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ABSTRACT. We establish the Artin-Schreier-Witt theory in connection with the unit
group scheme of a group algebra, following a method presented by Serre in {Groupes
algébriques et corps de classes). The argument is developed not only over a field but
also over a ring, as generally as possible.

Introduction

The Kummer and Artin-Schreier theories are important items in the
classical Galois theory to describe explicitly cyclic extensions of a field. We
have an elementary way to verify the Kummer theory by the Lagrange
resolvants. Serre [8, Ch.VI, 8] formulated this method, combining the normal
basis theorem and the unit group scheme of a group algebra. His argument
raises a problem if the following assertion holds true:

(A) Let I be a finite group and R a ring. Suppose given an affine group
R-scheme G and a homomorphism i: " — G. Then there exists a commu-
tative diagram

r — un,
oo
I —— G.

(For the notation, see Section 1.) As is mentioned by Serre, if (A) holds true,
we obtain a conclusion:

(a) Let S/R be an unramified Galois extension with group I'. If the
Galois extension S/R has a normal basis, then there exists a cartesian diagram

Spec S —— G

|

Spec R —— G/TI.
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In the previous article [9] we formulated Serre’s argument in the frame-
work of the group scheme theory, adding a problem if the following assertion
holds true:

(B) Let I be a finite group and R a ring. Suppose given an affine group
R-scheme G and a homomorphism i : I" — G. Then there exist a commutative

diagram
r G
b
r r

—— U )i
If (B) holds true, we obtain a conclusion:
(b) Let S/R be the unramified Galois extension with group I" defined by
a cartesian diagram

i
R

Spec S —— G

|

Spec R —— G/T.

Then the Galois extension S/R has a normal basis.

We shall call the problems (A) and (B) sculpture problem and embedding
problem respectively. In [9] we examined both the problems when I is a cyclic
group:

(1) the Kummer theory (Proposition 2.2);

)
(2) the Kummer-Artin-Schreier theory (Proposition 2.6);
(3) the Artin-Schreier theory in characteristic p > 0 (Proposition 2.9);
(4) the quadratic-twisted Kummer theory of odd degree (Proposition 3.5);
(5) the quadratic-twisted Kummer theory of even degree (Proposition 3.11);
(6) the quadratic-twisted Kummer-Artin-Schreier theory (Proposition 4.3).

In this article we examine the Artin-Schreier-Witt theory in characteristic
p>0. In fact, it is verified that the sculpture and embedding problems are
affirmative when R is a ring of characteristic p, I" is a cyclic group of order p”
and G = W,, the group scheme of Witt vectors of length n:

MAIN THEOREM = THEOREM 2.5. Let I' be a cyclic group of order p".
Then we have commutative diagrams of group schemes over F, with exact rows

0—— I —— UI)y — (U(I)/I)y, — 0

b |

0 —— Z/p"Z —— Wyg, — Wy, —— 0
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and

0 —— Z/p"Z —— Wyg, —— Wy, —— 0

b |

0 — I' —— Uy, — (U(I)/T)y, — 0.

It is crucial to use a variant of the Artin-Hasse exponential series for
construction of homomorphisms U(I")g — Wy g, and Wy, — U(I)g. It
should be mentioned that Serre [8, Ch.VI, 9] gave an affirmative answer
for the sculpture problem, using the Artin-Hasse exponential series.

Now we explain the organization of the article. In Section 1, we recall
needed facts on Witt vectors and variants of the Artin-Hasse exponential
series. In Section 2, we prove the main theorem after recalling Serre’s
argument. Section 3 presents a few examples of normal bases for Artin-
Schreier-Witt extensions. We conclude the article, giving two remarks in
Section 4. One is concerned with Noether’s problem on the rationality of
invariant function fields. The other is concerned with the sculpture and
embedding problems for the Grothendieck resolution of a finite flat commu-
tative group scheme.

Notation

Throughout the article, p denotes a prime number. For a group scheme
G over a ring of characteristic p, we denote by F: G — G'?) the Frobenius
homomorphism of G.

For a ring R, R* denotes the multiplicative group of invertible elements
of R. A ring is commutative unless otherwise mentioned.

For a scheme X and a group scheme G over X, H'(X, G) denotes the set
of isomorphism classes of right G-torsors over X. (For details we refer to
Demazure-Gabriel [2, Ch.III, 4].)

1. Witt vectors and the Artin-Hasse exponential series

We start with reviewing relevant facts on Witt vectors and the Artin-Hasse
exponential series. For details, see [2, Chap. V] or [4, Chap. III].

1.1. For each r >0, we denote by &,(T)= ®,(To, Ty,...,T,) the so-called
Witt polynomial

&,(T) =T +pT! +---+ p'T,
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in Z[T) = Z[T,,T,...]. We define polynomials
S(X,Y)=S.(Xo,..., X, Yo,..., Y))
in Z[X,Y] =Z[Xy, X1,..., Yo, Y1,...] inductively by
@,(S)(X,Y),S1(X,Y),....S(X,Y)) = D.(X) + D,(Y)

Then, as is well-known, the addition of the scheme of Witt vectors

Wy = Spec Z[Ty, T1, T, . . ]
is defined by

(To, T, Tn,..)— S(TRL1I®T)
=S T®LIXT),SI(TRLIRT),S(TR®LI®T),...).

The additive group scheme W, 7 of Witt vectors of length # is also defined
by

W,z = Spec Z[Ty, T, ..., T—1]
with the addition
(To, Thy- -, Tue1)
=S (TRLIRT),S(TRLI®T),...,S1(TRL1®T)).
The Frobenius endomorphism
F: W, r, = Spec F, [Ty, Ti,...,Th-1] — W, ¥, = Spec F,(Ty, Ti,...,Th-1]
is given by

(To, Ty, Tyy) — (T35, T, ..., TY ).

