are
connected. (i) The sense of coarse orbit type is different from that of orbit
type. Indeed, for compact Kdihlerian homogeneous space Gy/H there are two
classes Gy/(Ay x T), Gy/T? in the sense of coarse orbit type, but three classes
in the sense of orbit type (ref. Bordemann-Forger-Romer [Bd-Fo-Ro, p. 643]).

4.1. Reduction. Borel’s result [Br] (cf. Section 1) and Corollary 1 enable us
to accomplish the main purpose by only considering the case where G is one
of the following Lie groups:

List 1

Bl SO¢(2k,2] — 2k +1) with />2 and 2 <k <1

CIL:  Sp(k,l—k) with />3 and 1 <k </—1

DI:  SOy(2k,2] —2k) with [ >4 and 2 <k <[-2

EII: E6(2) EV: E7(7) EVI: E7(,5) EVIIL: Eg(g)

EIX: Eg(,24> FI: F4(4) FII: F4(,20) G: Gz(z)
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It has been shown that for a non-Kihlerian, symplectic homogeneous space
G/H with G non-compact simple and H compact, the isotropy subgroup H is
connected (cf. Proposition 2). Consequently one can achieve the main purpose
by arguments in the Lie algebra level. For this reason we will review root
systems and Cartan decompositions of non-compact, absolutely simple Lie
algebras.

4.2. Root system and Cartan decomposition. Let g be a complex simple Lie
algebra, let tc be a Cartan subalgebra of g¢, and let A(gc,tc) denote the set of
all non-zero roots of g with respect to tc. Then there exists a basis (so-called,
Weyl basis) {X,|o € Algc,tc)} of g such that

[Xy, X_y) = H,, [H, X, =a(H) - X, for H € tc;
(X, Xp] =0 if a+f#0 and a+f¢ A(gc, te);
[XmX/g] :N%/yXH/; if O{-i—ﬁGA(gc,tc),

where the real constants N,p satisfy N,p=—N_, 5 (cf. Helgason [He,
Theorem 5.5, p. 176]). Here H, is an element of tc given by B, (H,H,) =
o(H) for H etc. The Weyl basis gives rise to a compact real form g, of g¢
as follows:

g, =itr® P spang{X, — X_,} ® spang{i(X, + X_,)} (18)
aeMge,tc)

(see the proof of Theorem 6.3 in Helgason [He, p. 181]), where tg denotes
a real vector subspace of fc defined by tr:=spang{H,|oe A(gc,tc)}
(={H etc|a(H)eR for all xe A(gc,tc)}). Now, let 1, 1) denote the
set of all simple roots in A(gc,tc), and let 6 be an involution of g satisfying
four conditions

(vi) 0(g,) =g,  (v2) O0#idon g,,  (v3) 0(ic) < tc,
(v4) O a(get0) = Magge.te)-

Denote by f and p* the (+1)-eigenspace and (—1)-eigenspace of 0 in g,
respectively. Then one gets a non-compact real form g of g. by setting

g:=t@p, p:=ip"

REMARK 5. (i) € becomes a Cartan involution of ¢ and g =Y@ p is its
Cartan decomposition. (i) TN itg is a maximal abelian subalgebra of , because
it follows from (v4) that 0 leaves fixed a regular element of g contained in tc
(see Murakami [Mu2, Proposition 1, p. 106]). (iii) Every non-compact, ab-
solutely simple Lie algebra can be, up to isomorphism, given by the above fashion
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(¢f- Murakami [Mu3]).

19

Henceforth, we assume that each non-compact, abso-

lutely simple Lie algebra g is given by the above fashion, and we identify Aut(g)
and Aut(g,) with {¢ € Aut(gc) | 4(g) = g} and {y € Aut(gc) |¥(g,) < g,}, re-

spectively.
algebra .

Define an element Z,etg by oy(Z,):=0d,, for {ab}ll,:l:HA(

(a=1,...,0).

Here we denote by Aut(u) the group of automorphisms of a Lie

ngtC)

Then Murakami [Mu3, p. 297] provides us with the following

inner involutions 6 of g, which satisfy the above conditions (v1), (v2), (v3) and
(v4) (see Borel-de Siebenthal [Br-dS] also):

List II: the inner and non-Hermitian types (ref. Murakami [Mu3])

3 2

e Dynkin diagram 0 i g
B[ 1 2 2 2 eXp ad(iZk) Dk X Bl—k 50(2](,21 — 2k + 1)
I1>2 Qg a1 O 2<k<li BI
C 2 2 2 1 exp wad(iZy) | Cr x Ci—i | sp(k,l — k)
ayp Qo Q-1
>3 I<k<l-1 CII
Dy ap Qg Qj—2 @1 1 exp 7 ad(iZy) | Dk X Di—i | s0(2k, 2] — 2k)
>4 1 9 9 arl 2<k<l-2 DI
1 2 3 2 1
a1 Q3 Q4 QA5 Qg
Es exp w ad(iZ3) | As x Ay EIL: eg2)
(65) 2
2 3 4 3 2 1 ad(i .
a1 as qq as ag ar eXp dd(lZz) A7 EV: 27(7)
E;
as 2 exprad(iZy) | A1 x Ds | EVL: ¢7_s)
2 4 6 5 4 3 2 : .
01 s a4 on g or o exp 7 ad(iZ)) | Ds EVIIL: egs)
Eg
as 3 exp wad(iZg) | A1 x E; EIX: eg(_24)
] Qg Q3 Q4 exprad(iZy) | A1 x C3 | FL jyu
Fy
2 3 4 2 exp 7 ad(iZy) | By FIL: f4_20)
1 (65}
G» exp m ad(iZ,) | A1 x 4; G: gy
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REMARK 6. There are differences with respect to numbering of simple roots
in the Dynkin diagrams of type E¢, E7, Es and G,, between Murakami [Mu3]
and Bourbaki [Bul.?> Throughout this paper, we apply the numbering in
Bourbaki [Bu] to our arguments.

For every involution @ listed above, one has
tNitg = itg. (19)

Hence, itg is a maximal abelian subalgebra of f in List II. Taking List IT into
consideration, we settle a simple root system I15q. ) for A(fc,tc):

List III

g f T e 1)

H 7] Q1 k—1 /
Bl  |[s0(2k,2] — 2k + 1) <o =0 {0t =1} o=y U }pegs
g A1 ap—1 &%)

1>2,2<k<l |DxxB i, 0=expnrad(iZ) p=o +250 0

—H Qg ak 1

O=0—" —0 k— /
CIl |sp(k,l—k) Oék+1 a1 q {oa, _lu}azll U{os }poiqr

123, 1<k<I-—1|Cy x C_g, 0=expnad(iZ) i —227 loc,-i-zx/

—Hd
Qo Oicol
DI [s0(2k,2] — 2k) z>:ak+1 s L RCPRT L UR 78 Y

[>4, 2<k<]-2|D; x Dy, erxpnad(le

aq Qg Q5 Qg
O

EIL 6(2) o {_,uéa o2, OC17}2:4 U {0‘1}

—He
As x Ay, 0 = exp n ad(iZ3)

— a1 Q3 Q4 5 Qg « 7
EV e7(7) K7 1 3 4 Qs 6 T\ { =7, 00, } s

A7, 0 =expnad(iZ,)

2 There are some minor misprints in [Bu]. p. 269, | 8, Read ¢ — ¢ = instead of & =¢ — ¢ =
p. 269, | 10, Read 237, ;. o + oy instead of 3°, ;o +ou5 p. 271, | 8, Read 37,y ;o 1nstedd
of Zi<k<j or; p- 289, | 9, Read 3oy + 20, op instead of 3oy + 2a5.
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g f e te)

—H7 Q3 Q4 Q5 Qg Q7

@)
EVI e {~1} Uf{on})_y
Q2

Ay X Dg, 0 =expnad(iZ;)

