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Bridge decompositions with distances at least two
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Abstract. For n-bridge decompositions of links in S3, we propose a practical method

to ensure that the Hempel distance is at least two.

1. Introduction

Hempel distance is a measure of complexity originally defined for Hee-

gaard splittings of 3-manifolds [7]. The definition can be extended to bridge

decompositions of links and it has been successfully applied to knot theory.

For example, extending Hartshorn’s [6] study for Heegaard splittings, Bachman-

Schleimer [1] showed that the distance of a bridge decomposition of a knot

bounds from below the genus of any essential surface in the knot exterior.

Extending Scharlemann-Tomova’s [13] for Heegaard splittings, Tomova [14]

showed that the distance of a bridge decomposition bounds from below the

bridge number of the knot or the Heegaard genus of the knot exterior.

However, it is di‰cult to calculate the Hempel distance of a general

Heegaard splitting or bridge decomposition. While estimating it from above is

a simple task in principle, it is a hard problem to estimate the distance from

below.

For a Heegaard splitting, Casson-Gordon [4] introduced the rectangle con-

dition to ensure that the distance is at least two. Lee [8] gave a weak version

of rectangle condition which guarantees the distance to be at least one. Berge

[2] gave a criterion for a genus two Heegaard splitting which guarantees the

distance to be at least three. Lustig-Moriah [9] also gave a criterion to esti-

mate the distance of a Heegaard splitting from below.

On the other hand, we could not find corresponding results for bridge

decompositions in literature. In this paper, we observe that a bridge decom-

position of a link in S3 can be described by a bridge diagram, and show that

the well-mixed condition for a bridge diagram guarantees the distance to be at

least two (see Section 3 for definitions). It may be regarded as a variation of

the rectangle condition for Heegaard diagrams.
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Theorem 1. Suppose ðTþ;T�;PÞ is an n-bridge decomposition of a link

in S3 for nb 3. If a bridge diagram of ðTþ;T�;PÞ satisfies the well-mixed

condition, the Hempel distance dðTþ;T�Þ is at least two.

Recently, Masur-Schleimer [12] found an algorithm to calculate the

Hempel distance of a Heegaard splitting with a bounded error term. The

author imagine that their algorithm may also be appliable to bridge decom-

positions. However, the point of our result is its practicality: for any given

bridge decomposition, we can easily obtain a bridge diagram and check

whether it satisfies the well-mixed condition.

2. Bridge decompositions and the Hempel distance

Suppose L is a link in S3 and P is a 2-sphere dividing S3 into two 3-balls

Bþ and B�. Assume that L intersects P transversally and let te be the inter-

section of L with Be for each e ¼G. That is to say, ðS3;LÞ is decomposed

into Tþ :¼ ðBþ; tþÞ and T� :¼ ðB�; t�Þ by P. We call the triple ðTþ;T�;PÞ
an n-bridge decomposition of L if each Te is an n-string trivial tangle. Here,

Te is called an n-string trivial tangle if te consists of n arcs parallel to the

boundary of Be. Obviously 1-bridge decompositions are possible only for the

trivial knot, so we assume nb 2 in this paper.

Consider a properly embedded disk D in Be. We call D an essential disk

of Te if qD is essential in the surface qBente and D is disjoint from te. Here, a

simple closed curve on a surface is said to be essential if it neither bounds a

disk nor is peripheral in the surface. Note that essential disks of Tþ and T�
are bounded by some essential simple closed curves on the 2n-punctured sphere

PnL.
The essential simple closed curves on PnL form a 1-complex CðPnLÞ,

called the curve graph of PnL. The vertices of CðPnLÞ are the isotopy classes

of essential simple closed curves on PnL and a pair of vertices spans an edge of

CðPnLÞ if the corresponding isotopy classes can be realized as disjoint curves.

In the case of n ¼ 2, this definition makes the curve graph a discrete set of

points and so a slightly di¤erent definition is used.

The Hempel distance (or just the distance) of ðTþ;T�;PÞ is defined by

dðTþ;T�Þ :¼ minfdð½qDþ�; ½qD��Þ jDe is an essential disk of Te: ðe ¼GÞg

where dð½qDþ�; ½qD��Þ is the minimal distance between ½qDþ� and ½qD�� mea-

sured in CðPnLÞ with the path metric. Because the curve graph is connected

[10], the distance dðTþ;T�Þ is a finite non-negative integer.

For 2-bridge decompositions, there is a unique essential disk for each of

the 2-string trivial tangles. Moreover, the curve graph of a 4-punctured sphere
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is well understood (see Sections 1.5 and 2.1 in [11] for example) and so we can

calculate the exact distance.

Suppose ðTþ;T�;PÞ is an n-bridge decomposition of a link L for nb 3.

If dðTþ;T�Þ ¼ 0, there are essential disks Dþ, D� of Tþ, T�, respectively, such

that ½qDþ� ¼ ½qD��. We can assume qDþ ¼ qD� indeed and so Dþ UD� is a

2-sphere in S3. Therefore, ðTþ;T�;PÞ is separated by the sphere into an

m-bridge decomposition and an ðn�mÞ-bridge decomposition of sublinks of

L. By the definition of essential disks, m is more than 0 and less than n.

Conversely, we can conclude that the distance is at least one if ðTþ;T�;PÞ is

not a such one.