> P n—1
1.2. Recall now the definition of the Artin-Hasse exponential series
Tr
E,(T) =exp Z—, € Z,[[T]].
r=0 p
For U = (U,),5, put
, 1 ,
EWU;T) =] E(UT) = exp(Z—rcD,(U)T” )
=0 r=0P
It is readily seen that

E,(U;T)E,(V;T) = E,(S(U, V); T).
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Let R be a Z,)-algebra and a = (ao, a1, az,...) € W(R). A formal power
series E,(a; T) € R[[T]] is defined by
0 .
E,(&;T) = HEp(akT” ).

k=0

For a,b e W(R), we have a functional equation
E,(a+b;T)=E,(a;T)E,(b;T).
Let F(T) e R[[T]]*. Then F(T) is expressed uniquely in the form

o
cHE,,(aj;Tf) with ¢ e R* and a;€ R for j > 1.
j=1

For each positive integer j prime to p, put a; = (a;,ay,a,;,...) € W(R).

Then we obtain a factorization

F(T)=c [] Ej(a;T’) with ce R* and a;e W(R) for j>1, (j,p) = 1.
(j,p)=1

The COI‘I‘GSpOl’ldel’lCG
F(T) =cC H Ep(aj; T}) = (C7 (aj)(_j,p):l)
(J:p)=1

gives rise to an isomorphism of groups R[[T]]* = R* x W(R)".
Now we generalize the argument mentioned above. For details we refer
to [7, Section 2.

1.3. Define a formal power series E,(U,4;T) in Q[U, A|[[T]] by

E)(U,4;T) = (14 AT) "/ ﬁ(l I SR
k=1
Then we have

E,(UAk Ry DTk it p>2,

k,p)=1

Ey(U, ;) ={ 7

[E[?(UAk71Tk)Ep(UAZkilTZk)_l]l/k if p= 2.

(k.2)=1

It follows that the formal power series E,(U,A;T) has its coefficients in
Z,)(U,A].
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Let R be a Z,-algebra and a,4 € R. We define a formal power series
Ey(a, 4 T) in R[T]] by

Ep(aik*IT")(*l)kil/k if p>2,
[E,(a2* ' T E, (@2 172K if p=2.

For example, we have
(1) E,(1,0;T) = E,(T);
2) E,(I,;T)=1+T.
Furthermore, for A € R and a = (ay,a1,az,...) € W(R), we define a formal
power series E,(a,; T) € R[[T]] by

o0
Ey(a, % T) = [ Eplar, 27" 7).
k=0

For a,b e W(R), we have a functional equation
E,(a+b,A;T)=Ey(a,2;T)E,(b, 1; T).

Let F(T) e R[[T]]*. Then F(T) is expressed uniquely in the form

¢ H E,(a;,2’; T/) with ce R* and a;e W(R) for j>1, (j,p) = 1.

(J:p)=1
It is verified also that that the correspondence

F(T)=c H Ep(“jaij; T') — (c, (“j)(/,p):l)
(J,p)=1

gives rise to an isomorphism of groups R[[T]]* = R* x W(R)".

ReMARK 1.4. The formal power series E,(U,1;T) was introduced by
Dwork (3, Section 1] as F(¢,Y). Furthermore he proved that E,(U,1;T) e
Z,)[U][[T]] by a different method.

1.5. Put A=Z[T]/(T"). Then the Weil restriction G = [] Gy, 4 is repre-
sented by the affine scheme A/Z

1
Spec Z[Uo, U,...,Uv_1,—
Uy

with multiplication

U Y Ui®U  (0<k<N).
i+j=k
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Let R be a Z,)-algebra. Then F(T) e (R[T]/(T"))" is expressed uniquely
in the form

F(T)=c || E(a,;T/) mod TV,
I<j<N
(J,p)=1

where ¢ € R* and a; € Wi (R) if j is prime to p and p*! < N/j < p*. Here
the formal power series E,(a,1; T) for a = (ap,ai,...,a,—1) € W,(R) is defined
by

;», H E ak, )

For j with 1 </j<N and (j,p)=1, we put U= Wiz, if p*'<
N/j < p*. Then the correspondence

F(T)=c [[ E(@,2;T/) = (¢, ()1<)n)
1<j<N (J,p)=1
(j‘rp):l
gives rise to an isomorphism of groups
2% G(R) = RITI/(TV)* S R x ] U(R
1<j<N

(j:p)=1
The map )(g) is represented by an isomorphism of group schemes over Z,
PaC Gz, = HGm,A ®zZ(p) = Gz, X H U;.
A/Z 1<j<N
(J:p)=1
In fact, a homomorphism of group schemes

¢:G=]] Gua=SpecZ|UpU Un 11| = Gz = Spec Z| U, -
G = m,A = SP 0, Uly.- N—1,U0 m,Z = dP U

477

is defined by U +— Uj.
Consider now the factorization

Up+ UiT+ UhT? + -+ Uy TV = Uy [ Eplq(U), 47 TY)
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1 X
in (Z(p)|:UQ,U1,...,UN17F0:|/(TN)) . Here

u, U, U; u, U, U;
Cj(U):C(UO,UO,...772>€Z(,,)|:UO,UO,. 7(/):|

Then a homomorphism of group schemes

ey

2 1
Xj‘( ) : GZ<,,) = HGm,A ®Z Z(p) = Spec Z(p) l:UOa U17~ (R} UN—laF():l

— j"R:Wk,R:SpeCZ(p)[Xo,Xl,...,Xk,ﬂ
is defined by
(X(), Xl, A 7Xk—1) — (Cj(U), ij(U), ce ,Cpk—lj<U)).

At last, we obtain an isomorphism of group schemes

; -
1= (e (= jen) : Gz = Gz x [ Upz,
(o)=1 17N
(J:p)=1

2. Main theorem

First we recall the argument of Serre [8, Ch.VI, 8] in terms of the group
scheme theory. We refer to [9, Section 1] for details.

2.1. Let I" be a finite group. The functor R +— R[] is represented by the
ring scheme A(I") defined by

A(I') = Spec Z[T,;y € I']
with
(a) the addition: T, —T,®1+1® T);
(b) the multiplication: T, +— > T, ® T,.