Q3 Qg Q5 Qg Q7 Qg —Ug

EVIII| e {0}y
a2

Dy, 0 =exprad(iZ))

Q1 Q3 Q4 Q5 Qg Q7 —Ug

EIX eg(_24) {7/‘8} U {O(U}Zzl
Qg

Ay X Eq, 0 =exp nad(iZs)

FI iy THE R 33 At {—u}U{a}y,
Ay x C3, 0 =exprad(iZ)

FIT | f4(-20) THy W %R 83 {—#y, 00} oy
By, 0 =exp nad(iZs)

G oy & & {=upUfou}
Ay x A, 0=expm ad(i22) W= 30y + 20

Here u,;:=o1 + 22;;22 o foy—1+ou, ppi= 200 + 3op + 4oz + 20, U 1= o1
+ 205 + 203 + 3014 + 2005 + o, g := 2001 + 20 + 3003 + doig + 305 + 206 + 27 and
g =20 + 300 + 4oz + 60a + Sos + 4o + 307 + 2o,

With the above setting we will determine the coarse orbit types of non-
Kihlerian, symplectic homogeneous spaces G/H with G non-compact simple
and H compact later (cf. Subsections 4.4 through 4.14).

4.3. A condition for centralizers to be compact. Let g be a non-compact
semisimple Lie algebra, let g =@ p be a Cartan decomposition of g, and let
W be an element of f = g. Then the proof of Theorem 2 implies that the
centralizer ¢y(W) is compact if W satisfies the condition

(¢2) ad W], is a linear isomorphism of p.

This condition is not suitable for us to apply the root theory to ¢,(W). For
this reason we rewrite it as follows:
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LemmA 7. With the above setting; the following items (i), (ii) and (iii) are
equivalent:

(1) the centralizer c¢g(W) is compact,

(ii) ad W|, is a linear isomorphism of p;

(iil) (W) = (W).

Proor. (i) — (ii): Suppose that (i) ¢;(W) is compact. Take an element
Y € p and suppose that [IW,Y]=0. Then Y € ¢;(W). On the one hand, by
virtue of (i) there exists an ad Y-invariant inner product on g, and thus
all eigenvalues of ad Y are purely imaginary. On the other hand, ad Y is
symmetric with respect to the inner product {-,-> on g because Y € p (see the
proof of Lemma 2 for <-,-»), and thus all eigenvalues of ad Y are real. These
imply that ¥ =0 and ad W/, is injective. Hence it is a linear isomorphism
of p.

(ii) — (iii): Suppose that (ii) holds. Then one can obtain ¢;(W) = (W)
from W et and (ii) (see the proof of (11)).

(ili) — (i): Clear. O

4.4. An outline of argument for determining the coarse orbit types, and the
coarse orbit type of type BI. In this subsection we will determine the
coarse orbit type of symplectic homogeneous spaces G/H such that G =
SOy(2k,2] — 2k + 1) and H is compact (see Proposition 4). The arguments
in this subsection will be helpful for the reader to understand the arguments
in the coming Subsections 4.5 through 4.13.

Let G/H be a non-Kdhlerian, symplectic homogeneous space with G non-
compact simple and H compact. Recall that we assume Lie G=g=I@®p
to be given by a compact simple Lie algebra g, =T @ ip (cf. Subsection 4.2).
The main purpose of this paper is to determine the coarse orbit type of
G/H. By virtue of Proposition 2, it suffices to determine, up to isomorphism,
the centralizers ¢y(W) of elliptic elements W € g such that ¢;(W) are com-
pact. For this reason we need to search elliptic elements W e g whose
centralizers ¢4(W) are compact. One may assume that such an element
Weg=t®p belongs to a fixed positive Weyl chamber #; of f. Let us
explain the reason why one may assume W to belong to #% from now on.
Let W be an elliptic element of g such that ¢j(W) is compact. Since W is
elliptic there exists a maximal compact subalgebra I’ of g containing W. In
this case we have a Cartan decomposition g =t @ p»’ with W et’, where p’
denotes the orthogonal complement of f’ in g with respect to By. According to
Helgason [He, p. 183, Theorem 7.2], there exists an inner automorphism i of g
satisfying (') =T and y(p’) =p. Then (W) et and Y(cg(W)) = ¢g(W(W))
is compact. This implies that one may assume W to belong to the fixed
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maximal compact subalgebra f of g from the beginning, as far as determining
the centralizer ¢j(W) which is compact (up to inner automorphism). So, one
may assume W € #: because any element of f can be mapped into #% by
an inner automorphism of f (< g).

REMARK 7. The above arguments assure that one can determine the cen-
tralizers ¢g(W) which are compact (up to isomorphism) by means of determining
the centralizers cy(T) which are compact with T € Wt

This subsection consists of three paragraphs.
§4.4.1 A dual basis of IT,¢. i) and a positive Weyl chamber 7%
Following List III (ref. p. 20) we define a dual basis {7}}._,
of g, te) (cf. (bl.1)) and fix a positive Weyl chamber #7 of f in
tr (see (bl.2) and Remark 8).
§4.4.2 A condition for the centralizer ¢,(7) of an element 7 € #; to be
compact
We first read off a vector space structure of pc from List 111
(see (b1.3)) and afterwards investigate a condition for the central-
izer ¢;(T) of an element T € #; to be compact by taking (bl.3)
into consideration (cf. Lemma 8). Moreover, we obtain (bl.9)
from Lemmas 8, 9 and 10. This (bl.9) assures that one can
determine the centralizers ¢,(7"’) which are compact with T’ € #3
(up to isomorphism) by means of determining all elements ¢;(7) €
CRl(k) (see (b1.8) for CEl(k)).
§4.4.3 A result for type BI
We determine all elements of C2'(k) and assert Proposition 4.

4.4.1. A dual basis of Iy 1) and a positive Weyl chamber .

q i It te)
—
2 k=1 k-1 1
BI | so(2k,2] — 2k + 1) e =0 {ora, =} oy Udontpy
[e%1 Q1 aj—1 &%)
122, 2<k<l | DixBiy, O=exprad(iZs) |p=o1+2%1,0

Let f,:=0—y for 1 <a<k—-1, f,:=—u, and f,:=a, for k+1<b <L
Denote by {T; i}le the dual basis of { [)’i},-l:] = I t.,1)- Then one can express
it as follows:

T, =Zi_.—Z for 1 <c<k-2, Tio1 = 21 — Zi /2,
(bL.1)
T = —Zi/2, Ty = —Zr+ Zp for k+1<b<l
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by means of the dual basis {Z,-}il:1 of {oc,-}i]:1 = I(g.,1c)- Now, let us fix a
positive Weyl chamber #% of f in tg:

Wy = {T etg|B,(T) >0 for all 1 <i<I} (b1.2)

(see Subsection 4.2 for tr). Needless to say, T = Zi[:l A;T; belongs to #%
if and only if 4; >0 for all 1 <i</. We will consider a condition for the
centralizer ¢;(7) of an element T € #; to be compact in the next paragraph.

REmMARK 8. Throughout this paper, we regard each element of Wy as an
element of t by identifying T €tg with iT €itg =¥ (¢f (19)).

Now, let us state Proposition 3 which will streamline the procedure for
computing ¢4(7) later:

ProposITION 3 (cf. Wolf-Gray [Wo-Gr, p. 83-84]). Let T = ZLI AiT; €
Wi Suppose that A, #0 for all pe {ia}(]f:1 and 44 =0 for all ge{1,... I}\
{i}~ ., yvhere 1 <ip <---<ix <[l Then, {/)’q}qe{1 ik, 8 a simple root
system for A(«(T),tr).

