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Abstract. The second author and M. Sakuma gave a complete characterization of

those essential simple loops on a 2-bridge sphere of a 2-bridge link which are null-

homotopic in the link complement. In this paper, we give an alternative proof to this

result, by giving a simple proof for the small cancellation conditions of the upper

presentations of 2-bridge link groups, which holds the key to the proof the result.

1. Introduction

In [1], the second author and M. Sakuma gave a complete characterization

of those essential simple loops in a 2-bridge sphere of a 2-bridge link which are

null-homotopic in the link complement, and by using the result, they described

all upper-meridian-pair-preserving epimorphisms between 2-bridge link groups.

The main purpose of this paper is to give a simple proof for the small

cancellation conditions of the upper presentations of 2-bridge link groups,

which holds the key to the proof of the main result of [1]. We also give an

alternative proof of the main result of [1] using transfinite induction. It is

well-known that 2-bridge links, KðrÞ, are parametrized by extended rational

numbers, r, and that by Shubert’s classification of 2-bridge links [5], it su‰ces

to consider KðrÞ for r ¼y or 0 < ra 1. Here if r ¼y or r ¼ 1, then KðrÞ
becomes a trivial 2-component link or a trivial knot, respectively. Since these

trivial cases are easy to treat for our purpose (see [1, Section 7]), we may

assume 0 < r < 1. Then such a rational number r is uniquely expressed in the

following continued fraction expansion:

r ¼ 1

m1 þ
1

m2 þ . .
.
þ 1

mk

¼: ½m1;m2; . . . ;mk�;

where kb 1, ðm1; . . . ;mkÞ A ðZþÞk, and mk b 2.
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In [1], the proofs of key lemmas and propositions such as Lemma 7.3 and

Propositions 4.3, 4.4 and 4.5 proceed by induction on k, the length of the

continued fraction expansion of r, where a rational number ~rr defined by

~rr ¼ ½m2 � 1; . . . ;mk� if m2 b 2 and ~rr ¼ ½m3; . . . ;mk� if m2 ¼ 1 plays an impor-

tant role as a predecessor of r ¼ ½m1;m2; . . . ;mk� (see [1, Proposition 4.4]).

However, in this paper, we define a well-ordering � on the set of rational

numbers greater than 0 and less than 1 (see Definition 3), and then prove key

lemmas and propositions such as Lemmas 3 and 4, and Propositions 2 and 3

using transfinite induction with respect to �, where a rational number ~rr defined

by ~rr ¼ ½m1 � 1; . . . ;mk� if m1 b 2 or ~rr ¼ ½m2 þ 1; . . . ;mk� if m1 ¼ 1 plays a role

as a predecessor of r ¼ ½m1;m2; . . . ;mk� (see Lemma 2). Note that having a

smaller gap between r and ~rr than in [1] makes the proof less complicated.

This paper is organized as follows. In Section 2, we describe the main

statement that we are going to re-prove in the present paper. In Section 3, we

recall the upper presentation of a 2-bridge link group. In Section 4, we re-

prove key lemmas and propositions with some modification, if necessary, to the

original statements established in [1]. Finally, Section 5 is devoted to a new

proof of the main theorem.

2. Main statement

For a rational number r A Q̂Q :¼ QU fyg, let KðrÞ be the 2-bridge link

of slope r, which is defined as the sum ðS3;KðrÞÞ ¼ ðB3; tðyÞÞU ðB3; tðrÞÞ of

rational tangles of slope y and r. The common boundary qðB3; tðyÞÞ ¼
qðB3; tðrÞÞ of the rational tangles is identified with the Conway sphere ðS 2;PÞ :¼
ðR2;Z2Þ=H, where H is the group of isometries of the Euclidean plane R2

generated by the p-rotations around the points in the lattice Z2. Let S be the

4-punctured sphere S 2 � P in the link complement S3 � KðrÞ. Any essential

simple loop in S, up to isotopy, is obtained as the image of a line of slope

s A Q̂Q in R2 � Z2 by the covering projection onto S. The (unoriented) essential

simple loop in S so obtained is denoted by as. We also denote by as the

conjugacy class of an element of p1ðSÞ represented by (a suitably oriented) as.

Then the link group GðKðrÞÞ :¼ p1ðS3�KðrÞÞ is identified with p1ðSÞ=hhay; arii,
where hh � ii denotes the normal closure.