Il

Put now vy

1
Uu(r) —SpecZ[Ty,AF;yeF],

where Ap = det(7},/) denotes the determinant of the matrix (7%,), . (the
group determinant of I'). Then U(I") is an open subscheme of A(I"), and the
functor I" — R[I']" is represented by the group scheme U(TI).
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We denote also by I, for the abbreviation, the constant group scheme
defined by I.  More precisely, I = Spec Z!" and the law of multiplication is

defined by e, — > e, ®e,n. Here 7" denotes the functions from I to Z,
yiy'=y
and (e;), . is a basis of Z" over Z defined by

The canonical injection I — R[I']* is represented by the homomorphism of
group schemes i:I" — U(I"), which is defined by

T,

1
),Hey:Z[Ty, }—>Zr.

ar

It is readily seen that I' — U(I) is a closed immersion. Moreover the right
multiplication by y € I' on U(I') is defined by the automorphism y : T, +— T,
of Z[T,,1/4r].

TeErMINOLOGY 2.2. Let R be a ring, I a finite group and S an R-
algebra. We shall say that:

(1) S/R is an unramified Galois extension with group I' if Spec S has a
structure of right I'-torsor over Spec R;

(2) an unramified Galois extension S/R with group I" has a normal basis
if there exists s € S such that (ys),.r is a basis of R-module S.

In particular, an unramified Galois extension S/R with group I’ is
called an wunramified cyclic extension of degree n if I' is a cyclic group of
order n.

2.3. Let R be a ring and I" a finite group. Then the exact sequence
|l -T'—-UT)—-UI)/I —1
yields an exact sequence of pointed sets
U(I)(R) — (U(I)/T)(R) — H'(R,I') — H'(R, U(I))

(cf. [2, Ch.III, 4.4]). Furthermore, an unramified Galois extension S/R with
group I” has a normal basis if and only if the class [S] in H'(R, I') is contained
in Ker[H'(R,I') — HY(R,U(I))] ([9, 1.8]).

More concretely, let R be a ring, I" a finite group and S/R an unramified
Galois extension with group I'. Then the Galois extension S/R has a nor-
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mal basis if and only if there exist morphisms Spec S — U(I") and Spec R —
U(I')/I" such that the diagram
Spec S ——  U(I)

| l

Spec R —— U(I)/T’

1S cartesian.

2.4. Let I" be a cyclic group of order p”, and take a generator y of I'. Let R

}1”*1 pn71
be an F,-algebra. Then Y axy* € R[I'] is invertible if and only if Y a is
k=0 k=0

invertible in R. Hence the functor R+~ R[I']* is represented by the affine
group scheme

1
To+T+- -+ Tp

U(F)Fp = Spec Fp |:T()7 T], ey Tp”717
with multiplication

Ti— > TiR®T  (0<k<p".
i+j=k
mod p”
For an F,-algebra R, the correspondence y +— 1+ T gives rise to an iso-
morphism of multiplicative groups &g : R[] = (R[T]/(T?"))*. The map &g
is represented by the isomorphism of group schemes over F,

1
:UN)g =Spec ¥, | To, Th, ..., Tyn_
¢: U(IN)y, = Spec p|: 0, I, T 1’T0+T1+---+Tn1]

1
— HG’”H“ ®ZFpSpeCFp|:U(), U],...,Uprz_1,7:|
4jz 0

defined by

In fact, we have
p"—1 p'—1 p"—1( p"—1 j
fze(z akV">: Yoa(1+17) = { (k)aj}Tk-
k=0 k=0 k=0

Moreover the inverse of & is given by
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Uo

Taking N = p”" and A =1 in 1.5, we obtain also an isomorphism of group
schemes over F,

X :X(l) : GF,, = HGm,A ®Z Fp = Gm,Fp X H (J},Fp~
1<j<p”
(j,p):l

AJZ

In particular, we have a homomorphism of group schemes

canonical

i onic
4z projection
2 Gr, = HGm.A ®zF, = GuF, ¥ H Uiy, —— Uix, = Wap,.

A/Z

1<j<p"
(J,p)=1

We define also a homomorphism of group schemes over F,

as the composite

Wn,F,, = UI,F,, — Gm,

gy Wn,F,, - Cﬂfp = H Gn1,A ®Z Fp

canonical
injection

Then ¢ is a section of .

and

THEOREM 2.5.

0

e

AJZ

-1

1<j<p" A/Z
(J,p)=1

x
F, X H Uy, — G§, = HGm,A ®zF,.

Let I' be a cyclic group of order p". Then we have
commutative diagrams of group schemes over ¥, with exact rows

r

|

Z/p"Z

Z7/p"Z

R —

Uy, —— (UI)/T)g,

b

VVn7 F, —— Wn, F,
F—1
I/Vn, F, —— I/Vn, F,

0
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Proor. Let R be an F,-algebra. Then by definition we have &x(y) =
1+ T e (R[T]/(T?")*. Put now 1=(1,0,...,0)e W,(R). Noting that
E,(1,1;T)=E,(1,1;T) =1+ T, we obtain (x; 0&)g(y) =1 in W,(R). This
implies the commutativity of the first diagram. We have also E,(/1,1;T) =
(1+7T)" for IeZ. 1t follows that (¢7'oay)e(/1) =7!, which implies the
commutativity of the second diagram.

COROLLARY 2.6 (Artin-Schreier-Witt theory). Let R be an F,-algebra and
S/R an unramified cyclic extension of degree p". Then there exist morphisms
Spec S — W, 5, and Spec R — W, §, such that the diagram

Spec § —— W,
| =
Spec R —— Wk,
is cartesian. Moreover the cyclic extension S/R has a normal basis.

PrOOF. It is known that we have H'(R, W,) =0. This implies the first
assertion. On the other hand, it follows from the theorem that

Ker[H'(R,I") — H'(R,U(I"))] = Ker[H'(R,I") — H'(R, W,)] = H' (R, T).
2.7. We can give a more concrete description of Corollary 2.6.
For X = (X(),Xl, cee Xn—l) S Wn(Fp[Xle, cee Xn—l]), put
(F — 1)(X) = (Fo(X0), Fi (X0, X1), ..., Fue1 (X0, X1, ..., Xuc1)).-

Let R be an F,-algebra and S a cyclic unramified extension of R of degree
p". Then there exists a = (ag,a,...,a,—1) € W,(R) such that S is isomorphic
to

R[Xo,Xl,...,X,,,l]/
(Fo(Xo) — ao, Fi (X0, X1) — ar, ..., Furt (Xo, X1, .., Xos) — @).