PrOOF. One can get the conclusion by the proof of Proposition 2.8 in
Wolf-Gray [Wo-Gr, p. 83]. O

REMARK 9. Proposition 3 implies the following (i) and (ii):
(i) For T = Zi]:l AiT; € Wh, the structure of «(T) depends only on whether
each A; is zero or not.
(i) For any 1 <k <! and real number { >0, both T = Zf:l AiT; € Wk
and T' := Z[];ll ATy + 0 T + Zli:kﬂ ATy give rise to the same cen-
tralizer «(T) = «(T') in L.
Note that ¢o(T) does not always coincide with ¢o(T") even if «(T) = ct(T").

4.42. A condition for the centralizer ¢(T) of an element T € Wi to be
compact. Recall that we assume s0(2k,2/ —2k+1)=g=1@p to be given
by compact simple Lie algebra so(2/+1) =g, =1t@ip with involution 6 =
exp 7 ad(iZy) (cf. Subsection 4.2). Since ip is the (—1)-eigenspace of 6 in g,
we confirm that

pc= P spanc{X,} ® spanc{X_,} (direct sum),

e AT (o, 1)
+ ! +
ANCTRVES {Zizl nio; € A (8¢ te) [ ni = 1} (b1.3)
_ ZpSsSqOCS (1 Spgkﬁqﬁl),
Epst<r 4 +23qu (1<p<k<r<i)

(see Subsection 4.2 for X.,; Plate II in Bourbaki [Bu, p. 265]), where pc
denotes the (—1)-eigenspace of 6 in g =so(2/+1,C). Now, we want to
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clarify a condition for the centralizer ¢;(7) of an element 7 € #; to be
compact. Lemma 7 enables us to see that ¢4(7) is compact if and only if

o(T)#0  for all e At (o, 1) (bl.4)

because of (bl.3) and [T,X,] =«(T)- X, Taking (bl.4) into consideration
we are going to clarify the condition. Take an element T = E,Ll AiTi € Wi
and express it as follows:

T3

»
L

HM

k=2
_ (Zxc + A1 /2+ A )2

c=1
/ /
+ > ;v,,>z,c+ > wzy  (bl3)
b=k+1 b=k-+1

by means of (bl.1). A direct computation, combined with a,(Z;) = d,,5, gives

k—1 /
Zpg.vgq aS(T) - Zi:k—p+l }vi + ik71/2 o »k/z - Zj:q+l ij
(I<sp<k<qg<l (b1.6)

(ZI?SI<r %+ ergzgzo‘f)(T)

) !
- _Zl k—p+1 /1 +/Lk_1/2 o ik/2+ Zh:rl]
(I<p<k<r<l). (b1.7)
Let us clarify a necessary and sufficient condition for ¢4(7") to be compact:

Lemma 8 (BI). With the above setting; for T:ZLI LT € Wi, the
centralizer ¢(T) is compact if and only if (1) “A—1 >0 or A > 0" and (ii)
¢(T) = a(T).

PRrROOF. (=): Suppose that ¢;(7T') is compact. Then it follows from (bl.4)
and (bl.6),—» 4—; that Az_; +Ax #0. Therefore Ar_;1 >0 or Ax >0 because
Ji—1,%c = 0. Besides, the supposition and Lemma 7 allow us to have ¢(7) =
«a(T). («): It is clear, since ¢(7) is compact. O

Now, let C2(k — 1), CB'(k) and C&' denote the following sets defined by
CBl(k— 1) := {cf(T) 1T=3"" LTiewi with iy > o},
CBl(k) = {cf(T) 1T=3"" AT eW; with 7 > o}, (b1.8)

CE = {c(T") | ¢o(T") is compact with T’ e #1},
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respectively. Our aim is to determine all elements of CE' up to isomorphism.
Lemma 8 implies that

Col < CM(k — 1)U CP (k).
We will prove Lemmas 9 and 10 later. By Lemma 9 one can deduce
CP'(k) = CE'. Lemma 10 provides us with an outer involution  of g satisfy-
ing Y(CBY(k)) = CP'(k—1) and y(CE) = CE. Accordingly Lemmas 9 and
10 allow us to conclude

CB = CP (k) U(CE (k) (b1.9)

G K K : :

This means that for our aim, it is enough to determine all elements of C2!(k).

Let us prove Lemmas 9 and 10.

Lemma 9 (BI). With the above setting; for any T = Zi[:l 2.T; € Wy with
Jx > 0, there exists an element T' € Wy such that (i) ¢(T') is compact and (ii)

¢(T") = «(T).
ProoF. It is easy to get a real number { > 0 satisfying
_ - i _
A-1/2 =Lk /2+ Zb:kH Ay <0

since Jx >0. By use of { we define an element 7'e #; as follows:
T = Zf;ll AaTa + CuTi + Z,[,:,Hl ApTy. Since A, =0 for all 1 < ¢ </ we see
that T' satisfies

SN k—1 - - - ! =
ZpﬁsSq OCS(T ) - Zi:kprrl ii + )vk_l/z o C;{k/z o Zj:qul )Lj

— ry l 7
< Jk-1/2 = /2 + Zb:k+l 2 <0

in Case (b1.6); and (3, ., +23>,_,;o)(T') <0 in Case (bl.7). So it
follows from (b1.3) that «(7’) < 0 for all & € A*(ag,1). Hence Lemma 7 and
(b1.4) imply that ¢4(7”) is compact and ¢;(7"’) = (T’). Remark 9-(ii) allows

us to have «(7’) = (7). This yields ¢(7') = (7). m

Lemma 10 (BI). There exists an outer involution  of ¢g=
s0(2k,2l =2k +1), 1 =2 and 2 <k <, satisfying y() <f, Y(Tio1) = Tk
and y(Ty) =Ty for any 1 <h <1 with h #k — 1,k

ProoF. Define an involutive linear map i of tg by setting
W) = —,u(: —o — ZZ::z oc,), "W(oy):=0; for 2<j<I. (bl.10)
Then one has

By, (H.,, Hx/)/Bgc(Hd/» Haj) = By, (Hflﬁ(%')vH’w(a/))/Bgc(H’l//(%)’ H“/’(“_/))

for all 1 <i,j <! (see Subsection 4.2 for H,). Hence Lemme | in Murakami
[Mu3, p. 295] enables us to extend ¥ to g as involution because both {oci},-l:1
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and {—,u,ocj}j:z are simple root systems for A(gq,tc). We denote this invo-
lution by the same notation . Note that (i) ¥(g,) < g, follows from (18) and
(ii) y satisfies

WZ)=-Z1,  WZ)=-2Z1+7 for2<j<l (bl

because of o,(Zp) =d,p and (bl.10). This and (bl.1) yield ¥(Ti—1) = Tk
and Y(T,) =T, for any 1 <h <[ with h#k —1,k. We can obtain Yo =
Ooy from Y(Zy)=—-2Z,+Zy, [Z1,Z] =0, 0=exprad(iZ;) and id=
exp w ad(2iZ;). It follows from Yol =00y that Yy(g) =g and yY(f) =t
Thus we have constructed an involution y of g satisfying y(¥) = f, ¥(Tk-1)
=Ty and Y(T,) =T), for any 1 <h </ with h#k —1,k. Remark that
is an outer automorphism of g (because of Corollary 2 in Murakami [Mul,
p. 108] and the fixed point set Fix(f,¢) = Bi_1 X Bi_x). O

4.4.3. A result for type BI. Now, let us demonstrate

PrOPOSITION 4. The following is the coarse orbit type of symplectic homo-
geneous space G/H with G = SOy(2k,2] —2k+1), [ >2 and 2 <k <1, and H
compact:

G H No.