Let D be the Farey tessellation, whose ideal vertex set is identified with

Q̂Q. For each r A Q̂Q, let G r be the group of automorphisms of D generated

by reflections in the edges of D with an endpoint r, and let ĜGr be the group

generated by G r and Gy. Then the region, R, bounded by a pair of Farey

edges with an endpoint y and a pair of Farey edges with an endpoint r forms

a fundamental domain of the action of ĜGr on H2 (see Figure 1). Let I1 and I2
be the closed intervals in R̂R obtained as the intersection with R̂R of the closure
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of R. Suppose that r is a rational number with 0 < r < 1. (We may always

assume this except when we treat the trivial knot and the trivial 2-component

link.) Write r ¼ ½m1;m2; . . . ;mk�, where kb 1, ðm1; . . . ;mkÞ A ðZþÞk, and

mk b 2. Then the above intervals are given by I1 ¼ ½0; r1� and I2 ¼ ½r2; 1�,
where

r1 ¼
½m1;m2; . . . ;mk�1� if k is odd;

½m1;m2; . . . ;mk�1;mk � 1� if k is even;

�

r2 ¼
½m1;m2; . . . ;mk�1;mk � 1� if k is odd;

½m1;m2; . . . ;mk�1� if k is even:

�

We recall the following fact ([3, Proposition 4.6 and Corollary 4.7] and [1,

Lemma 7.1]) which describes the role of ĜGr in the study of 2-bridge link groups.

Proposition 1. (1) If two elements s and s 0 of Q̂Q belong to the same orbit

ĜGr-orbit, then the unoriented loops as and as 0 are homotopic in S3 � KðrÞ.
(2) For any s A Q̂Q, there is a unique rational number s0 A I1 U I2 U fy; rg

such that s is contained in the ĜGr-orbit of s0. In particular, as is homotopic to as0
in S3 � KðrÞ. Thus if s0 A fy; rg, then as is null-homotopic in S3 � KðrÞ.

The following theorem proved in [1] and to be re-proved in Section 5 of

the present paper shows that the converse to Proposition 1(2) also holds.

Theorem 1. The loop as is null-homotopic in S3 � KðrÞ if and only if s

belongs to the ĜGr-orbit of y or r. In other words, if s A I1 U I2, then as is not

null-homotopic in S3 � KðrÞ.

3. Upper presentations of 2-bridge link groups

Throughout this paper, the set fa; bg denotes the standard meridian-

generator of the rank 2 free group p1ðB3 � tðyÞÞ, which is specified as in

Fig. 1. A fundamental domain of ĜGr in the Farey tessellation (the shaded domain) for r ¼ 5=17 ¼
½3; 2; 2�.
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[1, Section 3]. For a positive rational number q=p, where p and q are

relatively prime positive integers, let ur be the word in fa; bg obtained as

follows. (For a geometric description, see [1, Remark 1].) Set ei ¼ ð�1Þbiq=pc,
where bxc is the greatest integer not exceeding x.

(1) If p is odd, then

uq=p ¼ aûuq=pb
ð�1Þq ûu�1q=p;

where ûuq=p ¼ be1ae2 . . . bep�2aep�1 .

(2) If p is even, then

uq=p ¼ aûuq=pa
�1ûu�1q=p;

where ûuq=p ¼ be1ae2 . . . aep�2bep�1 .

Then ur A Fða; bÞG p1ðB3 � tðyÞÞ is represented by the simple loop ar, and the

link group GðKðrÞÞ with r > 0 has the following presentation, called the upper

presentation:

GðKðrÞÞ ¼ p1ðS3 � KðrÞÞG p1ðB3 � tðyÞÞ=hharii

GFða; bÞ=hhuriiG ha; b j uri:

We recall the definition of the sequence SðrÞ and the cyclic sequence CSðrÞ
of slope r defined in [1], both of which are read from the single relator ur of

the upper presentation of GðKðrÞÞ. We first fix some definitions and notation.