Let o; denote the image X; in S for each i. Then the Galois group of S/R is
generated by

p (00,000, -y Op1) > (00,005 0—1) + (1,0,...,0) € W,(S).

Furthermore, develop
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in F,[T]/(T?"). Then by(X) =1, and b;(X) = b;j(Xo, X1,..., Xs—1) if pF ! <
j<p/. For 0<I<p" we define a polynomial ¥;(Xo,X],..., X, 1)€
FP[X(),XI,...,X,,,I] by

p"—1 ) .
¥ (Xo, X1, .., Xot) (-1)’*/(’);;_,()().

The homomorphism of group schemes

671 ooy : Wnypp = Spec FP[XQ,XI, R ,Xn,l]

— U(F)Fp = Spec F, [TO7 Ty, ..., Tyn_1, T T, +1. T ”_1]
is given by
T — ¥ (Xo, X1,...,X0-1):
F, [To, T,..., Ty 1, ! }
To+ T4+ Tpny
— F,[Xo, X1,..., X,1] 0<l<ph.
A normal basis of the cyclic extension S/R is generated by ¥Po(og, o1, ..., 0%—1)-

More precisely, we have

y_-/llfg(oco,ocl,...,ocn,l) = '1[’]-(060,0(1,...,0(",1)
for 0 < j < p".

Remark 2.8. Taking N=p” and 2=0 in 1.4, we obtain another
isomorphism of group schemes over F,

7=2": U =G, x [[ U,
1<j<p”

As in 2.4, we have a homomorphism of group schemes

by’ a ical
N x projection
X GE, = HGm.A ®zF, = GuF, x H Uiy, —— Uir, = Wy,
AJZ 1<j<p"
(J,p)=1

It is readily seen that %,(y) =1¢€ U(F,) = W,(F,). Therefore we obtain a
commutative diagram of group schemes over F, with exact rows
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0 — I' —— Uy, — (U(I)/T)g, — 0

P

L

0 —— Z/p"Z —— Wy, —5  Wep, —— 0,

as is indicated by Serre [8, Ch.IV, 9].

3. Examples

ExamMpPLE 3.1. The case of n=1. We have

X X X
EP(X,I;T)El—l—(l)T+(2)T2+~--+( 1>T”“ mod T7,
p_

where

(X)_X(X—l)...()(—j—H)
J 7!
Then we obtain equalities in F,[X]
-1 )
w0 = S0 () () =1- -

j=l J J

for each 0 </ < p.

For verification of the second equality, it is enough to remark the
following two facts:

(1) For INeZ with 0</< N, put

Flx) = f}(—l)’ﬂ'(’.) (X) e Q[X].

J J

Then we have

which follows from the inversion formula for binomial coefficients:

2 GG o nen

(2) For a prime number p and /e Z, put
F(X)=1—(X-1)""eF,[x].
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Then we have

1 (x=1)
F(“):{o (xeF,,a#l),

which follows from Fermat’s theorem.

At last we obtain the following well known fact. Let R be an F,-algebra
and S a cyclic unramified extension of R of degree p. Then there exists a € R
such that S is isomorphic to R[X]/(X” — X —a). Let o denote the image X
in S. Then the Galois group of S/R is generated by y: a+— a+ 1. Moreover
a normal basis of the cyclic extension S/R is generated by ¥o(a) =1 — a1,

REMarRk 3.2. In [9, Section 2] we first examined the sculpture and
embedding problems for the Kummer theory, interpreting the Lagrange resol-
vant in the framework of group schemes. Next we examined the problems for
the Kummer-Artin-Schreier theory, deforming the Lagrange resolvant. Last of
all we obtained the result for the Artin-Schreier theory by modulo reduction
from the Kummer-Artin-Schreier theory.

ExampPLE 3.3. The case of p=2, n=2. We have

ExX,;T) =1+ XT+ (X + X)T?* + (X + X)) T? mod(2, T*),

and therefore
Ex(Xo, X1, ,T) =14+ XoT + (Xo + X + X1)T?
+ (Xo + X3 + XoX1)T? mod(2, T%).

Hence we obtain

)=14+Xo+ X1 + XoX1 = (14 Xp)(1 + X)),
X0, X1) = X5 + XoX1 = Xo(Xo + X1),

) = X1+ XoX; = (1+ X)X,

On the other hand, the endomorphism
F—-1: VVer2 = Spec FZ[XO,XI} — VVQ_]F2 = SpCC Fz[Xo,Xl]

is defined by
(Xo, X1) — (X2 + Xo, X2 + X1 + X5 + X2).

Let R be an F,-algebra and ay,a; € R. Put
S = R[Xo, X1]/(XG + Xo + a0, X{ + X1 + X§ + XG + a1),
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and let op and a; denote the image of Xy and X; in S, respectively. Then S/R
is an unramified cyclic extension of degree 4. The Galois group of S/R is
generared by

v (o, 0q) — (o0 + 1,00 + o).
Furthermore ¥y(o, 1) = (1 +09)(1 + 1) generates a normal basis of S/R.

ExampPLE 3.4. The case of p=2, n=3. We have an equalilty in
B[X, T]/(T?)