500(2]{721—2](4-1) U(i1)>< U(iz—il)X~~->< U(ia—l',,,l)x U(k—i,,) 1

1>2 XUy =k) x U(ja—j1) x - x U(jp = jp-1)

2<k<l x SO(21 — 2j, + 1)
0<a<k—-1i:=01<ii<ih<---<i;<k-1

BI 0<b<l—k, jo=k k+1<ji<p=<---<jp<l

PrOOF. Our goal is to determine the isotropy subgroups H up to iso-
morphism. Proposition 2 means that it is enough to determine the cen-
tralizers ¢;( W) which are compact (up to isomorphism). Remark 7 and (b1.9)
enable one to get the conclusion, if we determine all elements ¢(7) e C2'(k)
(see (b1.8) for CPl(k)). For this reason we are going to determine each
element of CPl(k). Let T:Zil:liiT,-eW% with J; > 0. Without loss of
generality, one may assume that 1, # 0 for all p e {i,}7 ,U{ jy};’:l and 4, =0
for all ge{l,....k—1L,k+1,...,[\\({ix}o, U{jy}f:l), where 1 <ij <--- <
iy <k-1 and k+1<j <---<j, <l Then Proposition 3 assures that

..........

a b

(T) = Dulix — iv-1) @ u(k — i) ® Duljy — jy-1) ® s0(21 = 2j + 1),

x=1 y=1
where iy :=0 and j:= k. ]
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4.5. The coarse orbit type of type CII. In this subsection, we will determine
the coarse orbit type of symplectic homogeneous spaces G/H with G =
Sp(k,l — k) and H compact (see Proposition 5) by arguments similar to those
in Subsection 4.4.

4.5.1. A dual basis of g 1) and a positive Weyl chamber 'r.

fe, te

g f e, tc)
o8 % 101!
CII | sp(k,l—k) et a1 {0, =}y U{om iy
123, 1<k<l—1| CxCry, 0=exprad(iZs) | p:=251" o5+

Letf,:=axqforl <a<k—1,p,:=—puand f, = fork+1<b<l We
denote by {T i},-lzl the dual basis of { ﬁ,}il:l = Ipqe, ). Then it follows from
Ota(Zb) = 5a,b that

T,=Zko—2Zr forl<a<k-—1, Ty = —Zi/2,
(c2.1)
T.=-Z,+ 7, for k+1<c<l—1, TI:—Zk/2+Z,.

Throughout Subsection 4.5, we fix a positive Weyl chamber #; of f in tg
as follows: #i:={T etg|f(T)=0 forall 1 <i<I} (={, iTi| 4 =0
for all 1 <i</}).

4.5.2. A condition for the centralizer ¢y(T) of an element T € W% to be compact.
Arguments in this paragraph will be similar to those in Paragraph 4.4.2. Re-
call that we assume sp(k,/ — k) = g=1® p to be given by compact simple Lie
algebra sp(/) =g, =1t@ ip with involution 0 = exp = ad(iZ;) (cf. Subsection
4.2). We will clarify a necessary and sufficient condition for the centralizer
¢(T) of an element T € #; to be compact (cf. Lemma 11 below). Since
0 = exp n ad(iZ;) one perceives that the (—1)-eigenspace pc of 0 in g¢ =
sp(/,C) is given by

pc= P spanc{X,} ® spanc{X_,} (direct sum),
e AT (o, 1)

/
AT (o, 1) == {Zizl nio; € A (ge, te) | me = 1} (c2.2)

Zpgs<q aS (l S p S k < q S l)?
Dot 2, gty (1<p<k<r<lI)
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(cf. Plate IIT in Bourbaki [Bu, p. 269]°). In this case Lemma 7 implies that
for T e #4, the centralizer ¢y(7') is compact if and only if 7' satisfies

a(T)#0  for all ae A*(oy,1). (c2.3)

Take an element T = Zil:l 4iT; € Wy and express it as follows:
! k-1 k-1
r=S =Sz (zza a2
i=1 a=1 a=1

-1 /
+ > ic+iz/2>Zk+ S wZy  (24)

c=k+1 b=k+1

by means of (c2.1). Then direct computations enable us to have

k—1 -1
Zpgy<q O{S(T) - Zi:k7p+l }vi - /1](/2 - Zj:q Aj B /11/2

(Il<sp<k<qg<gl (c2.5)

<Zp$t<r %+ 2 Zr31‘</ %+ OC]) (T)

k=1 , -1 ,
=- i:k7p+1)~i_/bk/2+zh:rlh+/q/2
(I<p<k<r<i (c2.6)

because of w,(Zy) =0d,5. Now, let us clarify the necessary and sufficient
condition:

LemMa 11 (CIN).  With the setting above; for T = Y.L, 1, T; € W4, o(T) is
compact if and only if (i) “Ax >0 or ;> 0" and (ii) ¢o(T) = (7).

PROOF. (=): Suppose that ¢4(7") is compact. From (c2.5),—; 4~ and
(c2.3) we obtain J; + 4; # 0, and so A > 0 or 4; > 0 because i, 4; > 0. The
rest of proof follows from the proof of Lemma 8. O

Let us consider three sets CgU(k), CSM(I) and CE™:
S (k) = {cf(T) 1T=3"" AT e with 4 > 0},
() .= {cf(T) 1T=3"" AT e Wi with 7 > 0}7 (c2.7)

CG" = {eg(T") | &o(T") is compact with T #i}.

3See the footnote 2 (p. 20) again.
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By Lemma 11 one deduces CS" = CSM(k)U CEM(l). The following Lemma
12 allows us to have

CE" = cM(kyu cSM(D). (c2.8)

LemMA 12 (CII).  With the above setting; for any T = Z,-]:1 AiT: € Wi with
i >0 or 2y >0, there exists an element T' € W5 such that (i) ¢g(T"') is compact
and (ii) ¢(T") = «(T).

Proor. Case A; > 0: We will consider the case A, > 0 first. Since 4, > 0
there exists a real number ¢ > 0 satisfying

~E/24 30 et af2 <0,

Define an element 7' € #; by T’ := Zé:ll Aa Ty + EA T + le,:,cﬂ AyTy.  Then

(c2.5) yields 3, a(T") = =S50 Ai— E/2 = S0 4 — 4/2 <0 be-
cause 4; >0 for all 1 <i</ and &4, > 0. In addition, (c2.6) yields

Z <t rat+2Zr<t lat+al (Tl)
p<t< <t<

=S a2yt a2

i=k—p+1

-1
< —Cu/2H4 D et H[2<0,

These, together with (c2.2), mean that «(7’) < 0 for every o € A*(ay,1). Con-
sequently Lemma 7 and (c2.3) enable us to verify that ¢;(7’) is compact and
¢(T") = «(T'). So Remark 9 gives us ¢;(7’) = t(T") = (7).

Case A; > 0: Since A; > 0 there exists a real number { > 0 such that

B Z:;ll da = Aic/2+ L2/2> 0.

By use of {, we define an element 7" € #; by T" := Z]l;ll 4T+ 4T By

arguments similar to those stated above, one can conclude that >, _ o (7T")
<0and (30, ., o0+2> o +u)(T") >0, so that o(7T") #0 for every
ae AT (o, 1). This and (c2.3) assure that ¢;(7") is compact. Hence, the rest
of proof is to confirm that ¢;(7") = ¢;(7'), but that is immediate (ref. Case

A > 0). Ol
4.5.3. A result for type CIL

ProOPOSITION 5. The following is the coarse orbit type of symplectic homo-
geneous space G/H with G=Spk,l—k), | >3 and 1 <k<Il-1, and H
compact:
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G H No.
Sp(k,l — k) U)X Ulip —i)) X -+« X Ulig —ig—1) X U(k — iy) 1
>3 x U(jr —k) x U(ja = j1) x ==+ x U(jp = jo-1) X Sp(l = J)

1<k<l-1|0<a<k-1,i=0,1<ij<b<---<i<k-1
0<b<l—Fk jo=k, k+1<ji<p<---<jp<l

U(my) x U(my —my) x -+ x Ulme —me_1) x Sp(k —m,) 2
><U(n1—k)>< U(nz—n1)><~-~>< U(nd—n,g,l)x U(l—nd)
0<c<k, my:=0,1<m<m<---<m.<k
O0<d<l—-k—-1,n=kk+1<m<m<---<ng<l-1

Remark.  Sp(k,l1—k)/H, = Sp(l — k,k)/H,, where we assume H,
to be a subgroup of Sp(l —k,k) by identifying Sp(k,l — k) with
CII Sp(l — k,k). Here H; are the same as in No.i (i=1,2).