3. Bridge diagrams and the well-mixed condition

Suppose ðTþ;T�;PÞ is an n-bridge decomposition of a link L in S3 and

Tþ ¼ ðBþ; tþÞ, T� ¼ ðB�; t�Þ. For each e ¼G, the n arcs of te can be dis-

jointly projected into P. Let p : L ! P be such a projection. A bridge

diagram of ðTþ;T�;PÞ is a diagram of L obtained from pðtþÞ and pðt�Þ.
In the terminology of [5], tþ, t� are the overpasses and the underpasses of L.

Note that the boundary of a regular neighborhood of each arc of pðteÞ
in P bounds an essential disk of Te separating an arc of te. In this sense a

bridge diagram represents a family of essential disks of Tþ, T�. So we can

think of it as something like a Heegaard diagram for a Heegaard splitting.

It is well known that a bridge decomposition is displayed as a ‘‘plat’’ as in

Figure 1 (See [3]). Now we describe how to convert a plat presentation to a

bridge diagram. For example, consider a 3-bridge decomposition with a plat

presentation as in the left of Figure 2. Here P can be isotoped onto any

height, so start with P in the position Ps. The top in the right of Figure 2

illustrates a view of a canonical projection of the arcs t1þ, t
2
þ, t

3
þ on P from Bþ

side. In our pictures, pðt1þÞ, pðt2þÞ, pðt3þÞ are represented by a solid line, a

dotted line, a broken line, respectively. Shifting P to the position P1, the

projections are as the second in the right of Figure 2. Shifting P further to

Fig. 1
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the position P2, the projections are as the third. By continuing this process,

the projections are as in Figure 3 when P is in the position Pg. Then we

can find a canonical projection of the arcs t1�, t2�, t3� and obtain a bridge

diagram.

Next we study the distance of this 3-bridge decomposition. Since the link

L is connected, the bridge decomposition cannot be separated into smaller ones.

It follows that the distance is at least one. Consider the simple closed curve c

as in Figure 4. The curve c is essential in PnL and disjoint from both pðt1þÞ
and pðt1�Þ. Recall that the boundary of a small neighborhood of pðt1þÞ, pðt1�Þ
in P bounds an essential disk D1

þ of Tþ and an essential disk D1
� of T�,

respectively. So there are an edge between ½qD1
þ�, ½c� and an edge between ½c�,

Fig. 2

Fig. 3
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½qD1
�� in the curve graph CðPnLÞ. By definition, the distance is at most

two. It is true that there is no direct edge between ½qD1
þ� and ½qD1

��. How-

ever, this is not enough to conclude that the distance is equal to two because

there are infinitely many essential disks of Tþ, T� other than D1
þ, D1

�.

As shown in [2], [4], [8] and [9], su‰ciently complicated Heegarrd diagram

implies a large distance of the Heegaard splitting. We can expect that su‰-

ciently complicated bridge diagram also implies a large distance of the bridge

decomposition. A bridge diagram should be pretty complicated if it satisfies

the well-mixed condition, which we define in the following.

Denote the arcs of each te by t1e ; t
2
e ; . . . ; t

n
e . Let l be a loop on P con-

taining pðt�Þ such that pðt1�Þ; pðt2�Þ; . . . ; pðtn�Þ are located in l in this order.

We can assume that pðtþÞ has been isotoped in PnL to have minimal

intersection with l. For the bridge diagram of Figure 3, it is natural to

choose l to be the closure in PGS2 of the horizontal line containing pðt1�ÞU
pðt2�ÞU pðt3�Þ. Let Hþ;H� HP be the hemi-spheres divided by l and let di
(1a ia n) be the component of lnpðt�Þ which lies between pðti�Þ and pðtiþ1

� Þ.
(Here the indices are considered modulo n.) Let Ai; j; e be the set of components

of pðtþÞVHe separating di from dj in He for a distinct pair i; j A f1; 2; . . . ; ng
and e A fþ;�g. For example, Figure 5 displays A1;2;þ for the above bridge

diagram. Note that Ai; j; e consists of parallel arcs in He.

Definition 1. (1) A bridge diagram satisfies the ði; j; eÞ-well-mixed con-

dition if in Ai; j; e HHe, a subarc of pðtrþÞ is adjacent to a subarc of

pðtsþÞ for all distinct pair r; s A f1; 2; . . . ; ng.
(2) A bridge diagram satisfies the well-mixed condition if it satisfies the

ði; j; eÞ-well-mixed condition for all combinations of a distinct pair

i; j; A f1; 2; . . . ; ng and e A fþ;�g.

Fig. 4
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As in Figure 5, the bridge diagram in Figure 3 amply satisfies the ð1; 2;þÞ-
well-mixed condition. One can also check the ði; j; eÞ-well-mixed condition

for all the other combinations ði; j; eÞ ¼ ð1; 2;�Þ; ð2; 3;þÞ; ð2; 3;�Þ; ð3; 1;þÞ;
ð3; 1;�Þ. Hence the bridge diagram in Figure 3 satisfies the well-mixed

condition.