ExXX,;T)=1+XT+ (X +X)T*+ (X + XHT* + (X2 + x4H1*
+ X+ X+ X+ X+ (X +X)T®
+ (X + X+ X0+ X1,
and therefore an equality in Fy[Xo, X1, X, T]/(T?)
Ex(Xo, X1, X2, ;T) = 1+ XoT + (Xo + X§ + X1)T? + (Xo + X§ + XoX1)T?
+ (X§ + X5 4+ X1+ XoX1 + X3 X, + X+ Xo)T*
+ (Xo + X3 + X3 + X3 + X§ X1 + Xo X7 + XoXo)T°
+ (Xo + X§ + X1 + XoXi1 + Xg X1 + X7 + XoX?
+ X§XE 4+ XoXo + X§Xo + X1 Xp) TO
+ (Xo+ X5 + X§ + X) + XoXi + X5 X1 + X5 X,
+ X X? + XoXo + X3 Xa + Xo X1 Xo)T7.
Hence we obtain
Po(X) =1+ X5 + X5 + X5 + X0+ X) + X1 + X5 X1+ Xo + XoXo + X1 Xo
+ Xo X1 X2,
PiX) = X5 + X0+ XJ + X§X + X3 X+ Xo X+ XoXP + XEXE + X3 Xa
+ XoX1X72,
Po(X) = X§ + X5 + X$+ XJ + XoXi + X3 X1 4+ X7 + XX + X1 X2 + Xo X1 Xa,
Yi(X) = X§ + X5 + XS+ X)+ X5 X+ XX+ XPXP + XoXa + X3 Xa
+ Xo X1 X2,
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Pu(X) = Xo+ X§ + X3 + X5 + X§ + XJ + XoXi + Xg X1 + Xz + XoX>
+ X1X5 + Xo X1 Xz,
Ps(X) = X§+ X; + X0+ X] + XoXi + X2 X1 + X3 X1+ X X1+ XoX?
+ XZXP 4 X3 X + Xo X X,
Ye(X) = X§ + X3 + XS+ X] + X1 + X5 X1 + X2+ XX + X1 Xa + Xo X1 Xz,
Yi(X) = Xo + X3 + X+ X{ + XoXi + Xg X1 + X5 X1 + X3XP + XoXa
+ X3 X5 + Xo X1 Xs.
On the other hand, the endomorphism
F —1: Ws¥, = Spec F2[Xy, X1, X2] — W3 5, = Spec F2[ X, X1, X3]
is defined by
(Xo, X1, X2) — (Fo(Xo), Fi(Xo, X1), F>(Xo, X1, X)),
where
Fo(Xo) = X3 + Xo,
Fi(Xo, X1) = X} + X1 + X5 + X{,
B (Xo, X1,X2) = X3 + Xo + X+ XPX5 4+ XPX§+ X+ XX
+ X1 X¢+ X] + X5
Let R be an Fj-algebra and ag,a;,a; € R. Put
S = R[Xy, X1, X2/ (Fo(Xo) + ao, Fi (X0, X1) + a1, F>(Xo, X1, X2) + a2),

and let o9, o; and o, denote the image of Xy, X; and X, in S, respectively.
Then S/R is an unramified cyclic extension of degree 8. The Galois group of
S/R is generared by

7 (o0, 01, 00) = (o0 4 1,001 + 019, 00 4 g0t + o5 + xp)-
Furthermore ¥y(a,a1,02) generates a normal basis of S/R.

ExampLE 3.5. The case of p=3, n=2. We have an equality in
Fs[X, T]/(T°)

Es(X,1;T) =1+ XT + (X +2X3)T* + (X* +2X) T + 2X +2x2 +2x)1*
+(2X +2X2+2X° + 22X+ XO)T° + (X2 + X+ XHTS

+ X H2X2 4 X X+ XOTT + (X +2X3) T8,
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and therefore an equality in F3[Xy, X1, T]/(T°)
Ex(X0, X1, 1;T) = 1+ XoT + (Xo +2X)T? + (Xo + X5 + X1)T?
+ (2Xo + 2X§ +2X5 + Xo X)) T*
+ (22X + 2X5 +2X5 +2X; + X5 + XoXi + 22Xy X)) T°
+ (X§ + X5+ X+ X+ XX, + XX, +2X) T8
+ (Xo +2X5 + X3 + Xg + X§ +2X§ +2X5 X1 + 2Xo X)) T7
+ (Xo +2X8 + X2 X, +2X5 X1 +2X X1 + X5 X,
+2XoX}P 4+ XGXP)TE.
Hence we obtain
Po(X) = 14+2X5 + Xg' + Xg +2X8 +2X5 + X§X1 +2X5 X1 + 22X X + Xg X,
+2X7 + Xg X7,
Pi(X) = 2X5 +2X5) + X$ +2X8 + XoXi + X§X + X3 X0 +2X0 X + XX
+ XoX7 + X5 X7,
Pr(X) = X5 + Xy +2X5 +2X8 +2X0 X1 +2X7 X, +2X X + 22X X0 + X X
+2Xo X7 + X§XT,
Py (X) = 2X7 +2X0 +2X§ 4+ 2X1 + 2X3 Xy + 22X Xy + 2Xg Xy + XQ Xy + 2X7
+ X5 XY,
Pu(X) = X5 +2X;5 + X$ +2X5 +2X0 X1 + 2X5 X0 + X5 X0+ 2X) X + X5 X
+ XoX? + X3 X7,
Ps(X) = 2X7 +2X5 4+ 2X) + Xp +2X8 4+ XoXi +2X5 Xy +2X X + Xy X
+2X0 X+ X XL,
Po(X) =2X3 + X5 +2X5 +2X8 +2X8 + X1 +2X5 X1 +2X) X1 + X5 X
+2X7 + X§XT,
P7(X) =2Xo + 2X5 + Xy + X5 + X$ +2X5 + Xg X1+ 2X) X1 + X X
+ XoX? + X{ X7,

Ps(X) = Xo + 22X + Xg X1 + 2X5 X + 22X X1 + X Xi + 2X X7 + X5 X7
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On the other hand, the endomorphism
F —1: Wy, = Spec F3[Xo, X1] — Wa r, = Spec F3[Xo, X1
is defined by
(X0, X1) — (X3 — Xo, X7 — X1 + XJ — Xp).
Let R be an Fs-algebra and ay,a; € R. Put
S = R[Xo, X1]/(X; — Xo — a0, X{ — X1 + X{ — X; — a1),

and let ap and oy denote the image of Xy and Xj in S, respectively. Then S/R
is an unramified cyclic extension of degree 9. The Galois group of S/R is
generared by

v (o, 0q) — (g + 1,00 — o —ocg).

Furthermore ¥y (ag, ;) generates a normal basis of S/R.
4. Remarks

4.1. Let I" be a cyclic group of order p”, and take a generator y of I".  Under
the identification

1
UI')y =SpecF,|To,T1,..., Ty
(I')g, = Spec p[ 0 L1sees 4 1’T0+T1+---+Tu1]’

the right multiplication by y on U(I" )Fp is defined by the cyclic permutation
Tg — Tp”fla T1 = T()7 T2 — Tl, feey Tpu,I — Tpn,z.