Proor. Refer to the proof of Proposition 4 and (c2.8). Here we remark
that H, and H, come from elements of Cg' (k) and C§'(/), respectively (see
(c2.7) for CSM(k) and CEU(1)). ]

4.6. The coarse orbit type of type DI. Our aim in this subsection is to
determine the coarse orbit type of symplectic homogeneous spaces G/H with
G = SOy(2k,2] — 2k) and H compact (see Proposition 6).

3 f T, te)
—Hd
a9 X1
=0 -1 k-1 I
DI | so(2k,2] —2k) o k1 Q2 {0, =ttt o=t ULow}porin

aq
> 4, Dy x Dy, 0= eXp ad(iZk)
2<k<i-2

Here u; = oy + 22;;22 o + oy + oy

Arguments stated below will be similar to those in Subsection 4.4. Let
Boi=0p—q for l<a<k-1, f,:=—u,; and f, :==ap for k+1<b <l De-
note by {T;}_, the dual basis of {f,}_, = I\t 1c)- In this case it follows
from o,(Zp) =0d,, that

Tp:Zk_p—Zk for ISpSk—Q., Tk_l:Zl—Z/C/Z7
Tk:ka/z, T,=—-Z+ 2, for k+1<g<I-2, (dl.l)
T, =-Z/2+ Z, for r=1-1,1
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Take an element 7 = Zf:l AiTie Wt = {Zil:l 2iTi|2; >0 for all 1 <i<I}.
Then a direct computation, together with (d1.1), gives us

: = k=2 -2
T = Z:Mi = Z;,k_aza - (24 /2 2+ Y Iy
= a= p=

q=k+1
/
+h1/2 + Wz) Zi + Z wZy.  (d1.2)
b=k+1

On can deduce the following (d1.3) by (d1.2) and arguments similar to those in
Paragraph 4.4.2:

CPl'=cPl(k—1)UCP (k)yu R —1)Ucp\l), (d1.3)
where CPY, CP(k — 1), CPY(k), CPY(I —1) and CP'(I) are defined as follows:
CR(x) ={a(T) | T = ST AT e i with 4> o}

for x=k —1,k,1— 1,1 (d1.4)
CO' :={¢y(T") | ¢o(T") is compact with T’ e #4}.

Now, let us demonstrate Lemmas 13 and 14 which provide outer involu-
tions ¢ and ¥ of g satisfying ¢(CE") = CP', ¢(CPY(k)) = CP'(k —1) and
$(CR'(r)) = CRY(r) for r=1—1,1, and y(CE") = CP', Y(CP(s)) = CP(s) for
s=k—1,k and y(CRY(1)) = CP'(I - 1), respectively. In terms of ¢ and v
we can reduce (d1.3) to

Ce' = CRM (k) U CRN(D) Ug(CR (k) U (CR (). (dL.5)

LemMaA 13 (DI). There exists an outer involution ¢ of g = so(2k,2] — 2k),
>4 and 2 <k <1-2, satisfying ¢(¥) =1, ¢(Tx—1) = Ty and ¢(T)) = T, for
any 1 <h <l with h#k—1,k.

Proof. Define an involutive linear map ¢ of tg by
‘Plog) == —py (: —oy — 22:22 o — oy — oc;), ‘P(oy) := o for 2 <j<l
Then it follows from «,(Z;) =, that
o(Z)) = -2, WZ,) =-2Z+Z, for 2<ce<l-2,
NZ)=—-Z\+Z, for r=171-1,L

This and (d1.1) imply that ¢(T—) = Ty and ¢(T},) = T}, for any 1 < h </ with
h#k—1,k. Accordingly we can get the conclusion because one can extend
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¢ to g as involution (ref. the proof of Lemma 10), where we remark that
[0,¢] =0 and ¢(f) =t follow from ¢(Z;) = —2Z; + Z; and 0 = exp = ad(iZy).
]

LeEMMA 14 (DI). There exists an outer involution \ of g = so(2k,2l — 2k),
>4 and 2 <k <1-2, satisfying y(¥) < t, y(T1-1) =T; and y(T;) = T; for
any 1 <j</l-2

Proor. Define an involutive linear map  of tg by
Wly)i=o  for 1<j<i=2,  ‘Yloy1) =,  "Ylu) =0

One can complete this proof by arguments similar to those in the proof of
Lemma 13. O]

Now, we are in a position to state

PropPOSITION 6. The following is the coarse orbit type of symplectic
homogeneous space G/H with G = SOy(2k,2] —2k), | >4 and 2 <k <1-2,
and H compact:

G H No.
SOO(Zk,Zl—Zk) U(i])X U(llz—l'l)X'“XU(l'a—ia,])X U(k—ia) 1
I>4 x U(ji =k) x U(jp = j1) x -+ x U(jp = jo-1)

2<k<l-2 x SO(21 — 2j)
0<a<k-1,ip:=0, 1< <hb<---<i<k-1

0<b<l—k jo=k k+1<j<p<-<jy<I

U(my) x U(my —my) x -+ x Ulme — me_1) 2
x SO(2k —2m,) x U(ny — k) x U(ny — ny)
XX Ulng —ng_1) x U(l — ny)

0<c<k, my:=0,1<m<m<---<m.<k
0<d<l—k-1, ny:=k,
k+l1<m<m<---<n<l-1

Remark.  SOy(2k,2] —2k)/H, = SOy(2] — 2k,2k)/H>,
where we assume H, to be a subgroup of SOy(2] — 2k, 2k)
by identifying SOy (2k,2l — 2k) with SOy(21 — 2k, 2k).

DI Here H; are the same as in No. (i=1,2).

Proor. Refer to the proof of Proposition 4 and (d1.5). Here we remark
that H, and H, come from elements of CP'(k) and CPR'(/), respectively (see
(d1.4) for CP'(k) and CPY(1)). ]

4.7. The coarse orbit type of type EIIl. Our goal in this subsection is to
determine the coarse orbit type of symplectic homogeneous spaces G/H with
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G = Eg(2) and H compact (see Proposition 7). We need to treat an exceptional
Lie group in this subsection. For this reason we are going to construct
arguments in detail. Notice the proofs of Lemmas 15 and 16.

4.7.1. A dual basis of iy 1) and a positive Weyl chamber .

fc,tc

g f T Aic 1)
o a4 a5 og
O
EIl | ¢q) s { =502, )y U{ou }
—He
As x Ay, 0 =exp r ad(iZ3)

Here pg = oy + 200 + 203 + 3014 + 205 + 0.
Let B, :==au, By := —t, f3: =0 and B, ;= ap for 4 < b < 6. Denote by
{Ti}f’zl the dual basis of {ﬂi}f’zl =l pe,10)- Then a,(Zy) = d,p yields

T\ =27,—273/2, T, =—-273/2, T5 =27, — 73,
(e2.1)
Ty = —3Z3/2 + Za, Ts=—2Z5+ Zs, T6=—Z3/2+Z6.

In view of (e2.1) we can express an element 7' = 3% 1,7, € #; as follows:

6
T =

MiTi = MZy + 232y — (11/2 + ;»2/2 + A3+ 314/2
i=1

6
s+ 6/0Zs+ Y MnZy  (€22)
b=4
Here #: := {Zle 2iT;|2; =0 for all 1 <i<6}. From (e2.2) we will obtain
a necessary and sufficient condition for the centralizer ¢4(7") of an element
T € # to be compact in the next paragraph.