Let X be a set. By a word in X , we mean a finite sequence x e1
1 x

e2
2 . . . x en

n where

xi A X and ei ¼G1. Here we call xei
i the i-th letter of the word. For two

words u, v in X , by u1 v we denote the visual equality of u and v, meaning

that if u ¼ x e1
1 . . . xen

n and v ¼ yd1
1 . . . ydm

m (xi; yj A X ; ei; dj ¼G1), then n ¼ m and

xi ¼ yi and ei ¼ di for each i ¼ 1; . . . ; n. The length of a word v is denoted

by jvj. A word v in X is said to be reduced if v does not contain xx�1 or

x�1x for any x A X . A word is said to be cyclically reduced if all its cyclic

permutations are reduced. A cyclic word is defined to be the set of all cyclic

permutations of a cyclically reduced word. By ðvÞ we denote the cyclic word

associated with a cyclically reduced word v. Also by ðuÞ1 ðvÞ we mean the

visual equality of two cyclic words ðuÞ and ðvÞ. In fact, ðuÞ1 ðvÞ if and only if

v is visually a cyclic shift of u.

Definition 1. (1) Let v be a nonempty reduced word in fa; bg. De-

compose v into

v1 v1v2 . . . vt;

where, for each i ¼ 1; . . . ; t� 1, all letters in vi have positive (resp., negative)

exponents, and all letters in viþ1 have negative (resp., positive) exponents.

Then the sequence of positive integers SðvÞ :¼ ðjv1j; jv2j; . . . ; jvtjÞ is called the

S-sequence of v.
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(2) Let ðvÞ be a nonempty cyclic word in fa; bg. Decompose ðvÞ into

ðvÞ1 ðv1v2 . . . vtÞ;

where all letters in vi have positive (resp., negative) exponents, and all letters

in viþ1 have negative (resp., positive) exponents (taking subindices modulo t).

Then the cyclic sequence of positive integers CSðvÞ :¼ ððjv1j; jv2j; . . . ; jvtjÞÞ is

called the cyclic S-sequence of ðvÞ. Here, the double parentheses denote that

the sequence is considered modulo cyclic permutations.

(3) A nonempty reduced word v in fa; bg is said to be alternating if aG1

and bG1 appear in v alternately, i.e., neither aG2 nor bG2 appears in v. A cyclic

word ðvÞ is said to be alternating if all cyclic permutations of v are alternating.

In the latter case, we also say that v is cyclically alternating.

Definition 2. For a rational number r with 0 < ra 1, let GðKðrÞÞ ¼
ha; b j uri be the upper presentation. Then the symbol SðrÞ (resp., CSðrÞ)
denotes the S-sequence SðurÞ of ur (resp., cyclic S-sequence CSðurÞ of ðurÞ),
which is called the S-sequence of slope r (resp., the cyclic S-sequence of slope r).

The following is cited from [1]. Since its proof in [1] is irrelevant to the

modification to be performed in the present paper, we adopt the proof as it is.

Lemma 1 ([1, Proposition 4.2]). For the positive rational number r ¼ q=p,

the sequence SðrÞ has length 2q, and it represents the cyclic sequence CSðrÞ.
Moreover the cyclic sequence CSðrÞ is invariant by the half-rotation; that is, if

sjðrÞ denotes the j-th term of SðrÞ ð1a ja 2qÞ, then sjðrÞ ¼ sqþ jðrÞ for every

integer j ð1a ja qÞ.

4. New proof for small cancellation conditions of 2-bridge link groups

In this section, we give new proofs to several lemmas and propositions

with some modification, if necessary, to the original statements established in

[1, Section 4]. These will play crucial roles in the new proof of Theorem 1.

In the remainder of this paper unless specified otherwise, we suppose that r

is a rational number with 0 < ra 1, and write r as a continued fraction:

r ¼ ½m1;m2; . . . ;mk�;

where kb 1, ðm1; . . . ;mkÞ A ðZþÞk and mk b 2 unless k ¼ 1.

Lemma 2. For a rational number r ¼ ½m1;m2; . . . ;mk� with 0 < r < 1, let ~rr

be a rational number defined as

~rr ¼ ½m1 � 1;m2;m3; . . . ;mk� if m1 b 2;

½m2 þ 1;m3;m4; . . . ;mk� if m1 ¼ 1:

�
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Then we have

r ¼ ~rr=ð1þ ~rrÞ if m1 b 2;

1� ~rr if m1 ¼ 1:

�

Proof. If m1 b 2, then letting a :¼ 1=~rr ¼ m1 � 1þ ½m2; . . . ;mk� we have

r ¼ ½m1;m2; . . . ;mk� ¼ 1=ð1þ aÞ ¼ 1=ð1þ 1=~rrÞ ¼ ~rr=ð1þ ~rrÞ;

as required.