Moreover we have

1 r
%+ﬂ+m+TLJ’

(U(I')/T)g, = Spec K, [TO7 Ty,...,Tyn1,

where F,[To, T1,...,Tpn1,1/(To+ T+ -+ Tpn,l)]F denotes the subring
of invariant rationals under the action by I' on F,[T,, Ti,..., T,
1/(To+ T+ -+ Tpri)].

Now we have a commutative diagram of group schemes over F, with exact
rows
0O—r I — Uy — (U(F)/F)Fp — 0

P

Jz LXU)OG lz

2]
0 —— Z/p”Z —_— Gm,F[, X H [Jj,F,, E— Gm.,Fp X H L]j-,Fp e 0,
I1<j<p” 1<j<p”
(J:p)=1 (J:p)=1
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where @ is defined by the diagonal matrix with the entries F —1: W, 5, —
Wyx, for j=1 and the identity map for the others.

This observation allows us to write down in principle a generating family
of the invariant subring F,[To, T1,..., Tpn_1,1/(To+T1 +--- + Tpn,l)]r.

For example, let » =1. Substituting

p—1 .

J

v=3(1)7
Jj=k

in

qU) =8 % YU ut, U
1 1 U07U()"”’U() p UO,UO"”’U()

defined in 1.5, we obtain rationals

a(T)=c(To, Th, ..., Tp-1)

1
EFP|:T0,T1,...,T

_1, 0<l<p).
plT0+T1+"'+Tp1:| ( P)

More precisely, we have

Eo(T):EQ(To,Tl,...,Tpfl): Tj,

-1 p—1
El(T):gl(T()7T177Tp71): ]7}/ 7“]

and, for 2 </ < p, ¢(T) = ¢(To, Ti,...,Tp-1) is determined inductively by

Z,V:uzl (CIEIT)> <621§2T)> (CZV;_(IT)) +¢(T)

V1, V25
Vi+2vate (1= 1) v =1

1 ] p—1

P
J=l J=0

Then we obtain

1
F,|To, Ti,..., T, 1,
1{0 1 plTo+T1+-~-+Tp1]

_¥, [50<T>751<T>752<T>7...,a,,1<T>, ! }
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and

1 r
F,|To, Ti,..., T, 1,
p[o 1 p1T0+T1+~~-+Tp_1]

~F, [éom,a(n” - él(T)iz(T)v--v@’I(T)’ﬁ]'

It should be remarked that ¢o(T)=To+ T1+---+ T, is a group-like
element of the Hopf algebra F,[To, T,...,Tp-1,1/(To+T1+---+ Tp_1)] and
¢i(T),e(T),...,¢,—1(T) are primitive elements.

In this manner we would be able to follow the path shown by Kuniyoshi

[6]-

ExamPLE 4.2. In the case of p =2, we have

- - T
TY=Ty+ T T) =
co(T) o+ 11, ci(T) To + T
and
. . T,
a(T)? = &(T) = .
(T) = &(T) = 2
ExampLE 4.3. In the case of p =3, we have
N . T+ 27>
(T =To+Ti+T, &(T)=——""2_
o(T)=To+ T + T 1(T) Tor T, 1 T

T/ + ' T + T Ty
(To+ T, +T2)2

a(T) =

and

To—T)(T1 — Th)(Tr — To).

aﬂf—Mﬂ=( (To+ Ty + T»)*

ExampLE 4.4. In the case of p =5, we have

E()(T):T0+T1+T2+T3+T4,
50(T)51(T) =T, 42T, +3T; + 4Ty,

&o(T)?e(T) = 3(ToTy 4+ ThTs + Tr T + T3 Ty + T4 Ty)

+2(ToTh + Th'Ts + ToTu + T5To + TuTh),
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co(T) & (T) = 3(T2Ty + T2 Ty + T2 Ts + T2 Ty + T2 To)
+(ToTE + T T3 + Ta T + T5TF + TuTE)
+(T3To + TETs + T3Ty + T To + TFTh)
+ 2T Tr + T' T T3 + To 13Ty + T3 Ty Ty + T4 Ty Th)
+3(ToTh T3+ T' T2 Ty + Th T3To + T3 T4 T + T4 T 1),
Co(TYe(T) = MTT + TP T + T3 Ts + T Ty + T3 To)
+MTGTE+ TETH + THTF + TET} + TP TY)
ToT} + ThT5 + Th T3 + T3 T} + TuTy)
ToTr + TP T+ T3 Ty + T3 To + T, Th)
GTF + TET + T3TF + T3TE + TFT})
%B+ER+BE+E%+DH)

T1T2+T1 T2T3+T2T3T4+T3T4To+T4T0T1)

+2(

+3(

+3(T,

+2(

+2(T,

+3(ToTETy + ThT3Ts + ToTiTy + T3 T} Ty + T4 TET))
+ M T\ T + T T2 T} + T T T] + Ty ToTY + T3 T4 TY)

3T Ts + TET Ty + T3 T3 Ty + T3T4 Ty + TiToT)
+2AToTETs + ThT3Ty + TaTiTo + T3 TFT) + T4 T3 T)

+ M T\ T} + T T2 T} + T T T3 + Ty Ty TE + TuTo T5)

+ 4T To T3+ T Th T3 Ta+ Ta T3 TaTo + T3 T To Tr + T To Th 1)

and

a(T) e (T)’ - &(T)}
=4TyT) + T} T+ T Ts + T3 Ty + T, Tp)
H(TRTE+ TT + T3 T+ T T + T 1)
+MTGTY + TET; + T3T5; + TiT; + T Ty)
+(ToT} + T Ty + Th Ty + TT) + Ty Ty)