4.7.2. A condition for the centralizer cy(T) of an element T € Wy to be
compact. Recall that we assume e57 =g=1I@p to be given by compact
Lie algebra ¢ = g, = I @ ip with involution 0 = exp = ad(iZ3). Since p is the
(—1)-eigenspace of € in g, we have

pc= P spanc{X,} @ spanc{X_,} (direct sum),

ae At (03,1)

A (a3,1) == {Z?:l nio; € A (ge, te) [n3 = 1}

(e2.3)
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(see Subsection 4.2). Here p¢ is the (—1)-eigenspace of 6 in g =e. We
want to clarify a necessary and sufficient condition for the centralizer ¢4(7) of
an element 7 € #7 to be compact. Lemma 7 implies that for 7' € #%, ¢;(T) is
compact if and only if 7 satisfies

a(T)#0  for all e A*(as,1) (e2.4)
because of [T, X,] =a(T)- X, and (e2.3). Now, let us clarify the necessary
and sufficient condition:

Lemma 15 (EIl). With the above setting;, for T € Wi, the centralizer
¢(T) is compact if and only if (i) “41 >0, Ao >0, 44>0 or A¢ >0" and
(iD) ¢(T) = a(T).

PrOOF. (=): Suppose that ¢,(7') is compact. Note that f:= oy + o3+
aq + as (= & + &4) belongs to AT (a3, 1) (cf. Plate V in Bourbaki [Bu, p. 275)).
A direct computation, combined with (e2.2) and o,(Z) =d,», enables us to
have

B(T) = (01 + Ay + 24+ 26)/2.

Therefore (e2.4) assure that A + A, + A4 + 46 # 0, so that “4; >0, 4, >0,
A4 >0 or Ag > 07 because 4; > 0 for every 1 <i<6. Besides, ¢(7T) = «(7T)
follows from Lemma 7. (<«=): Clear. O

Define five sets CE(1), CE1(2), CEM(4), CE(6) and CE" by

CEl(x) = {cf(T) 1T=3"" AT eWi with 7 > 0}
for x =1,2,4,6; (e2.5)
CEM = {¢y(T") | ¢4(T") is compact with T’ e #4}.

Our aim is to determine all elements of CE! up to isomorphism. Lemma 15
means that CE' = CEN(1)U CE(2) U CEY(4) U CEM(6). The converse inclu-
sion also holds by virtue of the following Lemma 16; and hence

cE' = cE1yu cE'2)u cEM4)u cEY(6). (€2.6)

This implies that for the aim, it is enough to determine all elements of CE(1),
C¢'(2), Cg"(4) and CE(6).

LemMa 16 (EIN).  With the above setting; let T =5 | 4;T; be an element
of Wi Suppose that .1 >0, o >0, 14 >0 or A¢ > 0. Then, there exists an
element T' € W satisfying (1) ¢o(T") is compact and (ii) ¢(T") = «(T).
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Proor. Case A4 > 0: First, let us consider the case A4 > 0. Divide
A*(az, 1) into two subsets At (as, 1:og,<1) and AT (a3, 1 04, > 2):

Aoz, 1) = A (o, 1 oy, < 1) U AT (03,1 1 0g, > 2) (direct sum),

Az, 104, 1) 1= {Zlen[oci e A(o3, 1) |ng < 1},

At(os, 1 og, >2) = {Zf:l mio; € A (o3, 1) | my > 2}.
For 8 = 2221 Ngolg + 03 + 22:4 npoy € A (03,1 : g, < 1) we have

B(T) = Jany 4 J3ny — (/24 I2)2 + A3 + 324/2

6
+as+26/2) + > vy (e2.7)
b=4

by virtue of (e2.2) and a,(Zp) =4 . Similarly one has

y(T) = /llml + )@mz

6
— (/24 2a)2+ 23+ 304/2+ A5 + 26/2) + > dymy (2.8)
b—a
for y= 25:1 myo, + o3 + 22’24 mpoy € A1 (03,1 1 a4, >2). Notice that the
coefficient of s is negative in (e2.7) and is positive in (e2.8), indeed it
is (ng—3/2) in (e2.7) and is (m4 —3/2) in (e2.8). This assures that if
/4 is sufficiently large value, then one can assert that f(7) <0 for all
BeAT(a3,1:04,<1) and p(T) >0 for all ye AT (03,1 : a4, >2)—that is,
a(T)#0 for every ae (a3, 1), where we remark that A't(o3,1) =
At(oas, 1oy, < 1)UA (03,1 :04,>2) is a finite set. Accordingly 7' :=
23:1 ACTC+CA4T4+ZSZS 24Ty is an element of #; and satisfies o(7') # 0
for every o e AT (a3, 1), if we take a sufficiently large number { > 0. Hence
Lemma 7 and (e2.4) imply that ¢;(7"') is compact and ¢5(7’) = ¢t(7’). In
addition, Remark 9 tells us that ¢(7") = t(T') = «(7T).

Case 41 >0, 1, >0 or Jg>0: One can get the conclusion in Cases
J1>0, >0, and J¢>0 by taking AT(az,1:00,0)UA (03,1 :04,1),
A*(a3,1), and AT (az,1:06,0) U A (03,1 :06,1) into consideration, respec-
tively. Here A¥(o3,1:0,p):={2" mo;e AT (a,1)|n,=p} for j=1,6
and p=0,1. ]

We can reduce (e2.6) to
Cg' = ()UK (QU () Ug(Cg(2)) (€2.9)
by proving
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Lemma 17 (EIL).  There exists an outer involution ¢ of g = eg(2) satisfying
¢(t) =, §(Th) = T1, §(T2) = Te, ¢(T3) = Ts5 and §(Ts) = Ta.

ProoF. Define an involutive linear map ¢ of tg by
‘P(on) = o, (o) := s, "P(az) == a3, ‘P(og) == g,
Pas) == o, ‘Blog) = —pg(= —otg — 200 — 203 — 3ouq — 2005 — 0t6).
See the proof of Lemma 10. O

4.7.3. A result for type EII. The proof of Proposition 4, together with (e2.9),
allows us to assert

ProPOSITION 7. The following is the coarse orbit type of symplectic homo-
geneous space G/H with G = Eg) and H compact:

G H No.
Eeo) | AsX T, A4 x Ay X T, Ay Xx Ay x Ay x T 1
As x T?, A3 x Ay X T?, Ay x Ay x T?, Ay x A x Ay x T?> | 2
A3 x T3 Ay x Ay x T3, 4] x A; x A, x T? 3
A, x T4, A) x A, x T* 4
A x T? 5
EII T 6

4.8. The coarse orbit type of type EV. In this subsection we determine the
coarse orbit type of symplectic homogeneous spaces G/H with G = E7(;) and H
compact (see Proposition 8).

g f M 1)

— . 7
EV | ¢ P71 a3 Q4 05 Qg Q7 {—pt7, 01,05} 13

A7, 0 =exprad(iZ,)

Here p; = 201 + 20 + 303 + 4oy + 305 + 206 + 7.