4. Proof of the theorem

Firstly, consider an essential disk D� of T�. Assume that D� has been

isotoped so that jqD� V lj is minimal. Here, j � j denotes the number of con-

nected components of a topological space.

Lemma 1. There exist a distinct pair i; j A f1; 2; . . . ; ng and e A fþ;�g such

that qD� includes a subarc connecting di and dj in He.

Proof. Since the arcs of t� are projected to subarcs of l, there exists a

disk E� in B� such that qE� ¼ l and t� HE�. The essential disk D� must

have non-empty intersection with E�. The closed components of D� VE� can

be eliminated by an isotopy of Int D�. Then D� VE� is a non-empty family

of properly embedded arcs in D�. Consider an outermost subdisk D0
� of D�

cut o¤ by an arc of them. For the minimality of jqD� V lj, we can see that

qD0
� V qD� connects di and dj in He for a distinct pair i; j A f1; 2; . . . ; ng and

e A fþ;�g. r

Secondly, consider an essential disk Dþ of Tþ. Assume that Dþ has been

isotoped so that jqDþ V pðtþÞj is minimal.

Lemma 2. Suppose c is an essential simple closed curve on PnL disjoint

from qDþ. There exist a distinct pair r; s A f1; 2; . . . ; ng such that no subarc of c

connects pðtrþÞ and pðtsþÞ directly (i.e. its interior is disjoint from pðtþÞ).

Proof. Let E i
þ be a disk of parallelism between tiþ and pðtiþÞ for each

i ¼ 1; 2; . . . ; n so that E1
þ;E

2
þ; . . . ;E

n
þ are pairwise disjoint. The closed com-

ponents of Dþ V ðE1
þ UE2

þ U � � �UEn
þÞ can be eliminated by an isotopy of

Fig. 5
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Int Dþ. If Dþ V ðE1
þ UE2

þ U � � �UEn
þÞ is empty, Dþ separates the n disks

E1
þ;E

2
þ; . . . ;E

n
þ into two classes in Bþ. Since Dþ is essential, both these

classes are not empty. If Dþ V ðE1
þ UE2

þ U � � �UEn
þÞ is not empty, it consists

of properly embedded arcs in Dþ. Consider an outermost subdisk D0
þ of Dþ

cut o¤ by an arc of them, say, an arc of Dþ VEk
þ. Then, D0

þ UEk
þ separates

the ðn� 1Þ disks E1
þ; . . . ;E

k�1
þ ;Ekþ1

þ ; . . . ;En
þ into two classes in Bþ. Since

jqDþ V pðtkþÞj is minimal, both these classes are not empty. Anyway, by

choosing r and s from the indexes of the disks of separated classes, the

lemma follows. r

Assume that the distance of ðTþ;T�;PÞ is less than two. There are

disjoint essential disks Dþ, D� of Tþ, T�, respectively. If qD� contains a

subarc connecting di and dj in He, it intersects all the arcs of Ai; j; e. In

particular, if two arcs of Ai; j; e are adjacent in He, a subarc of qD� con-

nects them directly. The above observations and the well-mixed condition are

almost enough to lead to a contradiction, but only the following should be

checked:

Lemma 3. The disks Dþ and D� can be isotoped preserving the disjointness

so that jqDþ V pðtþÞj and jqD� V lj are minimal.

Proof. Note that any isotopy of qDe in PnL can be realized by an

isotopy of De in Bente for e ¼G.

If jqDþ V pðtþÞj is not minimal, there are a subarc of qDþ and a subarc a

of pðtþÞ cobounding a disk Dþ in PnL. Since Dþ, D� are disjoint, qD� VDþ
consists of arcs parallel into a. Let D0

þ be an outermost disk of the paral-

lelisms. By assumption, pðtþÞ has minimal intersection with l and so no

component of l VD0
þ has both end points on a. By an isotopy of qD� across

D0
þ, we can reduce jqD� VDþj without increasing jqD� V lj. After pushing out

qD� from Dþ in this way, we can reduce jqDþ V pðtþÞj by an isotopy of qDþ
across Dþ.

If jqD� V lj is not minimal, there are a subarc of qD� and a subarc b of l

cobounding a disk D� in PnL. The intersection qDþ VD� consists of arcs

parallel into b. Let D0
� be an outermost disk of the parallelisms. By the

minimality of jl V pðtþÞj, no component of pðtþÞVD0
� has both end points

at b. By an isotopy of qDþ across D0
�, we can reduce jqDþ VD�j without

increasing jqDþ V pðtþÞj. After pushing out qDþ from D� in this way, we can

reduce jqD� V lj by an isotopy of qD� across D�. r

Theorem 1 implies that the 3-bridge decomposition in Figure 2 has

distance at least two. Since we have shown that it is at most two, the

distance is exactly two. We can work out in this way fairly many n-bridge

decompositions, especially for n ¼ 3.
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