+ TS T+ TV T + T3 Ty + T To + T} Ty)
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AT+ TPTE + TS T + T T + T T})
+3TFTS + TET; + THT; + T3T§ + T T})
+2(ToTy) + T T + T T + T5Ty + T4 TY)
+ 3T Ty + TP T + T3 T Ty + T3 Ty Ty + T ToTh)
F(TETIT + TPTHTs + TTETy + TiTiTo + TFTET)
+ M ToTET; + T T3TE + T TiT] 4+ T TP T + To T T})
+2(ToT1T5 + T T3 + Ta T3 T; + T3 TuTy + ToToT})
+MT3TNTs + TP Ty + T3 T To + TR T4 Ty + T To Ts)
+ TG T+ TETLTF + T3 T3 T + TiTuTE + T T T5)
+2ToTETE + T T3T} + T T3TE + T TP TE + TA T TS)
+(ToTPTs + TV T3 Ty + Ta T3 To + T3 TP Ty + Ty T 1)
+ 3TN T>Ts + TET T3 Ty + T3 T3 TuTo + T3 Ty To Ty + T To T 1)
(T T T + T T3 T3 Ty + T TiTuTo + T TP To Ty + T4 T3 T Ts)
+ M ToTT3Ts + Ti ThTiTy + Ty T3 T Ty + T T T Ty + Ty ToTET)
+ 2T W T2 T} + TV T5T] + Ty T3 Ty T + T Ty ToTE + Ty ToT1 T3).

ExaMpPLE 4.5. In the case of p =2, n =2, the isomorphism

1
W& Uy =Spec Fo| Ty, Ty, Ts, T, }
X ¢ ()F2 pec ko | Lo, L1, 12, 3T0+T1+T2—|—T3

N 1
*Gmwdﬁnx%&—%%Bthﬁlﬁiﬂ

is defined by

Xo—a(T), Xi—a(l), X&), Xso&(T)
where

To+ Ti(14 U) + To(1 + U)* + T3(1 + U)* = &(T){1 + &(T)U}
{1+ &(T)U + (61(T) + &(T)> + &(T) U + (&(T) + & (T)> + & (T)é(T)) U3}

in F»[Ty, Ty, T», T5][U]/(U*). Hence we obtain
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co(T) =To+ T1 + Ty + T3,
eo(T)é(T) = Ty + T3,
eo(T)*er(T) = T} + T2 + TyTy + ToTsr + Th Ts + T» T,
eo(T) &(T) = (T3Ty + TETy + TETs + TETy)
+(Toh Tr + T' I T3 + Th T3 Ty + T3 To Th).

Furthermore we have

1 r

F, | Ty, Th, Ts, T,
2{0 P Y T+ T+ T

—F, [eo(r), (1) 4+ ¢(T),e(T)* + &(T) + & (T)* + &(T)?, Eg(T),gO(T) .

We have gotten
é(T){e(T)* + &(T)} = ToT\ + T1 T + To T3 + T3 Ty,
eo(T) e (T) + &(T) + & (T)* + & (T)*}
= (T3 + TP+ T5Ts + T3T0) + (T3 Tr + TP T + T, To + T3 Th)
+ (ToTETh + TV T3 Ts + ThT3To + T T3 Th)
+(ToT1 T; + TiTh T3 + Th T3 T + T3 Ty TY)
by a simple and honest calculation.

REMARK 4.6. Let k be a field and I" a finite group. Let K denote the
rational function field k(7,;y e I'), and let I" act on K by (y,T,/) — T,, or by
(y,Ty) ¥ Ty-i. Noether’s problem asks if the fixed field K' is purely
transcendental over k£ or not. The argument of 4.1 gives an affirmative
answer for Noether’s problem in a more precise form when &k is a field of
characterisitic p > 0 and I" is a cyclic group of order p”.

It should be mentioned that Noether’s problem is affirmative when k is a
field of characterisitic p > 0 and I" is a p-group. This fact is well known to

experts, for example, stated as [1, Theorem 1.12] with a reference to Kuniyoshi

[6].

4.7. We conclude the article by considering the sculpture and embedding
problems for the Grothendieck resolution of a finite flat commutative group
scheme. We refer to [11] for details, in particular concerning the relation with
the Hopf-Galois theory.
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Let S be a scheme and I an affine commutative group S-scheme such that (-
is a locally free ¢)s-module of finite rank. Then the functor Homgs_g (I, Gy, s)
is represented by a commutative group scheme IV, called the Cartier dual
of I'. Indeed the Ug-module @) = Homy,(Or,0s) is also locally free of
finite rank, and we have I'Y = Spec O}. The Cartier duality asserts that
Homg_g(I'Y, Gy, s) is isomorphic to I'.

Furthermore the functor Homg(I'", Gy, s) is nothing but the Weil restric-

tion [[ Gy, rv, which is representable since ¢y~ is a locally free Os-module of
ﬁniterre/lflk. Then we obtain an exact sequence of commutative group schemes
0—-1I— HGm,FV—> HGmpv /F—>O.
rv/s rv/s
The Weil restriction [[ Gy, v is smooth over S since G, v is smooth over
'Y, and therefore thf: /(iguotient IT Gu.r I is also smooth over S.
When [I" is a constant grouprsc/lieme, the Grothendieck resolution

0—-1I— H G, rv— H G, rv /F—>O
rvjz vz
is nothing but the exact sequence
0TI —->UT)—UI)/I —0.
ExampLE 4.8. Put | W, = Ker[F : W, 5, — W, 5,]. Then
\ Wy =Spec K, [Ty, Th, ..., T,.1]/(T), T,...,T" )

with the addition

(To, Thy- .., Tuet)

= (S(TROLIRT),S(T®LIRT),...,S, (TR®1,1RT)).

As is known, the Cartier dual of | W), is isomorphic to @, = Ker[F" : G, r, —
G, r,] (cf. [2, Ch.V. 4.4.7]). Therefore the Grothendieck resolution of the finite
group scheme | W, is written as

OHanHHGm,A*} HGm,A /1WnH0,
AJF, AJF,
where A =F,[T]/(T?"). For an F,-algebra R, the injection

1Wu(R) = | ] Gma | (R) = (RITI/(T""))
AJF,



350 Noriyuki Suwa

is given by
(0,1, .o an) = Ey(aT)Ep(@rT?) .. Eylaa 7).