Our arguments will be similar to those in Subsection 4.7. Let f; = —u;,
By:=oy and f, :=a, for 3<bh<7. Denote by {T;}., the dual basis of
(B, = Il,t,tc)- Then one can express T; as follows:
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T1:—Zz/2, T, =7, — 2>, T3:—3ZQ/2+Z3,
Ty = —-27,+ Zy4, 15 = 7322/2 + Zs, Te = —27Z> + Zs, (651)
O

by means of the dual basis {Z,»}Z:1 of {oc,-}l?:1 = . tc)- It follows from
(e5.1) that an element 7 = ZZ:1 AiT; € Wi can be rewritten as

T =

7
MT; =227, — (11/2 + A+ 313/2 + 224

i=1

;
+34s/24 d+ 72/ Za+ Y Ty (€5.2)
b=3

Here #i:={>] ,4T;|/ =0 for all 1 <i<7}. By (e5.2) and arguments
similar to those in Paragraph 4.7.2 one can conclude that

CEY = B YU B)UCEY(5) U CR¥ (), (¢53)
where CEV(1), CEV(3), CEV(5), CEV(7) and CEV are defined as follows:
BV 7 .
Ce'(x) = {Cf(T) |T = Zi:l AiTi e Wi with A, > 0}

for x=1,3,5,7; (e5.4)

CEY := {¢y(T") | ¢o(T") is compact with T’ e #1}.
The following Lemma 18 allows us to reduce (e5.3) to
Ce' = Cx (DUCKB3)UG(CE¥ (1)) Uh(CE (3)). (€5.5)

Lemma 18 (EV). There exists an outer involution ¢ of § = ey(7) satisfying
¢(f) e f, ¢(T1) = T7, ¢(T2) = T(,, ¢(T3) = T5 and ¢(T4) = T4.

PrOOF. Define an involutive linear map ¢ of tg by

‘Plon) =06, Plon) =, Ploz) =5, Ploa) = ou, Plos) = o,
(o) == oy, ‘P(o7) := —p7 (= =201 — 2000 — 303 — doug — 3005 — 2006 — 0t7).

See the proof of Lemma 10 for the rest of proof. O
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Now, let us state

ProprosITION 8. The following is the coarse orbit type of symplectic
homogeneous space G/H with G = Eq7) and H compact:

G H No.

E7(7) A6XT,A4><A2><T 1

A5><T2,A4><A1><T2,A3><A2><T2,A2><A2><A1><T2 2

A4><T3,A3><A1><T3,Az><Ag><T3,Az><1‘11><A]><T3 3

Ay x T4 Ay x Ay x T*, 4] x A) x A, x T* 4
Ay x T3, Ay x Ay x T? 5
A; x T® 6
EV | 17 7

ProoF. The proof of Proposition 4 and (e5.5) imply that it is enough to
determine all elements of CEV(1) and CEV(3). We determine the elements by
Proposition 3 and direct computations. O

4.9. The coarse orbit type of type EVI. This subsection is devoted to
determining the coarse orbit type of symplectic homogeneous spaces G/H
with G = E7_s) and H compact (see Proposition 9).

g i I At 1)
—57 a3 Q4 Q5 Qg Qrf
EVI | e75 {~;} U {Oﬂb}zzzz
[€5)

Ay X Dg, 0 =exprad(iZ;)

Here u; = 20y + 200 + 303 + 4o + 3005 + 206 + 7.

Arguments stated below are similar to those in Subsection 4.7. Let
By :=—u;, Py:=0y for 2<b<7. Denote by {I;}., the dual basis of
{ﬂi}zzl = I @i 1c)- Then one can express 7; as follows:

T =—-2/2, T, = —Z + 2, T3 = -32,/2 + Z3,
Ty =271+ Zy4, Ts = —321/2+Zs, Te = -2 + Zs, (66.1)
T, =-Z1/2+ 7
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by means of the dual basis {Z;}/, of {0}/, = IT Hence, an element

7 ac:tc)-
T=>%,,%4T;€W; is expressed as

7
T =Y JTi=—(/2+da+343/2+ 2
i=1

7
+34s/24 A+ 22 /2)Z1 + Y InZs, (e6.2)
b=2

where Wi := {3, T[4 =0 for all 1 <i<7}. We can see that
CEV' = cEVN (U cEV' 3)u cEVY (5 U CcEV(7) (e6.3)

by (e6.2) and arguments similar to those in Paragraph 4.7.2. Here CEVI(1),
CEVL(3), CEVL(5), CEVI(7) and CEV!' are defined as follows:

CEVI(x) = {cf(T) 1T=Y"" LTiew; with i, > o} for x=1,3,5,7;
CEVV = {¢y(T") | ¢o(T") is compact with T’ € #3}.

One can determine all elements of CEV(1), CEVY(3), CEVY(5) and CEVY(7) by
Proposition 3 and direct computations. Therefore, the proof of Proposition 4
and (e6.3) imply

PropoSITION 9. The following is the coarse orbit type of symplectic
homogeneous space G/H with G = E7_s) and H compact:

G H No.

Ej_sy | Asx Ay x T, A3 x Ay x Ay X T, Ay x Ds x T, Dgx T 1

1‘15><Tz,A4><A|><Tz,A3><Az><Tz,A3><Al><A|><T2 2
A2><A2><A1><T2, A2><A]><A1><A1><T2
A]XD4><T2, D5><T2

Ay x T3 A3 x Ay x T3, Ay x Ay x T3, Ay x Ay x Ay x T> | 3
A1><A1><A1><A1><T3, D4><T3

A3><T4,A2><A1><T4,A]><A1><A1><T4 4
A2><T5, A1 ><A1 ><T5 5
A]XT6 6

EVI T’ 7
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4.10. The coarse orbit type of type EVIIL. In this subsection we determine
the coarse orbit type of symplectic homogeneous spaces G/H with G = Eg)
and H compact (see Proposition 10).

g f M ntc te)

Q3 Q4 Q5 Qg Q7 Qg —Ug

EVIIL | exs) {—t5, 9%}
Q2

Dg, 0 =exprad(iZ))

Here ug = 20 + 30 + 4oz + 604 + Sois + 4oig + 307 + 20g.

Our arguments in this subsection will be similar to those in Subsection
4.7. Let f := —ug and S, := o9 for 2 < b <8. We denote by {Ti},s:l the
dual basis of {[)’i}?:1 = I, 1)- Then o,(Zy) =64, yields

T, =-27,/2, T, =—-7Z,+ Zg, Ty = —-3Z,/2+ Z7,
Ty =27+ Zs, Ts5 = 7521/2+Zs, Te = =371 + Z4, (68.1)
T, = =27+ Z3, Ts = —3Z,/2+ Z,.

So an element T = ng:l AiT; € W can be expressed as follows:

8
T = 2iTi=—(ia/2+ Ay +303/2+ 224+ 5)5/2 + 3

i=1

8
+ 247+ 308/2)Z1 + > ho-5Zs, (e8.2)
b=2

where #; := {3% | 4;T;| 4 =0 for all 1 <i<38}. Therefore one can confirm
C]GEVIII _ C]l(EVlII(l) U C[];:VIH(?)) U C[]?VIII(s) U C]EVIH(S) (683)

by arguments similar to those in Paragraph 4.7.2. Here CEVII(1), CEVIL(3),
CEVIL(5), CEVIL(8) and CEVM! are defined as follows:

CEVIN(y) = {CE(T) IT = Zil 2iT; € Wy with 1, > 0} for x=1,3,5,8;
CEVM = {eg(T") | ¢4(T") s compact with 7" € #}.
Proposition 3 enables us to determine all elements of CEVMI(1), CEVI(3),

CEVIL(5) and CEVMI(8); and hence we can conclude the following proposition
by the proof of Proposition 4:
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ProrosiTiON 10.  The following is the coarse orbit type of symplectic
homogeneous space G/H with G = Egg) and H compact:

G H No.