On the other hand, if m1 ¼ 1, then letting b :¼ 1=~rr� 1 ¼ m2 þ ½m3; . . . ;mk�
we have

r ¼ ½m1;m2; . . . ;mk� ¼ 1=ð1þ 1=bÞ ¼ 1=ð1þ ~rr=ð1� ~rrÞÞ ¼ 1� ~rr;

as required. r

Proposition 2. For a rational number r ¼ ½m1;m2; . . . ;mk� with 0 <

r < 1, let ~rr be a rational number defined as in Lemma 2. Put CSð~rrÞ ¼
ðða1; a2; . . . ; at; a1; a2; . . . ; atÞÞ. Then the following hold.

(1) If m1 b 2, then

CSðrÞ ¼ ðða1 þ 1; a2 þ 1; . . . ; at þ 1; a1 þ 1; a2 þ 1; . . . ; at þ 1ÞÞ:

(2) If m1 ¼ 1, then every ai is at least 2, and either

CSðrÞ ¼ ðð2; b1h1i; 2; b2h1i; . . . ; 2; bth1i; 2; b1h1i; 2; b2h1i; . . . ; 2; bth1iÞÞ

or

CSðrÞ ¼ ðð2; bth1i; . . . ; 2; b2h1i; 2; b1h1i; 2; bth1i; . . . ; 2; b2h1i; 2; b1h1iÞÞ;

where bi ¼ ai � 2 for every i, and the symbol ‘‘bih1i’’ represents bi
successive 1’s. (Here if bi ¼ 0 for some i, then bih1i represents the

empty subsequence.)

Proof. (1) Let m1 b 2. Write ~rr ¼ q=p, where p and q are relatively

prime positive integers. By Lemma 2, r ¼ ~rr=ð1þ ~rrÞ ¼ q=ðpþ qÞ. It then fol-

lows from Lemma 1 that both the sequences SðrÞ and Sð~rrÞ, and hence both

the cyclic sequences CSðrÞ and CSð~rrÞ, have the same length 2q. Recall from

[1, Lemma 4.8] that if sjðrÞ denotes the j-th term of the sequence SðrÞ, then
sjðrÞ ¼ b jð1=rÞc� � bð j � 1Þð1=rÞc�, where bxc� is the greatest integer smaller

than x. Since r ¼ ~rr=ð1þ ~rrÞ ¼ 1=ð1=~rrþ 1Þ, we have
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sjðrÞ ¼ b jð1=rÞc� � bð j � 1Þð1=rÞc�
¼ b jð1=~rrþ 1Þc� � bð j � 1Þð1=~rrþ 1Þc�
¼ ðb jð1=~rrÞc� þ jÞ � ðbð j � 1Þð1=~rrÞc� þ ð j � 1ÞÞ

¼ 1þ b jð1=~rrÞc� � bð j � 1Þð1=~rrÞc�
¼ 1þ sjð~rrÞ;

where sjð~rrÞ denotes the j-th term of the sequence Sð~rrÞ, and hence the assertion

follows.

(2) Let m1 ¼ 1. Then ~rr ¼ ½m2 þ 1;m3; . . . ;mk� and r ¼ 1� ~rr by Lemma

2. Since m2 þ 1b 2, (1) implies that every term of CSð~rrÞ is at least 2, that is,

every ai is at least 2.

To prove the remaining assertion, let f1 be the reflection of ðB3; tðyÞÞ
in a ‘‘horizontal’’ disk bounded by a0, and let f2 be the half Dehn twist of

ðB3; tðyÞÞ along the ‘‘vertical’’ disk bounded by ay. Then the automorphisms

ð fiÞ� of p1ðB3 � tðyÞÞ ¼ F ða; bÞ induced by fi are given by

ð f1Þ�ða; bÞ ¼ ða; bÞ ð f2Þ�ða; bÞ ¼ ða; b�1Þ

Let f be the composition f2 f1. Then by the above observation, we have

f�ða; bÞ ¼ ða; b�1Þ. On the other hand, f maps ar to f2ð f1ðarÞÞ ¼ f2ða�rÞ ¼
a1�r ¼ a~rr. Thus f� sends the cyclic word ðurÞ to the cyclic word ðu~rrÞ or ðu�1~rr Þ.
Since f 2