Hence we obtain a commutative diagram of group schemes over F, with exact
rows

0O—— W, — HGm,A — (H Gm,A)/an—)O

A/F, A/F,

(2]
0O— W, — GnLF,, X H le\F[) E— Gm,Fp X H (jj‘Fp —_— 0;
I<j<p” 1<j<p”
(J,p)=1 (j,p)=1

where O is defined by the diagonal matrix with the entries F : W, 5, — Wy,
for j =1 and the identity map for the others.
Furthermore, taking the projection

AR H G4 — Uiy, = Wy,
A/F,

and the injection

O';O) : U17Fp - Wn"Fp - H Gm,A;
A/F,

we obtain commutative diagrams of group schemes over F, with exact rows

0O —— W, — HGmﬁA—><HGm,A)/]Wn—)O
A/F, A/F,
|
0 —— Wy ——  Wup, —— Wk, — 0
and
0O — W, —— Wy -, W ¥ — 0

Ep

o

0—>1Wn—’ HGHLA—’<H Gm,A)/IWn—>O-

A/[F,
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As a consequence, we arrive at the following assertion. Let R be an
F,-algebra and S an R-algebra such that Spec S is a torsor under { W,. Then
there exist morphisms Spec S — W, g, and Spec R — W, , such that the
diagram

Spec § —— Wk,

|

Spec R —— W ¥,

is cartesian. Moreover the Hopf-Galois extension S/R has a normal basis in
the sense of Kreimer-Takeuchi [5, Definition 2.6].

ReEMARK 4.9. Let R be an F,-algebra and A€ R. Then the isogeny
F—[:W,r— Wyr is finite and flat. Here [77']=(27710,...,0)
denotes the Teichmiiller representative of A7~' in W,(R). Put N =
Ker[F — [A77"]: Wy g — Wr].

Now we define an affine group R-scheme I by I" = Spec R[T]/(T"?") with
(a) the multiplication: T—TRI1I+1@T+ATRT;

(b) the unit: T~ 0;
(c) the inverse: T +— —T/(1 +AT).

It is deduced immeadiately from [7, Theorem 2.19.1] that the Cartier dual
of I' is isomorphic to N. More precisely, the correspondence

n—1 n—1

(ao,al, . ,an,l) — Ep(ao,;y; T)Ep(al,/lp; Tp) .. .Ep(an,l,)f’ , 77 )

gives rise to a bijection
N(R) = Ker[F — [277]: W,(R) — W,(R)] = Homg_g (I, Gy, g)-

(Or we can reduce the verification to the case of n = 1, which is stated in [10,
Theorem 2.7] in a different form, as is done in [12].)

Furthermore we obtain a commutative diagram of group schemes over R
with exact rows

0O— N —— HGm,A — (HGMA)/N 50

A/R A/R

0O—— N — Gm,R X H l]j.R i’ Gm,R X H (]j.R — Oa
1<j<p" = 1<j<p" =
(j,p)=1 (j,p)=1
where 4 = R[T]/(T""), and O is defined by the diagonal matrix with the
entries F — [/1”_1} : Wy r = Wy, g for j =1 and the identity map for the others.
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Putting 2 =0 and A =1, we recover the diagrams in 4.8 and 4.1 respec-
tively.

ExampLE 4.10. Consider now the Grothendieck resolution of a,» =
Ker[F" : G5, — Guf,]. As is recalled in 4.8, the Cartier dual of a,. is
isomorphic to | W, = Ker[F : W, g, — W, §,]. Hence the Grothendieck reso-
lution of the finite group scheme a,. is written as

0_)apn—>HvaA—) HGm'A /apn_70
AJF, A/JF,
where 4 =F, [Ty, Ty,...,T,1)/ (T, TV,...,T" ). For an F,-algebra R, the
injection
ayr(R) = | [[ Gma |(R) = (RITo, Th,..., Ty i) /(T TY, ..., TE )"
A/F,
is given by

n—1

av— E,(aTy)E,(a’Th) ... E,(a® Ty-1).

Put now 4y =F,[T]/(T?). Let R be an F,-algebra. Then the homo-
morphism of rings

R[T07T17"'a7—;1—1]/(T(§;7Tlpa"'aT;ffl)
— R[T))(T?): Ty — T, Ty —0,...,T,—1 — 0

induces a homomorphism of multiplicative groups

ar: | [ Gma |(R) = (RITo, T, ..., T, ) /(T], TY, ..., TV )"
AJF,

= | II Gua | (®R) = (RITI/(T?))".

Ay /F,

It is readily seen that 7y is represented by a homomorphism of group schemes

over F,
T H Gm,A — H Gm,A~
A/Fﬁ AU/FI?

Put

)? :XE()) om: H Gm,A - H Gm,A - U = Ga,F,,~
A/F, Ao/F,
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Then we obtain a commutative diagram of group schemes over F, with exact
rows

0 — apn — H Gm,A E— (H Gm‘A>/ap/z — 0

A/Fp A/E,

|k |

o
0 —— app — G%Fp — Ga’Fp — 0.

On the other hand, for an F,-algebra R, we define a map

1R:Gy(R)=R— | [[ Gua |(R) = (RITo, T1,..., T\ /(T5. T, ..., TV )
A/F,

by

n—1

avs Ey(aTo)E,(a’T)... E,(a” T" ).
It is verified that 1z is represented by a homomorphism of group schemes
over F,

l: Ga,F,, - H Gm,A-
A/F,

Moreover we obtain a commutative diagram of group schemes over F, with
exact rows
Fn

0 — ap ——  Gup, — G, —— 0

| l

0 apn —— H Gn1,A E— (H Gm,A>/a],n — 0.

A/F, A/E,

As a consequence, we arrive at the following assertion. Let R be an
F,-algebra and S an R-algebra such that Spec S is a torsor under a,.. Then
there exist morphisms Spec S — G, and Spec R — G, such that the diagram

Spec § —— Gy,

|k

Spec R —— Gy,

is cartesian. Moreover the Hopf-Galois extension S/R is has a normal basis.
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ReMarRk 4.11. Kreimer-Takeuchi [5] treats Example 4.8 and Example
4.10 as Example 4 and Example 3 respectively from a different aspect.
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