Eg) A7 x T, Ay x A3 x T, Ay x Ds x T, D7 x T 1

1‘16><Tz,AsXA]XTz,A4><Az><T2,A4><A1><A]><T2 2
1‘13><A3><T2,A3><Az><1‘11><Tz,Az><Az><A]><./‘11><T2
A2><D4><T2,A1><D5><T2,D6><T2

As x T3, Ag x Ay x T3, A3 x Ay x T3, A3 x A} x A1 x T3 3
A2><A2><A1><T3, A2><A1><A|><A1><T3, A]><D4><T3
Ds x T3

Ay x T4 Ay x Ay x T*, Ay x Ay x T*, Ay x A} x A; x T* 4
A} x A1 x Ay x A) x T*, Dy x T*

Ay x T3, Ay x Ay x T3, A; x Ay x Ay x T? 5
Ay x TS, Ay x Ay x T® 6
A xT7 7
EVII | T8 8

4.11. The coarse orbit type of type EIX. In this subsection we determine the
coarse orbit type of symplectic homogeneous spaces G/H with Eg_,4 and H
compact (see Proposition 11).

g f I gt 1)

Q1 a3 o4 Qa5 Qg Q7 6#8

7

EIX €8(—24) {_HS} U {aa}azl
(e5]

Ay x E7, 0 =exp r ad(iZg)

Here ug = 20y + 30 + 4oz + 604 + Sois + 4oig + 307 + 20g.

Our arguments are similar to those in Subsection 4.7. Let f, :=«, for
l1<a<7 and f5:= —ug. Denote by {Ti}?zl the dual basis of {,B,»}?:1 =
I\ 1)- Then it follows from o,(Zy) =6, that

T\ =27, — Zs, Ty =27,—-373/2, Ts=2Z3—27;s,
T4=Z4—3Zg, T5 =Z5—SZg/2, T6 =Z6—223, (691)
T =7, —3275/2, Ts=—Zg/2.
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This enables us to rewrite an element 7 = Z?:l A T; € #; as follows:
8 7
T= uTi=Y daZa— (1+302/24 23+ 34a+ 5s/2
i=1 a=1

+ 246 + 3/17/2 + 23/2)23. (69.2)
Here ;= {Zle AiTi|4; =0 for all 1 <i<38}. Accordingly we deduce

CE™ = CEX(2)U CE™(5) U CE™(T) U Cg™(8) (e9.3)
by arguments similar to those in Paragraph 4.7.2. Here CE™X(2), CEX(5),

CEX(7), CEX(8) and CE™ are give by

CEX(y) = {cf(T) 1T=3"" AT eWi with 4 > o} for x =2,5,7,8;

CE™ o= {cg(T") | ¢o(T") is compact with T’ e #7}.
One can determine all elements of CEX(2), CEX(5), CEX(7) and CE™X(8) by
Proposition 3 and direct computations; and therefore the proof of Proposition 4
and (e9.3) allow us to conclude

ProrosiTiON 11. The following is the coarse orbit type of symplectic
homogeneous space G/H with G = Eg_»4) and H compact:

G H No.

Eg(_24) A6><A1><T,A4><A2><A1><T,A1><E6><T,E7><T 1

A6><T2,A5><A1><T2,A4><A2><T2,A4><A1><A|><T2 2
A3><A2><A1><T2, A2><A2><A1><A1><T2, A]><D5><T2
D¢ x T?, Eg x T?

As x T3, Ay x Ay x T3, A3 x Ay x T3, A3 x 4] x A1 x T? 3
A2><A2><A1><T3, A2><A1><A1><A1><T3, A1><D4><T3
D5><T3

A4><T4,A3><A1><T4,A2><A2><T4,A2><A1><A1><T4 4
A x Ay x Ay x A] x T*, Dy x T*

A3><T5,A2><A1><T5,A1><A1><A1><T5 5

A2><T6, Al><A]><T6

N |

A]XT7

EIX T8 8
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4.12. The coarse orbit type of type FI. Our goal in this subsection is to
determine the coarse orbit type of symplectic homogeneous spaces G/H with
G = Fy4) and H compact (see Proposition 12).

g f Izt 1)

FL| Ty | ML 9382 &1 {1} U{on}ys
Ay x Cs, 0 =exp r ad(iZ;) ty =200 + 3o + 4oz + 204

Our arguments will be similar to those in Subsection 4.7. Let f; := —u, and
B,:=a for 2<b<4. Denote by {T;}', the dual basis of {8}, =
I pgc i) Then one has

T1:—Zl/2, T2:—3Z1/2+Zz, Ty = -271+ Z3,
(fl.l)
Ty=—-2Z1+ 24

in terms of o,(Zy) =0d,5. It follows from (fl.1) that an element 7T =
Z:Ll A T; € #; can be rewritten as

4 4
T = ZI: 2iTi = —(01 )2+ 302/2 + 205+ Ja)Z) + ; IbZp, (f1.2)

where i := {30, 4iT;|4 =0 for all 1 <i<4}. Hence one can confirm
that

ci=cflmuct2) (f1.3)

by arguments similar to those in Paragraph 4.7.2. Here we define sets CF'(1),
CF'(2) and CE' by

cHl(1) = {cf(T) T=Y"" ATiew; with 4 > 0},

ch(2) = {cf(T) T=3"" LTie; with 7 > 0},

CEV = {cy(T") | ¢o(T") is compact with T’ e ¥4},
respectively. This (f1.3) gives us

PropoSITION 12.  The following is the coarse orbit type of symplectic
homogeneous space G/H with G = Fy4y and H compact:
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G H No.

Fyay | Ao x Ay xT, GGxT 1
Ay x T?, Ay x Ay xT?, By xT? | 2
A x T3 3

FI T* 4

4.13. The coarse orbit type of type FII. In this subsection we determine the
coarse orbit type of symplectic homogeneous spaces G/H with G = Fy_5y and
H compact (see Proposition 13).

g f T e, 1)

FIL| a0y | TH Q%3 88 {—ty, 0}

By, 0 =exp m ad(iZy) ty =20 + 3o + 4oz + 204

Arguments stated below are similar to those in Subsection 4.7. Let f, :=
—,uf and B, :=o0p_; for 2 <b <4. We denote by {T}l , the dual basis of
(B, =I5 1) Then it follows from o,(Z,) = dp, that

Tyv=-24)2, To=2Z—24, Ts=2—374)2,
(f2.1)
Ty =275 —2Z,.

So an element T = Z; AiT; € Wi can be expressed as follows:
4
T=> Wl = Z das1Za — (M1 )2+ Ja +343/2 + 204) Za, (f2.2)

where #; = {Zf:] 2iTi|A; >0 for all 1 <i<4}. Therefore one can deduce
ce' = ce"(hu cgt(3) (£2.3)

by arguments similar to those in Paragraph 4.7.2. Here CEY(1), CF'(3) and
CEW are given by

cr( ).:{ I T=3"" AT e Wi with 4 > 0},
CE'3) == {a(T)| T =" HTre Wi with 7 >0},

CEM = {¢y(T") | ¢4(T") is compact with T’ e #1},



46 Nobutaka Boumuki

respectively. The proof of Proposition 4, together with (f2.3), allows us to
assert

ProposITION 13.  The following is the coarse orbit type of symplectic
homogeneous space G/H with G = Fy_a) and H compact:

G H No.

Fy_z) | A2 x A1 xT, B3 xT 1
Ay x T? Ay x Ay xT? BoyxT?> | 2
A x T3 3

FII T4 4

4.14. The coarse orbit type of type G. We know the coarse orbit type of
symplectic homogeneous spaces G/H with G = G and H compact from
Proposition 5.5 in Boumuki [Bm, p. 1157]:

ProprosITION 14. The following is the coarse orbit type of symplectic
homogeneous space G/H with G = Gy and H compact:

G H No.

Gz(z) Ay x T 1

G T2 2

We conclude Theorem 1 by collecting eleven Propositions 4 through 14.

Concluding Remark. Symplectic homogeneous spaces in Theorem 1 cannot
admit any invariant Kéhlerian structures (ref. Section 1), but they admit
invariant pseudo-Kéhlerian structures (see Theorem in Dorfmeister-Guan
[Do-Gul, p. 330] and our Proposition 2).
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