� ¼ 1, this implies that f� sends the cyclic word ðu~rrÞ to the cyclic

word ðurÞ or ðu�1r Þ. Thus the cyclic word ðurÞ or ðu�1r Þ is obtained from ðu~rrÞ
by replacing b with b�1. In this process, a subword, w, of ðu~rrÞ with SðwÞ ¼
ð1; ai; 1Þ, say, w ¼ b�1ðabab . . . abÞa�1 or b�1ðabab . . . aÞb�1 according to wheth-

er ai is even or odd, is transformed to a subword w 0 ¼ bðab�1ab�1 . . . ab�1Þa�1
or bðab�1ab�1 . . . aÞb, respectively, of ðuG1

r Þ with Sðw 0Þ ¼ ð2; ðai � 2Þh1i; 2Þ.
Since the cyclic sequence CSðu�1r Þ is the reverse of the cyclic sequence CSðurÞ ¼
CSðrÞ, the assertion now follows. r

Throughout the remainder of this paper, we assume the following well-

ordering �.

Definition 3. Let A be the set of all rational numbers greater than 0

and less than or equal to 1. We define a well-ordering � on A by r1 � r2 if

and only if one of the following conditions holds, where r1 ¼ ½l1; l2; . . . ; lh� and
r2 ¼ ½n1; n2; . . . ; nt�.

( i ) h < t.

(ii) h ¼ t and there is a positive integer ja h ¼ t such that li ¼ ni for

every i < j and lj a nj.
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It should be noted that a rational number ~rr defined in Lemma 2 is a

predecessor of r ¼ ½m1;m2; . . . ;mk� with respect to �.
Now we are able to give a new proof to the following lemma whose

statement is a part of [1, Proposition 4.3]. Note that the remaining part of

[1, Proposition 4.3] is not necessary in the present paper.

Lemma 3. For a rational number r ¼ ½m1;m2; . . . ;mk�, we have the fol-

lowing.

(1) Suppose k ¼ 1, i.e., r ¼ 1=m1. Then CSðrÞ ¼ ððm1;m1ÞÞ.
(2) Suppose kb 2. Then CSðrÞ consists of m1 and m1 þ 1.

Proof. We prove (1) and (2) together by transfinite induction with

respect to the well-ordering � defined in Definition 3. The base step is the

case when r ¼ ½1�. In this case, ur ¼ ab�1, and so CSðrÞ ¼ ðð1; 1ÞÞ, as desired.

To prove the inductive step, we consider two cases separately.

Case 1. m1 b 2.

In this case, put ~rr ¼ ½m1 � 1;m2; . . . ;mk� as in Lemma 2. Then clearly

~rr0 r. By the inductive hypothesis, CSð~rrÞ ¼ ððm1 � 1;m1 � 1ÞÞ provided k ¼ 1,

and CSð~rrÞ consists of m1 � 1 and m1 provided kb 2. So by Proposition 2(1),

CSðrÞ ¼ ððm1;m1ÞÞ provided k ¼ 1, and CSðrÞ consists of m1 and m1 þ 1

provided kb 2, as desired.

Case 2. m1 ¼ 1.

In this case, it immediately follows from Proposition 2(2) that CSðrÞ
consists of 1 ¼ m1 and 2 ¼ m1 þ 1, as desired. r

We also give a new proof to the following proposition whose statement is

precisely the same as [1, Proposition 4.5].

Proposition 3. For r ¼ ½m1;m2; . . . ;mk�, the cyclic sequence CSðrÞ has a

decomposition ððS1;S2;S1;S2ÞÞ which satisfies the following.

(1) Each Si is symmetric, that is, the sequence obtained from Si by

reversing the order is equal to Si. (Here, S1 is empty if k ¼ 1.)

(2) Each Si occurs only twice on the cyclic sequence CSðrÞ.
(3) The subsequence S1 begins and ends with m1 þ 1.

(4) The subsequence S2 begins and ends with m1.

Proof. The proof proceeds by transfinite induction with respect to the

well-ordering � defined in Definition 3. We take the case when r ¼ ½m1� as the
base step. In this case, CSðrÞ ¼ ððm1;m1ÞÞ by Lemma 3(1). Putting S1 ¼q
and S2 ¼ ðm1Þ, the assertion clearly holds. To prove the inductive step, we

consider two cases separately.
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Case 1. m1 b 2 and kb 2.

Put ~rr ¼ ½m1 � 1;m2; . . . ;mk� as in Lemma 2. Then clearly ~rr0 r. By the

inductive hypothesis, CSð~rrÞ ¼ ðð ~SS1; ~SS2; ~SS1; ~SS2ÞÞ, where ~SS1 and ~SS2 are symmetric

subsequences of CSð~rrÞ such that each ~SSi occurs only twice in CSð~rrÞ, ~SS1 begins

and ends with m1 (provided that ~SS1 is nonempty), and such that ~SS2 begins and

ends with m1 � 1. Write

~SS1 ¼ ða1; . . . ; at1Þ and ~SS2 ¼ ðat1þ1; . . . ; at2Þ;

and then take

S1 ¼ ða1 þ 1; . . . ; at1 þ 1Þ and S2 ¼ ðat1þ1 þ 1; . . . ; at2 þ 1Þ:

Clearly S1 begins and ends with m1 þ 1, and S2 begins and ends with

m1. Also since ~SS1 and ~SS2 are symmetric by the inductive hypothesis, S1

and S2 are also symmetric. Moreover, by Proposition 2(1), we have CSðrÞ ¼
ððS1;S2;S1;S2ÞÞ. It remains to show that each Si occurs only twice in CSðrÞ.
If S1 occurred more than twice in ððS1;S2;S1;S2ÞÞ, ~SS1 also would occur more

than twice in ðð ~SS1; ~SS2; ~SS1; ~SS2ÞÞ, a contradiction. Similarly, S2 also occurs only

twice in CSðrÞ.

Case 2. m1 ¼ 1 and kb 2.

Put ~rr ¼ ½m2 þ 1;m3; . . . ;mk� as in Lemma 2. Then clearly ~rr0 r. By the

inductive hypothesis, CSð~rrÞ ¼ ðð ~SS1; ~SS2; ~SS1; ~SS2ÞÞ, where ~SS1 and ~SS2 are symmetric

subsequences of CSð~rrÞ such that each ~SSi occurs only twice in CSð~rrÞ, ~SS1 begins

and ends with m2 þ 2 (provided that ~SS1 is nonempty), and such that ~SS2 begins

and ends with m2 þ 1. If k ¼ 2, then r ¼ ½1;m2� with m2 b 2 and ~rr ¼ ½m2 þ 1�;
so CSð~rrÞ ¼ ððm2 þ 1;m2 þ 1ÞÞ by Lemma 3(1). Then take

S1 ¼ ð2Þ and S2 ¼ ððm2 � 1Þh1iÞ:

On the other hand, if kb 3, then write

~SS1 ¼ ða1; . . . ; at1Þ and ~SS2 ¼ ðat1þ1; . . . ; at2Þ:

Here a1 ¼ at1 ¼ m2 þ 2b 3 and at1þ1 ¼ at2 ¼ m2 þ 1b 2. Now take

S1 ¼ ð2; bt1þ1h1i; 2; . . . ; 2; bt2h1i; 2Þ and S2 ¼ ðb1h1i; 2; . . . ; 2; bt1h1iÞ;

where bi ¼ ai � 2 for every i. In either case, we see that S1 begins and ends

with 2 ¼ m1 þ 1, S2 begins and ends with 1 ¼ m1, and that S1 and S2 are

symmetric because ~SS1 and ~SS2 are symmetric by the inductive hypothesis.

Moreover, Proposition 2(2) implies that either CSðrÞ ¼ ððS1;S2;S1;S2ÞÞ or CSðrÞ
¼ ððS1
 
; S2
 
; S1
 
; S2
 ÞÞ, where the symbol ‘‘Si

 
’’ denotes the reverse of Si. But

since S1 and S2 are symmetric, we actually have CSðrÞ ¼ ððS1;S2;S1;S2ÞÞ in
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either case. It remains to show that each Si occurs only twice in CSðrÞ. If S1

occurred more than twice in ððS1;S2;S1;S2ÞÞ, ~SS2 also would occur more than

twice in ðð ~SS1; ~SS2; ~SS1; ~SS2ÞÞ, a contradiction. For the assertion for S2, note that

S2 begins and ends with m2 successive 1’s, and that the maximum number

of consecutive occurrences of 1 in ððS1;S2;S1;S2ÞÞ is m2. So if S2 occurred

more than twice in ððS1;S2;S1;S2ÞÞ, ~SS1 also would occur more than twice in

ðð ~SS1; ~SS2; ~SS1; ~SS2ÞÞ, a contradiction. r

In order to prove Theorem 1, we keep the idea of applying small

cancellation theory as in [1, Sections 5 and 6]. Briefly speaking, we adopt

[1, Section 5] as it is to show that the upper presentation GðKðrÞÞ ¼ ha; b j uri
with 0 < r < 1 satisfies the small cancellation conditions Cð4Þ and Tð4Þ. And

then we investigate properties of van Kampen’s diagrams over the presenta-

tion GðKðrÞÞ ¼ ha; b j uri with boundary label being cyclically alternating as in

[1, Section 6]. Sections 5 and 6 in [1] are indeed irrelevant to the modification

that we are performing in the present paper. Due to van Kampen’s Lemma

which is a classical result in combinatorial group theory (see [2]), we obtain

the fact that if a cyclically alternating word w equals the identity in GðKðrÞÞ,
then its cyclic word ðwÞ contains a subword z of ðuG1

r Þ such that the S-sequence

of z is ðS1;S2; lÞ or ðl;S2;S1Þ for some positive integer l, where CSðrÞ ¼
ððS1;S2;S1;S2ÞÞ is as in Proposition 3. In particular, we obtain the following.

Corollary 1 ([1, Corollary 6.4]). Let r ¼ ½m1;m2; . . . ;mk� with 0 < r < 1.

For a rational number s with 0 < sa 1, if as is null-homotopic in S3 � KðrÞ, then
the following hold.

(1) If k ¼ 1, namely r ¼ ½m1�, then CSðsÞ contains a term bigger than or

equal to m1.

(2) If kb 2, then CSðsÞ contains ðS1;S2Þ or ðS2;S1Þ as a subsequence,

where CSðrÞ ¼ ððS1;S2;S1;S2ÞÞ is as in Proposition 3.

Remark 1. In [1, Corollary 6.4], it is mistakenly stated that if as is null-

homotopic in S3 � KðrÞ, then CSðsÞ contains ðS1;S2Þ or ðS2;S1Þ as a sub-

sequence, regardless of kb 1. It should be noted that if k ¼ 1 and every term

of CSðsÞ is bigger than m1, then CSðsÞ does not contain ðS1;S2Þ or ðS2;S1Þ as a
subsequence, because, in this case, S1 is empty and S2 ¼ ðm1Þ, i.e., ðS1;S2Þ ¼
ðm1Þ ¼ ðS2;S1Þ.

5. New proof of Theorem 1

In this section, we prove the only if part of Theorem 1, that is, we prove

that for any s A I1 U I2, as is not null-homotopic in S3 � KðrÞ. The if part is

[3, Corollary 4.7].
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The following lemma which plays an important role in the proof of

Theorem 1 has the same statement as [1, Lemma 7.3], but is re-proved by

transfinite induction.

Lemma 4. Let r ¼ ½m1;m2; . . . ;mk� with 0 < r < 1, and let CSðrÞ ¼
ððS1;S2;S1;S2ÞÞ be as in Proposition 3. Suppose that a rational number s

with 0 < sa 1 has a continued fraction expansion s ¼ ½l1; . . . ; lt�, where tb 1,

ðl1; . . . ; ltÞ A ðZþÞ t, and lt b 2 unless t ¼ 1. Suppose also that CSðsÞ satisfies

the following condition:

( i ) If k ¼ 1, namely r ¼ ½m1�, then CSðsÞ contains a term bigger than or

equal to m1.

(ii) If kb 2, then CSðsÞ contains ðS1;S2Þ or ðS2;S1Þ as a subsequence.

Then the following hold.

(1) tb k.

(2) li ¼ mi for each i ¼ 1; . . . ; k � 1.

(3) Either lk bmk or both lk ¼ mk � 1 and t > k.

Proof. The proof proceeds by transfinite induction with respect to the

well-ordering � defined in Definition 3. We take the case when r ¼ ½m1� as
the base. By hypothesis (i), CSðsÞ contains a term bigger than or equal to m1.

Then Lemma 3 implies that either l1 bm1 or both l1 ¼ m1 � 1 and tb 2, so

that the assertion clearly holds. Now we prove the inductive step. Let ~rr be

defined as in Lemma 2. Then clearly ~rr0 r.

Case 1. m1 b 2 and kb 2.

In this case, ~rr ¼ ½m1 � 1;m2; . . . ;mk�. By Proposition 3, S1 begins and

ends with m1 þ 1, and S2 begins and ends with m1. Hence if CSðsÞ contains
ðS1;S2Þ or ðS2;S1Þ as a subsequence, then CSðsÞ contains both a term m1 and

a term m1 þ 1. By Lemma 3, the only possibility is that l1 ¼ m1 and tb 2.

Now let ~ss ¼ ½l1 � 1; . . . ; lt�. Then we see from Proposition 2(1) that CSð~ssÞ
contains ð ~SS1; ~SS2Þ or ð ~SS2; ~SS1Þ as a subsequence, where CSð~rrÞ ¼ ðð ~SS1; ~SS2; ~SS1; ~SS2ÞÞ.
By the inductive hypothesis, we have tb k, li ¼ mi for each i ¼ 1; . . . ; k � 1,

and either lk bmk or both lk ¼ mk � 1 and t > k, which proves the assertion.

Case 2. m1 ¼ 1 and kb 2.

In this case, ~rr ¼ ½m2 þ 1;m3; . . . ;mk�. Arguing as in Case 1, CSðsÞ con-
tains both a term m1 ¼ 1 and a term m1 þ 1 ¼ 2. By Lemma 3, the only

possibility is that l1 ¼ m1 ¼ 1 and tb 2. Now let ~ss ¼ ½l2 þ 1; . . . ; lt�. Then we

see from Proposition 2(2) that CSð~ssÞ contains a term greater than or equal

to m2 þ 1 provided k ¼ 2 and that CSð~ssÞ contains ð ~SS1; ~SS2Þ or ð ~SS2; ~SS1Þ as a

subsequence provided kb 3, where CSð~rrÞ ¼ ðð ~SS1; ~SS2; ~SS1; ~SS2ÞÞ. By the inductive
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hypothesis, we have tb k, li ¼ mi for each i ¼ 2; . . . ; k � 1, and either lk bmk

or both lk ¼ mk � 1 and t > k. This together with l1 ¼ m1 proves the asser-

tion. r

Remark 2. We can easily see that the a rational number s with 0 < sa 1

satisfies the conclusion of Lemma 4 if and only if s lies in the open interval

ðr1; r2Þ ¼ ð0; 1� � ðI1 U I2Þ, where r1 and r2 are rational numbers such that I1 ¼
½0; r1� and I2 ¼ ½r2; 1�, introduced in Section 2.

We are now in a position to prove the only if part of Theorem 1.

Proof of the only if part of Theorem 1. Since the exceptional cases

r ¼y and r ¼ 1 can be treated in the same way as in [1, Section 7], we as-

sume 0 < r < 1. Consider a 2-bridge link KðrÞ, and pick a rational number s

from I1 U I2. Suppose on the contrary that as is null-homotopic in S3 � KðrÞ,
namely us ¼ 1 in GðKðrÞÞ. If 0 < sa 1, then by Corollary 1, CSðsÞ contains
a term greater than or equal to m1 provided r ¼ ½m1� or otherwise CSðsÞ
contains ðS1;S2Þ or ðS2;S1Þ as a subsequence, where CSðrÞ ¼ ððS1;S2;S1;S2ÞÞ
as in Proposition 3. But then by Lemma 4 together with Remark 2, we have

s B I1 U I2, a contradiction. So the only possibility is s ¼ 0. Then, as men-

tioned at the end of Section 4 (also see [1, Theorem 6.3]), us must contain a

subword z of ðuG1
r Þ such that the S-sequence of z is ðS1;S2; lÞ or ðl;S2;S1Þ for

some positive integer l. Note that the length of such a subword z is strictly

greater than p, half the length of ðuG1
r Þ, where r ¼ q=p. Since 0 < r < 1, we

have pb 2. So, the word u0 ¼ ab cannot contain such a subword, a contra-

diction. This completes the proof of the only if part of Theorem 1. r
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